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M-complete approximate identities in operator spaces
by

A, ARIAS (San Anionio, TX) and H. P. ROSENTHAL (Austin, TX)

Abstract. This work introduces the concept of an M-complete approximate identity
(M-cai) for a given operator subspace X of an operator space Y. M-cai’s generalize central
approximate identities in ideals in C*-algebras, for it is proved that if X admits an M-cal
in Y, then X ig a complete M-ideal in Y. Tt is proved, using “special” M-cai's, that if J is a
nuclear ideal in a C*-algebra A, then 7 is completely complemented in ¥ for any {isomor-
phically) locally reflexive operator space ¥ with J € Y € .4 and Y/J separable. (This
generalizes the previously known special case where ¥ = A, due to Effros-Haagerup.}
In turn, this yields a new proof of the Oikhberg—Rosenthal Theorem that X is com-
pletely complemented in any separable locally reflexive operator superspace, where K is
the O -algebra of compact operators on £2, M-cai’s are also used in obtaining some special
affirmative answers to the open problem of whether X is Banach-complemented in .4 for
any separable ("*-algebra 4 with K C .4 C B(#2). It is shown that if, conversely, X is a
complete M-ideal in Y, then X admits an M-cai in Y in the following situations: (i) ¥
has the {Banach) bounded approximation property; (it} ¥ is 1-locally reflexive and X is
A-nuclear for some A > 1; (iii) X is a closed 2-sided ideal in an operator algebra ¥ (via
the Effros—~Ruan result that then X has a contractive algebraic approximate identity}.
However, it is shown that there exists a separable Banach space X which is an M-ideal in
Y = X**, yet X admits no M-approximate identity in ¥
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Introduction. Let X denote the C*-algebra of compact operators on a
separable infinite-dimensional Hilbert space H. Consider the following open

PROBLEM A. Let X CY be separable operator spaces, and let T : X — K
be a completely bounded (linear) operator. Does T admit a bounded linear
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46L05. .

1431



144 A. Arias and H. P. Rosenthal

extension T : ¥ — K? That is, can we find a bounded T completing the
following diagram?

Y —-
(0.1) u
X =K

(See [BP], [ER2], [Pa], [Pi] or [Ro] for basic properties of operator spaces that
we use here. For the definition and a brief sketch, see the beginning of our
Section 1.) An interesting example due to E. Kirchberg [Ki] yields that one
cannot, in general, complete this diagram with a completely bounded T'; by
a result of [OR], it follows there are even locally reflexive separable operator
spaces where this is the case (in fact, where Y = C}, the space of trace class
Operators),

However, the following result is proved in [OR] {see Section 2 for the
definition of locally reflexive operator spaces).

THEOREM 1. Assume in (0.1) that T is a complete surjective isomor-
phism and Y is locally reflexive (with Y separable). Then there erisis o
completely bounded T completing the diagram (0.1).

We give here a new proof of Theorem 1, using also another structural
result obtained in [OR], as well as positive solutions to Problem A in special
cases. Our methods involve the new concept of an M-complete approxi-
mate identity (an M-cai) for a given operator space X contained in another
space Y; this is a uniformly bounded net (T3,) of (linear) operators from ¥
to X satisfying certain conditions (see Definition 1.1). For example, if X is
an ideal in a C*-algebra ¥ and (z.) is a central approximate unit for X
in Y consisting of positive contractions, and if we let T,(y) = x,y for all
y € A, then (7,) is an M-cai for X in ¥ (see Proposition 1.4).

Theorem 1 may be regarded as a “quantized” version of a result discov-
ered by A. Sobczyk in 1941:

SoBczyK’s THEOREM [So]. Let X C Y be separable Banach spaces and
T : X — co be a given bounded operator. There exists a bounded extension
T:Y — co of T with | T} < 2||T||; moreover, 2 is the best constant here
for general Y.

Many proofs have been given since [So| appeared, cf. [Pe], [V], [HWW],
and [Ro]. We give yet another proof here, which perhaps explains why this
isomorphic result (i.e., constant 2) really follows from the application of two
isometric results whose quantized versions form the basis for our approach to
Problem A and Theorem 1. One of these is a classical theorem concerning
C(£2), the space of continuous functions on a compact Hausdorff space,
published in 1933, namely
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BORSUK’s THEOREM [B]. Let 12 be a compact Hausdorff space and K
be a closed metrizable subset. There exists a norm-one linear operator L :
C(K) — C(R2) so that xL(f) = f for all f € C(K), where nf = f|x for all
f € C(£2). That is, we have the diagram

c(9)
0.2) pa
C(K) L. C(K)

Now of course C(2} is a commutative unital C*-algebra; if K is a closed
subset of 2 and Jx = {f € C(2) : flx = 0}, then Jx is an ideal in
C{f2) and every (closed) ideal is of this form. Moreover, K is metrizable iff
C{K) = O(12)/ Tk is separable. In view of the Gelfand—Neumark Theorem
|GN], Borsuk’s result may then be reformulated as follows:

THEOREM. Let A be a unital commutative C*-algebra and J a (closed)
ideal in A with A/J separable. Then there exists a contractive (linear) lift
L:A/T — A of Ls)z; that is, the following diagram holds:

A
(0.3) / Lw
AlT L= A1 T

Let us note also that if L is a contractive linear map satisfying (0.3),
then 7 is contractively co-complemented in A via the map P = I — L7; that
is, P is a projection onto J such that ||I — P|| = ||Lx|| = 1.

‘We now apply Borsuk’s Theorem and the injectivity of £*° to obtain a

Proof of Sobezyk’s Theorem. Let X, Y and T be as in the statement,
and regard ¢y C £%°; note that £* is a commutative C*-algebra and ¢ is
an ideal in €. Now £% is isometrically injective (by an easy application
of the Hahn~Banach theorem). Hence we may choose a linear extension

—~

T:Y — £ of T with
(0.4) T = ||Tl.

Now let A be the C*-subalgebra of £ generated by ¢o, 1, and T(Y). Then
since ¢y C A C £, ¢g is an ideal in A and of course A is commutative;
hence by Borsuk’s theorem, ¢y is co-contractively complemented in A. Thus
we may choose a projection P mapping A onto ¢y with ||I — P|| = 1. Thus

(0.5) 1P < 2.
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Then T := PT is an extension of T' satisfying

(0.6) IF) < |1P) - 17 < 217
by (0.4) and (0.5). m

We obtain here the following “quantized” version of Borsuk’s Thecrem
(see Theoremn 2.1 and the Theorem of the Appendix).

THEOREM 2. Let J be a nuclear (2-sided closed) ideal in a O™ -algebra A,
Let A > 1 and let Y be a closed linear subspace of A with 7 C Y so that
Y/J is separable and Y is A-locally reflexive. Then for every ¢ > 0, there
exists a completely bounded lift L:Y/J — Y of Iv;g with [L]lew < X +e.
That is,

Y
(0.6) / lw
Y/ T -Lsv/T

holds, where 7 is the quotient map. Moreover, if A = 1, L may be chosen
to be a complete isometry.

E. Effros and U. Haagerup establish this result for the case Y = A in
[EH] (when necessarily A = 1). Although our proof uses a basic idea in their
discussion, the latter is isometric, and does not adapt to the case A > 1,
which however is crucial in order to recapture Theorem 1, via the following
result obtained in [OR] (B(H) denotes the space of bounded linear operators
on H).

THEOREM 3 (Theorem 1.1 of [OR]). Let Y o separable operator space,
X o subspace of Y, and T : X — B(H) o complete isomorphic injection of
X be given. There exists a complete isomorphic injection T' : ¥ — B(H)
extending T. That is, if X' =T(X) and Y =T'(Y), then X' C Y' C B(H)
and T,T' are complete isomorphisms with

vy Ty
(0.7) U U
x> x
We now obtain Theorem 1 in the same spirit as our proof of Sobczyk’s
Theorem.

Proof of Theorem 1. Let X C Y be separable operator spaces with ¥
locally reflexive and let 7' : X — K be a complete surjective isomorphism.
Now K C B(H) (H = {*, say), and K is an ideal in B(H). Letting X’ = X,
choose :

YOK withY cBH)andT:Y — V"
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satisfying the conclusion of Theorem 3. Then of course Y' is separable
and locally reflexive (since T is a complete isomorphism); Theorem 2 then
yields a completely bounded lift L : Y'/K — Y of Iy, k- It follows that
P:=1Iy: — Ln is a completely bounded projection of ¥ onto K, where
m Y — Y'/K is the quotient map, whence T := PT" is a completely
bounded operator satisfying (0.1). u

REMARKS. (a) It is proved in [OR] that 7" may be chosen satisfying (0.7)
with

(08) NTllev <3| Tlles and [T [leo} T flew < 12[Tien 1T [les + 6-

The proof of Theorem 1 then yields the existence of absolute positive con-
stants A and B (with A < 108 and B < 55) so that if V" is A-locally reflexive,
then T may be chosen satisfying (0.1) with

(09)  ITllew < (Ay+BX)||T)|ew,  where ¥ = |T}eb T lco-

What are the optimal values of these constants? Our estimates (as well as
the constants in (0.8)) are surely far from best possible. We must have,
however, 4 + B > 2, even in the case where A = 1 and T is a complete
isometry. (Actually, it seems likely that in this cage, A + B > 3, and also
that there exists such a T' so that ¥’ cannot be chosen 1-locally reflexive.)

(b) N. Ozawa [O] has also (independently) obtained another proof of
Theorem 1, somewhat along the same lines as our argument.

Return now to Problem A, which is easily seen to be a special case of
the open

PrOBLEM B. Let J C A be a (closed 2-sided) ideal in a C*-algebra .A
with A/J separable. Is 7 complemented in A7

Again, this can be rephrased as a lifting problem, namely, does there
exist a (bounded linear) lift L : A/J — A of I4;77 (This problem dates to
at least 1974, when it appeared in [A].)

To see that Problem A is a special case, consider K as an ideal in B(H)
and let X,Y and T be as in the statement of Problem A. Now B(H) is
isometrically injective in the operator space category. Thus there exists a
linear extension T" : Y — B(H) of T satisfying |T"||cb = [|T'||cb- Now let
A denote the C*-algebra generated by X and T'(Y). Then A is separable;
were P a bounded linear projection from A onto K, T := PT" would be a
bounded extension of T satisfying (0.1). That is, Problem A is equivalent to
the special case of Problem B when J = X C A C B(H).

Problem B has an affirmative answer if A/J has the (Banach) bounded
approximation property, by rather deep work of T. Ando ([An]; see also
[CE2] and Theorem I1.2.1 of [HWW]}. Most of the affirmative known results
actually yield that 4,7 has a completely - positive contractive lift L; cf.
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[CE1], [EH], [ER2]. (The example in [Ki} does have a contractive lift but
no completely bounded one.) The methods of the present paper recapture
Ando’s theorem in the special setting of Problem A, via the following result
(see Theorem 2.8 and Corollary 2.9).

THEOREM 4. Let A be a C~-subalgebra of B(H) with X C A and assume
for some A > 1 that (K, A} has A-extendable local liftings. Then for every
e >0 and separable Y with X CY C A, thereerists alift L: Y/K =Y of
Iy with ||Lf < A+e. In particular, this holds if A/K has the A-bap or A
is A-extendably locally reflerive.

(We say that (K,.A) has A-extendable local liftings (A-eil’s) if for all
£ > 0, and finite-dimensional subspaces E of A/K, there exists a linear
operator L : A/KC — A** with |L|| < A+ ¢ so that L(E) C Aand L|F is a
lift of the identity injection of F into A/K. See Propositions 2.6 and 2.7 for
general permanence properties.)

CoroLLAry. If (K, B(H)) has A-ell’s for some A = 1, Problem A has
an affirmative answer.

(The case where A is extendably locally reflexive in Theorem 4 was previ-
ously obtained in [OR)]. The corollary thus extends the consequence obtained
there: Problem A has an affirmative answer if B(H) is an extendably locally
reflexive Banach space.)

We now discuss the methods and setting of our results. What is the Ba-
nach space technology which yields the theorems of Borsuk, Effros—Haagerup
and our generalizations thereof? Why do Banach and operator space hy-
potheses intervene in the algebraic setting of our Theorem 2 and Theorem 4,
and what is the appropriate operator space setting of these results? The an-
swer to the first guestion lies in the concept of an M-ideal, as pioneered in
[AE]; see [HWW] for a comprehensive reference.

We briefly recall the relevant notions.

DerFINITION 0.1. Let X C Y be Banach/operator spaces.

(a) X is called an M-surnmand in Y if there exists a closed linear subspace
Z of Y with

(0.10.9) XeZ=Y
so that
(0.10.1) |z + z|| = max{f|z|, ||z} forallz & X and z € Z.

In case these are operator spaces, X is cal]ed a complete M-summand-if Z
satisfying (0.10.i) also satisfies

(0.10°3) (5 +2i5)]| = max{||(z;}], ||{z:5)}} for all n. and 1 x n matrices
(zi;) and (2;;) of elements of X and Z respectively.
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(b) X is called an L-summand if Z can be chosen satisfying (0.10.i) so
that

(0.11) le+z| =z + ||z| forallze X and z € Z.

(c) X is called an M-ideal (resp. complete M-ideal) in ¥ if X** = X+
is an M-summand (resp. complete M-summand) in ¥**.

It turns out that M- {resp. L-) summands for X are unique; if X & Z
is the corresponding M- (resp. L-) decomposition, the projection P from ¥
onto X with kernel Z is called the M- (resp. L-) projection onto X. Also, X
is an M-ideal in V" if and only if X is an L-summand in Y* (see [HWW];
also see [ER2] for the case of complete M-ideals).

Now, M-summands and M-ideals are very special in the general Banach
space setting. However, the following remarkable result shows their impor-
tance.

THEOREM. Let A be o C*-algebra and J be a closed linear subspace.
Then J is an M-ideal in A #ff J is a (2-sided) ideal in A iff J is a
complete M-ideal n A.

(See [HWW] for a proof and complete references; for the remarkable
theorem that M-ideals are algebraic ideals, see [AE] and [SW].)

Why is an ideal in a2 C*-algebra an M-ideal? The commutative case is
rather transparent. For then A = Cp(12) for some locally compact Hausdorff
space {2 and J = Jx for some closed subset K of §2 {and Borsuk’s Theo-
rem of course could be formulated in this possibly non-unital setting alsc).
But then, identifying A* with M (2), the space of regular complex Borel
measures “on” {2, we see that J-+ = M(K), and if we let Z = M (22 ~ K),
then J* @ Z is an L-decomposition of M (K).

The non-commutative case is certainly not so transparent. The highly
motivated case of K in B(H) was established by Dixmier in 1950 [Di]. Note
that it seems one must at least consider X+ C B{H)*, a rather huge ob-
ject! Qur approach here yields the general non-commutative case, via M-
approximate identities, a notion defined only, in this setting, on the C*-
algebra A4 itself, one has no need to “look” at .A* or A**, to then “see” the
M-ideal property.

The results of our paper are all cast in the general setting of Banach/
operator spaces and (complete) M-ideals. We shall see that our complemen-
tation results also use the property of certain “special” M-complete approx-
imable identitics, and not just the general M-cai concept. Our methods may
also be used to recapture several of the results given in the initial paper [Ro].

To more thoroughly answer the second of our “motivating” questions,
we now proceed with a more detailed discussion and outline of our results.
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Varicus refinements of the concept of an M-approximate identity are
given in Definition 1.1. Theorem 1.1 then establishes that if X admits an
M-ai (resp. M-cai) in Y, then X is an M-ideal (resp. complete M-ideal)
in Y. Moreover, if X admits a strong M-cai (7%}, then T3* converges in the
wealk*-operator topology (W*-OT) on Y** to the M-projection mapping
Y** onto X**. We show in Proposition 1.4 that central approximate units
vield strong contractive M-cai’s for ideals J in C*-algebras A. A by-product
of Corollary 1.5: the central approximate unit (u.) may be chosen so that
setting Uya = uqa for all @ € A, we get

(0.12) Lo (U™ [ + I = U™ = llg™[  for all y™ & A",

Section. 1 concludes with a permanence property of “good” M-cai’s (see
Definition 1.3), which has the consequence: if X admits a good M-cai in ¥,
then Z ®p, X is a complete M-ideal in Z ®qp Y for all operator spaces Z
{Proposition 1.7). It remains an open problem if this permanence property
holds for general complete M-ideals.

In §2, we introduce the notion of a special M-cai for an operator space
X C Y. We show in Proposition 2.3 that if X is an ideal in a C™-algebra ¥
and (2.) is a positive contractive central approximate unit for X in ¥ (the
%.’s being positive contractions in X), and if we define U, (y) = +/Tay/Ta
for all @, then (U,) is a special M-cai for X in Y. Thus Theorem 2 of this
Introduction is a special case (for A > 1) of our Theorem 2.4: If X 45 an
apprezimately injective subspace of o A-locally reflevive subspace ¥ so that
X admits a special M-cai in Y, with Y/X separable, then for all ¢ > 0,
thereisa bft L:Y/X =Y of Iy;x with |L|op < A+ €.

In the Theorem of the Appendix, we obtain a complete isometric ex-
tension of the Effros—Haagerup lifting result, without the special M-cai as-
sumption; namely, the lift L may be chosen completely contractive provided
X is an approximately injective complete M-ideal in Y, when Y is 1-locally
reflexive and ¥/X is separable.

Our proof of Theorem 2.4 yields that its conclusion holds if we replace
its hypothesis that Y is locally reflexive by the assumption that X is locally
complemented in Y'; that is, for some 4 > 1, X is y-completely complemented
in Zforall X C Z CY with Z/X finite-dimensional. (See Theorem 2.4/
and the following Remark.) Thus it follows that if KX C Y c B(£?) with
Y separable, then K is completely complemented in Y provided K is locally
complemented in Y, ‘

In Definition 2.2, we give the Banach space concept of extendable local
liftings (ell’s) for a pair of Banach spaces X C Y (this is the same as
the special case (K,.4) stated above). We observe in Proposition 2.7 that
(X,Y) has A-ell's if (X,Y) has Mlocal liftings and, e.g.; ¥/X has the A-bap
or Y is A-extendably locally reflexive. Theorem 4 of this Introduction is
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then a special case of our Theorem 2.8, which yields that if X ¢ ¥ are
operator spaces with X approzimately injective and Y/X separable, so that
X admits a special M-cai in¥ and (X,Y) has extendable local liftings, then
X is complemented in Y.

Section 3 gives further applications of the general complementation re-
sults in Section 2. The easy Proposition 3.2(a) yields that if X, X5,... are
given operator spaces and X =(X18XoB.. ), and Y =(X1 B X2 D .. )ges,
then X admits a (canonical) strong special M-cai in ¥; moreover, if the
X,;’s are approximately injective, so is X. Corollary 3.3 then yields that if
X CZCY with Z/X separable and Z locally reflexive, X is completely
complemented in Z. Moreover, if Z is 1-locally reflexive, X is completely
co-contractively complemented in Z. This yields the discoveries in [Ro| that
if the X;’s are all 1-injective Banach spaces, X has the 2-Separable Fxten-
sion Property; in particular, co(£*°) has the 2-SEP. If, moreover, the X;’s
are all 1-injective operator spaces and X C Z CY with Z/X separable and
Z M-locally reflexive, then X is completely (A + £)-co-complemented in Z
for all £>0.

We also recapture the main result obtained in [Ro] concerning the Com-
plete Separable Extension Property (CSEP), namely that for all n > 1,
Z 1= co(Mn,00 ® Moo,n) has the 2-CSEP. That is, for all separable operator
spaces X C Y and completely bounded maps T': X — Z, there is an exten-
sion 7' : ¥ — Z with [T £ 2}|T||eb. (This is a full quantized extension
of Sobczyk’s Theorem; see Corollary 3.8.) In turn, this is obtained via an
interesting recent operator space extension of the Banach local reflexivity
principle due to I.. Ge and D. Hadwin [GH] and the following application
(via an elementary result in [Ro]): For Z as above, Z2** is 1-locally reflexive
(Proposition. 3.7).

Section 3 also treats the question of when the converse of Theorem 1.1
holds. Precisely, suppose X C Y are Banach (resp. operator) spaces with
X an M-ideal (resp. complete M-ideal} in'Y ., Does X admit an M-ai (resp.
M-cai) in Y'?

In Theorem 3.1, we prove that this is indeed true in the case where X is
an ideal (closed 2-sided) in a (possibly) non-self-adjoint operator algebra Y.
Effros-Ruan prove in [ER1] that then X is an M-ideal in Y precisely when
X has a contractive approximate identity. We show directly that then X
admits a strong contractive M-cai in Y.

In Theorem 3.11, we obtain the (perhaps surprisingly general) result that
(assuming X is a complete M-ideal in Y'), X admits an M-caiin Y provided
Y has the Banach bounded approzimation property. We also obtain the same
conclusion if Y 4s 1-locally reflezive and X is a finitely injective operator
space. Moreover, we find out that the M-cai (T ) may be chosen to consist of
finite rank operators when Y has the bap or X is A-nuclear and Y is 1-locally
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reflexive. (\-finitely injective operator spaces are defined in Definition 3.2
{just before the statement of Theorem 3.11); these include A-nuclear and
A-injective operator spaces.)

Theorem 3.11 uses an extension of the Banach local reflexivity principle
due to S. Bellenot [Be], which we formulate and prove in the operator space
setting in Lemma 3.12, as well as its consequence, an extension of the ahove-
mentioned result of [GH], which we obtain in Lemma 3.13.

Finally, we give an example of a Banach space X which is an M-ideal
in X** yet X admits no M-approximate identity in X** (Proposition 3.16).
The example is at the “surface” modulo some rather deep known results;
namely, X is a subspace of ¢g failing the compact bounded approximation
property.

We do not know of a separable pair (X,Y) forming a counterexample (as
of this writing!). However, we conjecture that if X is as in Proposition 3.16,
then there exists X € ¥ C X** with ¥ separable, yet X admits no M-ai
in Y. This conjecture, however, appears to lie considerably below the surface
of known results, unlike 3.16.

Initial stages of this work were carried out by the second named author
during a visit to the Mathematics Laboratory of the Faculty of Sciences of
Marseilles at Saint-Jérdme. It is his pleasure to thank the members of the
Mathematics Equipe and especially the Operator Spaces Groupe de Travaille
at Saint-Jérdme for the warm hospitality and mathematical encouragement
shown him, with particular thanks to Christian Samuel. Further stages of
this work were accomplished during the 1999 Summer Analysis Workshop
at Texas A&M University. It is the pleasure of both authors to thank the
‘Workshop participants and organizers for their warm support during this
visit.

1. Permanence properties of M-(complete) approximate iden-
tities. For the sake of completeness, we first recall the concept of an op-
erator space X, by which we mean a closed linear subspace X of B(H)
for some Hilbert space H, endowed with its natural tensor product struc-
ture with K. Given operator subspaces X; and X» of B(Hy) and B(Hs)
for Hilbert spaces H; and Hy, X; ®¢p X2 denotes the closed linear span in
B(H; ® Hs) of X; ® X5. A linear map T': X1 — X3 is called completely
bounded if Ix ® T is bounded, and we then set ||T||qp = ||Ix ® T||; equiv-
alently, ||T||cb = sup, {|[(T(xi))|| : (zi;) is in M, (X:1)} where we identify
M (X;) with B(£2) @ X;.

Remarkable axioms of Z. J. Ruan abstractly characterize the space
K ®¢p X without reference to the ambient Hilbert space H. Any Banach
space X can be regarded as an operator space in the so-called MIN struc-
ture (where ||(2:;){|lmmy = sup{fi{z*(z:;)){ : z* € X*, [|z*] = 1}, and (zy5)
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ranges over Kpo, the space of all infinite matrices with only finitely many
non-zero entries, regarded as a subspace of K acting on £2). MIN is then the
smallest operator space structure one can place on X. There is also a largest
structure, MAX, defined by ||(z:;)l|lmax = sup{|(T(z;;))|| : T : X — B(H)
is a linear contraction for some H}. For further basic facts and concepts,
see [Pi] and the references cited in the Introduction.

‘We now give the definition of the basic concept studied in this work.

DEFINITION 1.1. (A) Let X C Y be Banach/operator spaces, and let
(Ta)aep be a uniformly bounded net in B(Y). Then (T,)acp is an M-
approximate identity (M-ai) for X in YV if

(i) T.Y C X for all o,
(ii) Toz —w z forall z € X,
(iii) Timg (| Tow + (I — To)v]| < max{liu], |[v]|} for al w,v € Y.
(Tw)aep 18 an M-complete approzimate identity (M-cai) if (75,) satisfies (i},
(i), and
(iii)’ for all » and all n x n matrices (ui;), (vi;) in Y,
B [|(Tows + (T~ Ta)vig)|} < max{]}{usg)]), 1 (215}

(B) (T,) is called a strong M-ai (resp. strong M-cei) if in addition we
have

(iv) T*z** 25 2 for all 2** € X**
and

(v) T, {Tgy” || < lly*|| for all y* € Y™
resp.

(v") The T's are completely bounded and

Im | I @ TN < fI7|| forall T €K &sp Y™
[

(C) {Ty) is called a contractive M-ai (vesp. contractive M-cai) if (T ) is
an M-ai (resp. M-cai) for X in Y so that |[To|| < 1 (resp. [[Tafle < 1) for
all .

REMARKS. 1. Approximate units in Banach spaces were studied by
E. Oja [Oj] and W. Werner [We]. Part of Theorem 1.1 for Banach spaces
appears in [Oj]; a converse for certain Banach algebras is given in [We]. It
follows by a result of A, Lima in [L2] that X is an M-ideal in ¥ precisely
when there is a possibly unbounded net (T,) satisfying (1)—(iil)-

2. Evidently, if (T) is a contractive M-ai (resp. a contractive M-cai)
satisfying (iv), then (T,) is a strong M-ai (resp. strong M-cai) for X in Y.
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3. All these concepts are hereditary in the following sense: if X C Z CY
and (T,) is an M-approximate identity of one of the various kinds, for X
in Y, then also (T,{Z} is an M-ai of the same kind for X in Z.

4, We do not know the answers to the following ¢uestions. Let X C Y
be Banach/operator spaces. If X admits an M-ai in ¥, does X admit a
contractive M-ai in Y? If X admits an M-cai in Y, does X admit an M-cai
(T,) with

(i) the T,’'s completely bounded?
(it} supg [|Talle < 0o?
(i) {|Tulleo < 1 for all @ (i.e., so that (T,) is a contractive M-cai)?

Our first result provides basic motivation for introducing the concept in
Definition 1.1.

TeROREM 1.1. Let X C Y be Banach (resp. operator) spaces and as-
sume X admits an M-ai (resp. M-cai) (Tn} in Y. Then X is an M-ideal
(resp. complete M-ideal) in'Y and in fact (T}) converges in the W*-OT to
the L-projection. P on Y* with kernel X*.

If (T,) 15 a strong M-ai (resp. M-cai}, then (T}*) converges in the W*-
OT on Y** to the M-projection P* onto X** (resp. Ix @ T2* converges in
the W*-OT on K @ Y** to Ix ® P*).

REMARK. We note that in the operator space case, it is not assumed in
the definition of an M-cai (T,) that the T,’s are completely bounded. If,
however, it is assumed that in fact sup,, [|Zh|la < oo and (Ts,) is an M-cai,
it follows that (Ix ® T7) converges in the W*-OT on K ®qp Y™ to Ix & P.

Proof of Theorem 1.1. We first deduce: There is an L-decomposition
XL @ W for Y*, and if P denctes the projection onto W with kernel X+,
then T — P in the W*-OT. By first passing to a subnet, we may assume:

(1.1) w*- Ii;n Tyy*  exists for all y* e Y™,
{(Later, we will show this is not needed.) Now we have
(1.2) T2z’ =0and hence (I — T2)zt = z* for all @ and all z* € X+,
This is trivial, because (T¥z",y) = (1, Tay) =0 for all y € Y. Now
(1.3) Ii(IxIl(I— THy* € X+ forally* € Y™,
Indeed, if z € X, then
lién((f - Ty z) = iiin(y*, (I-Ta)x)=0.
Since the T;'s are uniformly bounded, the operator
(14) Q= ]ig:L(I —T3) is bounded
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(where the net converges in the W*-OT). But we have: y* € Y* = Qy* €
X+ by (1.3) and y* € Xt = Qy* = y* by (1.2), hence Q is indeed a
projection onto X+. Let P=1 — Q and W = PX* = ker Q.

Now we prove: X+ @ W is an L-decomposition of Y*. Let z+ € X1,
w € W; e > 0. We may choose norm-1 elements «, v of ¥ so that

(1.5) ]+ ol < (L4 e) (b + fu, )

{and the right hand terms are actually non-negative real numbers}. Now
(1.8) (zh, 0y + (w,v) = (&b, u) + im (T w, u).

For all o,

(1L.7)  (xt 4w, (I = Ta)u+ Tav)
= (&b, ) + (w, (I — To)u) + (w, Tav) by (1.2)

= (mL:u) + ((I_ T;)wsu') + (T;wa'”)'

But limg (I — T)*w = Qw = 0, whence we have proved, by (1.6) and (1.7),
that

(1.8) {av, ) + (w,v) = 1'1crtn(a:'L +w, (I — Ta)u -+ Tu(v))
< llz* + wlitim (T = Ta)u + Ta(®)]
<zt +wl|  (by Definition 1.1(ii)). '

Hence by (1.5), [lz]| + |w|l € (1 +&)[z* + wl|. Since € > 0 is arbitrary,
this shows: P is indeed an L-projection.

Thus by uniqueness of such, we conclude by the way that we did not
need to take a subnet; and so our original net satisfies

(1.9) P=lLmT inthe W*-OT.

We have now proved: X is indeed an M-ideal with X** @ W+ = Y™** the
M-decomposition for ¥**.

It now follows immediately from results of Effros-Ruan that X is a com-
plete M-ideal in Y in case (T,;) is an M-cai. Indeed, fixing n and then defin-
ing T = Iy, ® Ty on Mo (Y), we infer that (T7) is an M-ai for M, (X))
in M (Y), hence My (X) is an M-ideal in M,(X), whence X is indeed a
complete M-ideal in ¥ by [ER2].

We now proceed to the final assertion of the theorem. Assume then that
(T%,) is a strong M-ai (resp. M-cai). '

Let w € W+, We claim

(1.10) Twh — 0 inthe w* mpqlogy.
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Now once (1.10) is proved, we deduce by (iv) that for all z** € X™* and
wt e W,

(1.11) w*~ﬁg1T;*(m** +wt) = z*,

whence T** — P* in the W*-OT, and of course P* is the M-projection onto
* éuppose (1.10) were false. Then for some y* € Y™,

(1.12) Hm |y, T5 )] #0.

Now let y* = 24 +w, 2+ € X+, w € W. But then trivially (since Tzt = 0
for all o)

(1.13) T {(w, T3 )] # 0.

By passing to a subnet if necessary and taking obvious normalizations, we

may assume without loss of generality that |w| = 1 = ||w!|| and there is a
6 > 0 so that

(1.14) Hw, Ti*wt)| > 6 forall o

Now choose z € X, ||z|| = 1, so that
(1.15) [{w,z)} >1—4/2
Choose ap so that also
(1.16) {Taw,z)| >1~48/2 forall @ > ap.
Thus combining (1.14) and (1.16), we find for such « that
(1.17) HTow, why| -+ {Tkw, )| > 1+ 48/2.

Finally, for each such «, choose scalars 8, and v, of modulus one so that
(1.18) [(Taw,wh)| = (Tiw,0,w') and (Thw,z) = (Trw, Yax).
Hence, by (1.17} and (1.18),

(1.19)  144/2 < (TZw, baw™ +0z)| < || Tow|| [Baw” +euz]| = |[T5w]

because z € X** and X** @ W+ is an M-decomposition.
Thus

(1.20) %HT;wH >1+6/2 but |w| =1,
contradicting (v).

Finally, in the complete-category, it follows that for all u € K @ Y,
(1.21) (e @ To)(p) — (Ic ® PY(p)  weakly.

But X ® ¥* is a norm-dense linear subspace of X ®op Y™, whence (v') then

indeed implies that (1.21) holds for all 4 € K ®qp Y™, vielding the final
assertion. w
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CoroOLLARY 1.2, Suppose that X admits a strong M-ai (resp. a strong
M-cai) in Y. Then also X admits a strong M-ai (resp. M-cai) (U,) such
that if P is the L-projection with kernel X+, then UZ — P in the SOT
on Y™*. In particular,

(1.22) I (| V3" |+ 4T = U2yl = Iyl for all y* € Y™

If X admits a strong M-cai, then (Uy) may be chosen so that Iic @ U% -
Ix ® P* in the SOT on K ®qp Y.

Proof. Let (T%) be a strong M-ai (resp. M-cai) for X in Y. Theorem
1.1 shows that

(1.23) Tay* — Py*  weakly, forally" eY™

Hence there exists a net (U, ) of “far-out” convex combinations of the T,’s
so that

(1.24) UZy* -+ Py* innorm, forall y* eY™.

Of course, this yields that U — P in the SOT. In particular, for y* € Y%,
since P is an L-projection, we see that for all y* € Y™,

(125) |yl = I1Py"|l + (I = Pyl = Uim(I[TZy"|| + |17 = US)v™ D),

proving (1.22). _
Now it is easily seen that (U,) is a strong M-ai (resp. M-cai). Finally, if
(Ty) is a strong M-cai, then

(1.26) I}c@Ta* — Ix @ P inthe WOT on K ®,p Y,

whence again the U,'s may be chosen as above to satisfy the final assertion
of the corollary. w

Let X C Y be Banach (resp. operator) spaces. An inspection of the proof
of Theorem 1.1 shows that its conclusion holds under the following modified
assumptions on the net of operators (Tg)-

DEFINITION 1.2. Let (T,) be a uniformly bounded net of operators on Y.
(T, is called a weak M-ai (resp. weak M-coi) if (i) and (ii) of Definition 1.1
hold, but in (iii) and (iii'), we restrict the u’s (resp. the ui;’s) to lie in X.

THEOREM 1.1'. The conclusion of Theorem 1.1 holds provided X admits
a weak contractive M-ai (resp. o weak contractive M-cai) inY .

Proof. We may argue as in the proof of Theorem 1.1, which essentially
proceeds from first principles. Alternatively, we may use the following char-
acterization of M-ideals given in Theorem 1.2.2 of [HWW] (the “restricted
3-ball property”, which was introduced by A. Lima [L1]): X 4s an M-ideal
in'Y provided for any y € BaY, 31,22, in BaX and € > 0, there exists



158 A. Arias and H. P. Rosenthal

an ¢ € X with
lzi+y—z|| <1+e forell 1 <i<3.
Now letting (T,) be a weak M-ai for X in Y, simply choose o so that
o + (I —Ta)(@)| £1+e forall1 £i<3.

Since the T, ’s map ¥ into X, x = T,y satisfies the above criterion, whence
X is an M-ideal in Y. It may then be directly verified that T — P in the
W*-OT, where P is the L-projection with kernel X*. Assuming that (T,)
is a weak M-cai, we infer that for all n, (I, @ To,) is a weak contractive M-ai
on M, ®Y (where I, is the identity on M), whence M, (X) is an M-ideal
in M,(Y) and so as before, via the result in [ER2|, X is a complete M-ideal
in Y. Finally, assuming the additional hypotheses that T**2* — z** weak™
for all z** € X™**, we obtain the final conclusion of Theorem 1.1. w

‘We have chosen the stronger concept given in Definition 1.1 in the con-
tractive case, since this is what occurs when X is an ideal in a C*-algebra V.
Before dealing with this remarkable special case, we briefly consider when
our methods yield that a Banach/operator space X is an M-ideal/complete
M-ideal in X™**.

CoroLLARY 1.3. Let X be a Banach (resp. operator) space and let (Ty)
be a uniformly bounded net of weakly compact operators on X. Suppose that

(i) Taz — z for all z € X,
(ii) ma [|[Taz + (2 = T3yl < max{lfz]l, [y} for all ¢ € X and
y** c Y**, or
(ii') in the operator-space setting, for all n and n x n matrices (z;;) and
(uf) in My (X) and M, {Y™**) respectively,

i [[(Tazs; + (1 — T3y )| < maxf]|(z) |, (w351}

Then X s an M-ideal (resp. complete M-ideal) in X**. Moreover, then
T* — Ix- in the WOT.

REMARKS. 1. If (T3*) is an M-ai (resp. M-cai) for X in X**, then (T,)
satisfies the hypotheses of 1.3.

2. It follows immediately that if (T,,) satisfies these hypotheses, then also
there exists a net (T ) of weakly compact operators on X satisfying them,
so that in addition T* - Ix+ in the SOT.

In particular, we recover the facts (in this setting) that if X is separable
and satisfies these hypotheses, X* is separable; if the T, ’s are all compact,
then X* has the bounded compact approximation property; and finally, if
the T,,’s are finite rank, then X* has the bounded approximation property.
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In particular, if X is separable and the T.,’s are of finite rank, then X* is
separable with the bounded (and hence metric) approximation property.

This suggests the conjecture: if X admits a weak M-ai in X** consisting
of finite rank operators, then also X admits a weak M-ai in X** consisting
of contractive finite rank operators.

Proof of Corollary 1.3. Actually, everything but the final statement fol-
lows immediately from Theorem 1.1'. (Simply note that since the T,’s are
weakly compact, T3* X™** C X for all or.)

Now, if ¥ := X** and S, := T**, then 5% — P in the W*-OT, where
P is the L-projection on ¥™ with kernel X~. But in this case, we must
have P(Y™*) = X*, i.e., the L-decomposition of Y* = X** = X1 g X*
(see [HWW]). But then, after taking the various identities into account, we
simply find that if 2* € X* C X***, then T**z* = Tiz*, whence TX**z*
—+ ¥ weak™ simply means that (z**, T}z*) — (z**,z*) for all z** € X**;
ie., Tiz* — z* weakly. m

We now pass to the strongly motivating case of ideals in C*-algebras.
The proof uses certain standard arguments in C*-algebras, for which we
nevertheless give details for the sake of completeness.

PROPOSITION 1.4, Let J be an ideal in a C*-algebra A. Then there is
a strong contractive M-cai (To) for T in A.

Proof We may assume that A4 is unital, by simply adjoining an identity,
denoted by 1. For once the result is proved here, its hereditary character
yields the non-unital case. Choose a net (Zq)aey of elements of J with the
following properties:

(1.27) 0<z, <1 forallo,
(1.28) zox—x forallze J,
(1.29) Toy —YZa — 0 forally e A

(Such a net (zn)ae~y is called a central approzimate unit for J. For the exis-
tence of such nets, see W. B. Arveson [Ar] and C. Akemann and G. Pedersen
[AP]. See also our proof of Theorem 3.1 below.)

Now define Tn : A — A by Ty(y) = 3oy for all y € A and o. We
claim that (T,) is the desired net. Now (i), (ii), and (v) of Definition 1.1 are
immediate, since 7 is an ideal, (1.27) holds, and T, is a complete contraction
for all a. Using standard facts about C*-algebras, we also have (iv).

Indeed, A** is in fact a von Neumann algebra acting on a certain Hilbert
space 'H, in which the w*-topology on bounded sets (w.r.t. .A*) coincides
with the weak operator topology with respect to B(H). Now letting e denote
the unit element of J** {which exists since J is a von Neumann algebra),
it follows that z, — e weak®, Le., T, — e in the WOT on B(H), whence
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given z** € J**, also @, - ™ — - z** = 2™ in the WOT, Le., T2 (™) =
Zo - &** — z** in the weak™ topolegy, proving (iv).
Now the results in [Ar] yield that for all a € A,

(1.30) Vel — /Ty — 0 and V1 -—z40 —ay/l —xzy — 0.

(This also follows immediately from the known inequality ||vZa —ay/z || <
2+/]lall |lza —az||*/2 for all z, a in a C*-algebra with = > 0; cf. [D, page 73].)
It then follows that for any a € A,

(1.81.) Tl ~ /Ta Gr/Ta — 0
and
(1.31.ii) (1 —ma)o—+1—zpav/l—24,—0

Indeed, by (1.25), \/Ta(\/Tal — a1/Zs) — 0, and /(1 — 2a){v/1 — 250 —
ay/1 — za} — 0, yielding (1.31).
Now for each a, define U, and V, on A by

(1.32) Upa = Zat\Ta, Vaa=+1—zq0v1l~z, forallaed

Then note that U, and V, are also complete contractions, and moreover,
U, AC J and (I —V,)A C J for all . (See Remark 1 below for the last
assertion.)

Next, define S : Ad A — Aby S{ud®dv) =u+wvfor all u,v € A Then
endowing A & A with the L°-direct sum norm, and fixing «, we claim that

{1.33) So (Us ® V,) is a complete contraction.

This follows immediately from the matrix formula: for u,v€.4 and 0<z <1,

(1.34) Uati + Vot = (/2 VTZZ)G;S)(Jggi)

and the easily seen fact that

(L )|-10ve vi=ai-1

It now follows that (T, ) is a strong M-cai, i.e. (iii’) of Definition 1.1 holds
(since we have verified all the other conditions). Indeed, rephrasing (1.31},
for all a € A we get

(1.35) Toa—Uga—0 and (I—Ty)a—Vee— 0. -

Hence for any n and (as;), (bi;) in M,,(A), we have

(1.36)  Hm [[(Ta(ayy) + (I ~ Ta)(biy))|| = Em | (Ve (a5) + V(b))
| < max{[} (@i )] [|(Bi5)1]}

by (1.33). m
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REMARKS. 1. It is trivial that U, A ¢ J for all o, 8nce if 0 <z <1
belongs to J, then +/z € 7, whence \/za\/z € J for any a € A since J is
an ideal. A less trivial fact: also (I — V,,)A C J for all @. This is so because
for z as above, if @ € A, then also a — /1 = zay/1~z € 7.

Here is a simple proof of this fact: It suffices to show that

(*) Vi—za—~avl—z e J.

For then it follows that

(#)  Vi-a(Vl-sa-avli-2)=(1-2)a—+vI-zav/I—z € 7.
But za € J, whence a — y/Za+/T —x € J as desired. But in fact, for any
continuous function f : [0,1] — C, we have f(z)a — af(z) € J! Indeed,
the family F of all such functions f is clearly a closed linear subspace of
C([0,1]) which contains the constants and all powers of t, £ — ", whence F
containg all polynomials, so F = C([0,1]) by the Weierstrass approximation
theorem.

2. In Propesition 2.2 of the next section, we cbtain a stronger form of
M-cai’s in this context.

Applying Corollary 1.2, we thus obtain

CoRrROLLARY L1.5. Let J be an ideal in o C*-algebra A. There exists a
central approrimation unit (te) tn J with 0 < uy, < 1 for all a so that
setting Uyo = upa for all a in A, and letting P be the L-projection on A*
with kernel J+, we get UX —» P in the SOT; in particular, (1.22) holds
(where ¥ = A).

We may crystallize some of the ideas in the above proof via the following
notion.

DeFINITION 1.3, Let X © Y be operator spaces and (U, )aen be a net
of operators on Y. Say that (Uy) is a good M-cai if the following conditions
hold:

(1) UaY C X for all a.
(i) Ugz — z forall z € X.
(iil) There exists a net (Vo )aep of operators on ¥ so that
(a) Ualy) + Valy) my forally €Y,
(b) (I = Vo)Y C X for all e,
(¢) S o (U, ® V,) is & complete contraction for all ¢, where 5 :
Y @Y — Y denotes the sum operator S{u @ v) = u +v and
Y &Y is a complete L*-direct sum.

REMARK. Condition (b) of 1.3 yields that good M-cai’s (Uy) are heredi-
tary; that is, if Z is an operator space with X C Z C Y, thenalso VoZ C Z
for all o and hence (Ux|Z) is a good M-cai for X in Z.
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Now the proof of Proposition 1.4 yields that X admits a good M-cai in
Y if ¥ is a C*-algebra and X is an ideal in V. It also easily yields

COROLLARY 1.6. Suppose (Uy) s a good M-cai for X in Y. Then (Ua)
is a contractive M-cai.

We conclude this section with a permanence property for good M-cai’s.
Tts motivation comes from the following open problem. If X CY are opera-
tor spaces with X a complete M-ideal in V', is Z®.p X a complete M-ideal in
Z®epY , for all operator spaces Z? In the Banach space category, a result due
to D. Werner shows that Proposition 1.7 is true without any approximate
identity assumption (see Proposition VI.3.1 of [HWW] and [W1]).

PROPOSITION 1.7. Let X,Y and Z be operator spaces with X CY and
suppose X admits a good M-cai in Y. Then Z ®qp X admits o good M-cai
in Z ®op Y. Hence 7 ®op X is a complete M-ideal in Z ®op ¥

Proof. Let (Us)aep be a good M-cai for X in Y. We claim that
(Iz @ Uy) =: (Uy) is then a good M-cai for Z R0, X in Z@Y. Let (Va)aen
satisfy 1.3(iii) and set V, = Iz @V, for all a. Now it is immediate that if
X = Z@pX and ¥ = Z®op Y, then (T7) and (V) satisfy (i) and (ii) (b) of

Definition 1.3. It also follows that (iii){c) holds. Indeed, let §: ¥ & Y-V
be the sum operator. Then

So(UadVa)=Iz2850 U, ®Va),

hence 5 o (J, @ V) is a complete contraction since S o (U, @ V,,) has this
property.

It remains to check the approximation conditions (ii) and (ili)(a). But
we easily see that for ' € Z® X (the algebraic tensor product), Up! — 2,
whence since Z ® X is dense in Z @op X and the [7' s are complete contrac-
tions, (ii) holds. The identical density argument establishes (iii)(c) (since
again S o (U, @ V,) is a complete contraction for all &:).

REMARK. We may also introduce a weaker version of good M-cai’s and
obtain a similar permanence property. Given spaces X C Y, let us say that
(U,) satisfies (%) if (Uq) satisfies (i), (ii), and (iii)(a),(b) of 1.3, but instead
of {iii){c), we have

(Y So(UalX®dVy): X@®Y — Y is a complete contraction for all c.
Again, if (U,) satisfies (), then (U, ) is a weak contractive M-cai for X
in ¥, hence X is a complete M-ideal in ¥. Moreover, if Z is an arbitrary

operator space, since X admits a family satisfying (%), so does Z ®qp X C
Z @op Y, whence again, Z Qqp, X is a complete M-ideal in Z @,, Y.
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2. Complementation results. The main (motivating) result of this
section is as follows.

THEOREM 2.1, Let J C Y C A with J an approzimately injective
ideal in a C*-algebra A and Y o X-locally reflexive operator space with
V/J separable. Then for every £ > 0, there exists o completely bounded lift
L:Y/T =Y of Iy, with || L]y < A +e.

When ¥ = A, A = 1 (necessarily); our result then generalizes (up to &)
the theorem of E. Effros and U. Haagerup [EH], which yields that then,
assuming A is unital, there exists a completely positive lift L : A/T — Y
of I4,7. We give an isometric operator-space generalization of the Effros—
Haagerup lifting theorem in the Appendix.

We now recall two definitions. An operator space Y is A-locally reflexive
if for every finite-dimensional operator space E and operator v : FF — Y,
there exists a family of operators ug : E — Y satisfying ||ualles € Alltlicn
and uy{x) — u(z) in the w*-topology for every = € E. An operator space X
is epprozimately injective if for all finite-dimensional operator spaces E C F7,
operators u : B — X, and € > 0, there emsts an operator v : F — X
satisfying ||v|leb < (1 - &)[jvflcb and v|g = u.

To prove Theorem 2.1, we use the stronger properties of the M-cai’s for
ideals in C"-algebras obtained in the proof of Proposition 1.4.

DErINITION 2.1. Let X C Y be cperator spaces and (Uy)aep a net of
operators on Y be given. Say that (U,) is a special M-cai if the following
conditions hold:

(i) UgY < X for all .
(i) Upx — z for all z € X.
(i} For all y € Y, UZ(y) — UZ(y) — 0 as n — 0o, uniformly in o
(iv) For every positive integer k, there exists a net (chk))aeg of operators
on Y so that
(a) Uk(y) + V& ®) o yforally €Y,
(by (I = Vék))Y c X for all o,
(c)So(Urk® Vék)) is a complete contraction for all @, where S :

Y @Y — Y denotes the sum operator, S{u @ v) = u -+ v for all
w,v €Y, and ¥ ®Y is a complete L°°-decomposition.

Our next result yields that (Us) is a special M-cai precisely when (Us)
satisfies (iil) and all powers (Uf) of (U,) are good M-cai’s as given in Defi-
nition 1.3.

PROPOSITION 2.2. Let X C Y .be operator spaces and (U,) a net of
operators on Y.
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(A) If (U,) satisfies conditions (i), (ii} and (iv) of Definition 2.1, then
for all k, (U*) is a contractive M-cai for X inY.

(B) If (Ua) is a special M-cai, then also (UX) is a special M-cai for all k.

(C) If Z is a closed subspace of ¥ with X C Z, then (Uy|z) is a special
M-cai for X in Z.

Proof. Condition (iv)(b) implies that the U,’s are complete contrac-
tions, hence so are the UF's. Clearly, (UF) satisfies (i) for any k. We easily
see that (U¥)} satisfies (ii) by induction on k. The case k = 1 follows by
definition. Assuming the claim for &, for x € X we get

U3+ s — 2| = [UET (=) - Uk(e) + U () ~ =
< U [Ua(@) = (@)l + 1VE{z) ~ =]
Hence lim, ||[UX*1(z) — z|| = 0 as desired.

To finish proving (A), we need only verify that (U%) satisfies condition
(ili") of Definition 1.1. If we choose Vi) agin 2.1{iv), then given n and nxn
matrices (ui;), (vs;) in Y, we have

tim | ((Z - US)(vsg) — VO o)) =0 by (i) (a),
whence
(21) B (W) + (7 - U s))]| = B (08 ) + V3 ()|

< max{|(uig)|, [I{vi ) }-
Now to prove (B), we only need to verify that (U*) satisfies (iii). We first
observe that if (I/,) is special, then for any positive infeger k and y £ Y,
(2.2) U2 —UM(y) = 0 asn — oo,

To see this by induction: the case k = 1 follows by definition. Assuming
the claim valid for k, then for y ¢ 7,

(2.3)  UZ™Hy) - Usly) = [U5™ (o) - U ()] + U () - U2 ().

But (UnFF+l — rtkY(g) 4 0 as n — oo, uniformly in a, by definition,
and UPTk(y) — U2(y) — 0 as n — oo, uniformly in o, by the induction
hypothesis.

Now it follows directly that (U%) satisfies (iii) for all k. Indeed, given
y €Y, for all & we have

24)  (UD"HE) - U™y = US ) - U () — 0
uniformly in «, by (2.2). Thus (B) is proved.

(C) is immediate from (iv)(c), since the latter implies VA Z ¢ Z for all
cand k. =

uniformly in «.

as n — o0

An inspection of the proof of Proposition 1.4 now yields our main ex-
ample of this phenomenon.
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PRrOPOSITION 2.3. Let [T be an ideal in a C*-algebra A. Then there is
a special M-cai (Uy)aep for J in A.

Proof. As before, we may assume that A4 is unital. For if, say, 7 ¢ Ag C
A, with 7 an ideal in Ay non-unital and A just .A4p with unit adjeined, 7 is
an ideal in A and then by 2.2(C), (U,|4,) serves as the special M-cai for J
in Ag.

For any 0 <y <1 in A, defire the operator T on A by

(2.5) T, (A)=yAy forallAe A

Next, let (24) be a central approximate unit for J (i.e., (zo) satisfies (1.27)-
(1.29)). Define Uy, by (1.32); that is,

(2.6) Uop =T z; foralla.

We claim that (/) is a special M-cai for 7 in A.
‘We first note that for any positive integer &,

(2.7) (%) is a central approximate unit for J.

This follows easily by induction on k. The case k = 1 is simply the definition.
Suppose the claim proved for k. Then of course 0 < =% < 1 for all 0. Given

e J,

k+
o

k
o

o5ty — g =ity gha 2k — o

=af (zpr—x) + 2tz 2
— 0 by induction hypothesis.
Similarly, given y € Y,
ity — yah™ = aa(wly — yoh) + (2ay — yoa)ol
— 0 by induction hypothesis.

Now we verify (i)—(iv) of Definition 2.1 for (Uy). (i) holds via Remark 1
following the proof of Proposition 1.4, (i) holds by (1.311i) and the fact
that (z,) is an approximate identity in 7. Now fix a positive integer k, and
define
(2.8) chk) = Ty gk )1r2

Now (1.81.), (1.3Lii) (applied to zo = zf) yield that (iv)(a) holds, while
(iv)(b) holds via (1.32) (agaiv applied to @ = z§ for all a). Also, (iv) {c)
holds, again via Remark 1 following the proof of 1.4.

It remains to verify (iii). In fact, we have the stronger condition

(2.9) |Uz+ ~ Uz — 0 asn— oo,
Indeed, for any 0 <y < 1 in A we have, for all A€ A,
(2.10) Tr(4) =Ty (A) = y" Ay™

for all o

uniformly in .
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Hence
(211)  TF(A) - THA) =y TAGT ) + 7 - A
Now thanks to the (elementary) operational calculus, we have
(212)  lim ly"*t ~y™|| =0, uniformly overy € Awith0 <y <1
Thus, given £ > 0, we may choose 7 80 that
(2.13) g™t — g™ <ef2 forall0<y <1, y& 4,
But then
(214)  [TIHH(A) — TRAN < [ AN I - w7
+lly™ =gl Af ™) < ell A

Hence
(2.15) [T9t ~TF|<e forallyed 0<y<1.
But of course UZ = ;"‘11,2 for all @, proving (2.9). =

REMARK. Buried in the proof of this result, as well as the proof of
Proposition 1.4, is the following elementary fact: For any 0 < y < 1 in A,

S o (T 5z @ T =) is a completely positive contraction.
{The complete positivity is evident, upon explicitly writing this map as

UBP v Y uy/y+ 1 —yo/1—y.
Hence, assuming that A4 is unital with identity I, we need only compute
180 (T 5 @ T 1=5)(I & I)|; but of course this equals

Wovi+vI-yvI—yl=lly+I-yl|=1)

We may now give the proof of Theorem 2.1, via the following more
general result.

THEOREM 2.4. Let A > 1, and let X C Y be operator spaces with X
approzimately injective, Y A-locally reflexive, and Y/X separable. Assume
thet X admits a special M-cai in Y. Then for all € > ), there exists a
completely bounded lift L:Y/X =Y of Iy;x with ||Lljes < A+£.

REMARKS. 1. L is called a lift of I = Iy;x if, for 7 : ¥ — Y/X the
quotient map, the following diagram commutes:

L
T

Y/ X -Lsv/iX
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We note that the conclusion is equivalent to the assertion that for all £ > 0,
X is completely (A + £)-co-complemented in ¥'; that is, there exists a linear
projection P mapping ¥ onte X with [T — Pljg, < A+ <.

2. An operator space X is defined to be approzimately injective if for
all finite-dimensional operator spaces E C F, linear maps T : E — X, and
£ > 0, there exists a linear map T : F — X extending 7" with ||T||cb <
|Tllcw -+ €. (This is equivalent to the definition given in [EH] when X is
a C*-algebra.) We recall that nuclear operator spaces are approximately
injective, while approximately injective 1-locally reflexive operators spaces
are nuclear (cf. [EOR]).

3. Theorem 2.4 immediately yields the following generalization. Let A,
X and Y satisfy the assumptions of 2.4, but delete the hypothesis that Y /X
is separable. Then for oll £ > 0, separable operator spaces Z and completely
bounded maps T : Z = Y/X, thereis a it T: Z =Y of T with ||T||a <
(A + &)||T|lch. Indeed, let Yy equal the closed linear span of X and T'(Z).
Then Y is also A-locally reflexive and, since special M-cai’s are hereditary
(Proposition 2.2(C)), X admits a special M-cai in Yy. Thus by Theorem 2.4,
there exists a lift L : ¥p/X — Yp of Iy, /x with [|[Llley < A 4 £. But then

T = LoTis alift of T with |[T| < A+ &)|Tflcv. w
The following lemma is the crucial tool for the proof.

LeMMA 2.5. Let X and Y satisfy the hypotheses of Theorem 2.4. Let
Yy, © Yo be linear subspaces of ¥ with X C Y; and E; = Y;/X finite-
dimensional, i = 1,2, Let Ly : By — Y1 be a lift of Ip, and set v = | Ly ||cn-
Then given € > Q, there exists a lift Ly : By — Ya of Ip, with

(2.16) [ Lalm, — L1lj <€
and
(2.17) || Lallew < max{vy, A} +€.

Proof. Let ¢ > 0. We first note that there exists a lift L : By — Y3 of
Tg, with

(2.18) 1Z]es < A+

Indeed, the hypotheses yield that X is a complete M-ideal in ¥, and hence
X** is completely co-contractively complemented in Y;™. Then Proposition
2.6(ii) yields that X is completely (A + &)-co-complemented in " (see also
Sublemma 3.11 of [Ro]). Now choosing a projection P from ¥ onto X with
II = Pllap < A+ & and letting G = (I — P)X, we deduce that 7T|f maps
G one-to-one onto Y/X and {|(x|¢) *|lv < A+ ¢, whence (w]e) " is the
desired lift L. :
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Let (Us)aep be a special M-cai for X in Y. Now, choose k so that
(2.19) |(UE+HL —UB L) < /3 for all o

We may do this, since L;(E1) is a finite-dimensional subspace of ¥, using
(iii) of Definition 2.1. Now choose (Vogk)) as in (iv) of Definition 2.1.
Since Ly and L|g, lift Ig,, we have

(2.20) (L, — L)(Ey) € X.

Hence since (UF) is a special M-cai, choose an a so that

(2.21) (1 — L|,) — Ug(Ly — L)l < &/3

and _

(222) [V Llg, + UkLls — Lis, | < /3 (by ()(b).

Now note that U,Li{F;) € X. Hence by the approximate injectivity of X
and the complete contractivity of U,, we may choose an extension
8:E;, — X of U,L, with

(2.23) [6lleb < v +&.

Define Ly : E; — Y by

(2.24) Ly = VML 4 U0

Then (iv)(b) yields that

(225) |l € moax{{Lllcp, [Ollon} < max{A+e,7+ <}

by (2.18) and (2.23).
To see that Lo is a lift of Ig,, let e € Ey. Then

nLa(e) = m(VE Lie) + Uable))

=rV® L) by 21(%1)
= wL(e) by 2.1(iv)(b)
=€ since L is a lift.

Finally, we must estimate the norm of Lj — Ly|g,. Now we have
(2.26) Loig, =V L|p, + ULy
= V™ L|g + UL, + Ry where |Ryj < ¢/3
by {2.19). But also
(2.27) VO L|g, = L, — USL|g, + Ry  where | Ry < ¢/3
by (2.22). Next,
(2.28) Iy =1Llp, —UFL|g, + UEL; + Ry where | Rs|| < £/3
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by (2.21). Hence
(2.29) Lolg, ~ In = Lig — USL|s, + Ra + USLy
+ Ry~ Lig, + USL|g, ~U*L1 — Ry
= R + Rz - Hs.
Finally,
(2.30) Lzl = Loll < | Rall + | Rall + || Rsll < . m
We are now prepared for the

Proof of Theorem 2.4.Let 0 < £ < 1 and choose finite-dimensional spaces
Ey C By ¢ ... in Y/X with

|JE =v/x.
J

Ag in the first step of Lemma 2.5, choose a lift Xy : By — Y/X of Iy, with
|L1fler, < A+ £/2.
Let n > 1 and suppose Ly, : B, —+ Y/X has been chosen, lifting Iz, with

12
£

(2.31) i Znllw < A+ Zl R
Then by Lemma 2.5, we may choose Lni1 : Epyq — Y/ X lifting I, , with

€ e
(2.32.1) Lniillen < || Lnlles + prm) <A+ 21 o7

J=

and
(2.32.11) | LntilB, — Ln|l < €/27.

Now it follows that if we set Z = U;;’l E;, then (L) converges pointwise
to a lift L of Iz satisfying

o £
(2.38) 1 £]leb < A+ 21 5 =Ate
;]:
To see this, let z € Fy, for some k. Then for any k < m <n,

| Ea(2) = Zm(2)l = | E(L,W) - Li(2))|
Je=mn

n—1
< Y IEjale; = Lsl Iz
j=m

< — 0 asm— 009,

o3 Zm__l
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hence (L,) indeed converges to a linear operator L on Z. But we also see
that if we fix %k, then since ||L,|g,llcc < A + ¢ for all n, by (2.31), also
| L& llcb < A+e. Moreover, since L, | g, lifts I, , so does L. Hence L indeed
lifts Iz. It now remains to simply extend L to all of Y/X by continuity. w

REMARK. Say that a net {(U,) of operators on Y is a weak special M-cai
provided (U, ) satisfies all the conditions of Definition 2.1 except that we
replace (iv)(c) by

(iv)(c) S o (U¥x & V&) is a complete contraction from X & Y to ¥
for all o

(In other words, for all k, (U}) satisfies condition (#) given in Remark 1 at
the end of Section 1, and also (U, ) satisfies condition (iii) of Definition 2.1.)
The proof of Theorem 2.4 yields that its conclusion holds provided we as-
sume instead that X admits a weak special M-caiin Y.

We next take up the problem of ensuring that X is complemented in Y,
when X C Y are operator spaces with ¥/ X separable and X approximately
injective. (It apparently remains an open question if this is always the case in
this setting.) Note, however, that X need not be completely complemented.
A remarkable example by E. Kirchberg yields a non-exact separable C*
algebra A and an ideal J C A with 7 nuclear and A/7 exact [Ki]. Were J
completely complemented, .4 would be A-exact for some A; but then, since A
is a C"-algebra, A would be exact (cf. [Pi]). Another example [OR], due to
T. Oikhberg and the second author of the present paper, yields an example
with X completely isometric to X and ¥/X completely isometric to cq.

We introduce several new concepts for our investigation.

DEFINITION 2.2. Let X C Y be Banach/operator spaces and X > 1.
Let 7 denote the quotient map from ¥ onto Y/X. We consider the following
diagram, for a general finite-dimensional subspace E of ¥/ X and the identity
injection 2 : B — Y/X:

Y

() / I
E—~1>Y/X
That is, L is a lift of /g to Y.

(i) (X,Y) is said to have A-local liftings (M-ll’s) if for all such E and
£ > 0, there exists a map L satisfying (*) with ||L|| < A + &.
(i) (X,Y) is said to have A-complete local liftings (\-cll’s) if for all such
E and £ > 0, there exists a map L satisfying (*) with [ L||c, < A + &.
(iii) (X,Y) is said to have A-estendable local liftings (A-ell’s) if for all
such E and ¢ > 0, there exists a map T': Y/X — ¥™* with |T|| < A +¢ so
that L = T'|g satisfies ().
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Finally, (X,Y") is said to have local liftings (resp. complete local liftings,
resp. extendable local liftings), if there exists a A > 1 so that (X,Y) has
A-Il's (resp. A-cll’s resp. A-ell’s).

As we show below, if X** is completely complemented in ¥** and Y
is locally reflexive, then (X,Y) has complete local liftings. The following is
thus a strengthening of Theorem 2.4 (cf. the Remark following its proof for
the definition of weak special M-cai’s).

THEOREM 2.4'. Let X C Y be operator spaces. The conclusion of The-
orem 2.4 holds if one replaces in its hypotheses the assumption thot Y is
M-locally reflewive by the assumption that (X,Y) has A-complete local lift-
ings, and that instead X admits a weak special M-cai inY .

In fact, the proof of Theorem 2.4 gives this immediately; one only needs
to observe that the local reflexivity assumption on Y is used solely to produce
the lift I in the proof of Lemma 2.5, satisfying (2.16). As we show below,
the existence of this map follows directly from the assumption that (X,Y")
has A-complete local liftings.

REMARK. Let X ¢ Y be operator spaces. Then (X, Y’) has complete local
liftings if and only if X is locally complemented in Y'; that is, there exists a
8> 1 so that X is S-completely complemented in Z forall X € Z C Y with
Z/X finite-dimensional {one then says X is S-locally complemented in .
In fact, it is easily seen that if (X, V) has A-cil’s, then X is (A+1+¢)-locally
complemented in Y for all £ > 0, while if X is 3-locally complemented in Y,
then (X,Y) has (3 + 1)-local liftings (cf. [Ro], [OR] for certain consequences
of local complementability). The quantitative cll concept is more appropriate
in the context of the present work.

The next two results list several easily proved permanence properties of
the concepts introduced in Definition 2.2.

PROPOSITION 2.6. Let X C Y be Banach/operator spaces end let A = 1.
(i) (X,Y) has A-I’s if and only if
(+%)  there emists a lift L @ Y™ /X*™ — Y™ of the identity map on
Y/ X** s0 that ||L]| < A

(i) If (X,Y) has A-cll’s, (x) holds with ||L|lco < A. If (#x) holds with
I L]l < A and Y is B-locally reflexive, then (X,Y) has AB-cll’s.

(ili) If (X,Y) has A-cll’s, then (X, Z) has A-cll’s for oll operator spaces
Zwith XCZCY.

PROPOSITION 2.7. Let X,Y be as in 2.6. Assume that (X,Y) has local
liftings. Then (X,Y) has extendable local liftings under any of the following
hypotheses:
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(a) Y/X has the bounded approzimation property (the bap).

(b} Y** is an {isomorphically) injective Banach space.

(c) Y is extendably locally reflezive.

(d) Y is an operator space with Y** an (isomorphically) injective oper-
ator space and (X,Y) has complete local liftings.

In fact, let A, 8 > 1 ond assume that (X,Y) has B-ll’s. Then (X,Y) has
(BA)-ell’s provided any of the following holds:

(a") Y/X has the A-bap.

(b) Y** is A-injective.

(¢) Y is A-exiendably locally reflexive.

(d') (X,Y) has B-cll’s and Y** is a A-injective operator space.

REMARK. We recall {cf. [OR]) that a Banach space Y is called A-extend-
ably locally reflexive (A-elr) provided for all £ > 0 and all finite-dimensional
subspaces G CY™ and F C Y*, there exists a linear operator T : ¥** — y**
with [Tl < A4¢, TG CY, and (Tg, f) = (g, f) for all g € G and f € F.

Proof of Proposition 2.6. Let 7 : Y — Y/X be the quotient map.

(i) Suppose first that there exists a lift L satisfying (#x). Let E be a finite-
dimensional subspace of Y/X and let £ > 0 be given. Regarding Y/X C
Y /X", let G = L(E}. Let Yo = n~1(E). Then of course X C ¥p, Yp/X =
E,and G C Y**. Let F be X relative to ¥3*. Then F is finite-dimensional
and for all z- € X+ there exists an f € F with ztlyys = Flygs.

dBy the local reflexivity principle, choose T': G — Y with 1T <1+e/A
an

(2.34) 1T <1-+2/A,
(2.38) (Tg,f)={g,f) forallge G and feF.

Then T o L|g is our desired lift of I'y. Indeed, ||To L] < (1 AN =
and for all e € E, I | < (1+e/A) Ate,

(2.36) ‘ Le—TLe € X**
thanks to the definition of F. But then
7TLe=n""TLe=n"Le by (2.35)
=e gince L is a lift of Tyemjxcnn.
Now suppose (X,Y) has A-Il's and let D be the following directed set: D =
{(E,e) : EI is a finite-dimensional subspace of Y/X and & > 0}, where
(E,e) < (B eYfECE andc>¢'. Foreacha = (E,e) € D, choose a lift

Lo B =Y of Ig with |L,|] < A+ £. By the Tikhonov theorem, we may
choose a subnet (Ly,)gep: of (Ly) such that for all e € Y/X,

lig:_]n Los(e) =: L{e)
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exists weak® in ¥Y**, We easily verify that then L : ¥/ X — Y™** is a linear
operator with

(2.37) L] €A and 7™ oL =y

where x : Y/X — (Y/X)** is the canonical injection. It follows that if we
let P : Y**** — Y** be the canonical projection, then P ¢ L** is the desired
lift of (Y/X)** into Y™**.

(ii) The first assertion follows immediately by the argument given in (i),
and indeed so does the second: we just choose T as in that argument, but
50 that

(2.38) [Tl < B+ A/e.

Then [T o L|jcy, < (84 A/e)A = A8 + ¢ as desired.

(iii) Let £ > 0, let E be a finite-dimensional subspace of Z/X, regarded
as a subspace of ¥/X, and let L : E — Y be alift of Iy with ||Llje < A+e.
But then L(E) ¢ Z! Indeed, for e € E, we must have m o L(e) = e, which
means there exists a z € Z so that L(e) ~ z € X. But this says that
Le € X 4+ Z = Z. 'This completes the proof of 2.6. w

Proof of Proposition 2.7. Of course, we just need to prove the quanti-
tative assertions. Let A, 3 > 1 and assume that (X, Y’) has §-II's. We show
that (X,¥) has B -ell’s under any of (a')-(d'). Let E be a finite-dimensional
subspace of Y/X and let £ > 0. If (a') holds, we may choose a finite-rank
operator T : Y/X — Y/X with |T|| < A+&/8 and T|g = Ig. By Proposi-
tion 2.6, we may choose a lift L : Y/X — Y™ of x : Y/X — (Y/X)* with
L < 8. Then Lo T : Y/X — Y™* satisfles

(2:39) |Zo T <UL T < (A +&/8) = BA+e.

But L|g = I (regarding Y/X C (Y/X)**), hence (LoT)|p = g, and case
(a') is thus proved.

Now assume (b') holds, and choose L : B — ¥ a lift of Iy with [|L| <
B+ e/ Since Y** is A-injective, choose an extension L:Y/X—=Y* of L
with | Z]| < AJZ|| < A8 + & This proves case (b'). Similarly, if (d') holds,
we choose L as above so that instead || L], < 8+ Afe, and then choose L
with || Efles < M Zllep < A5 +&.

Finally, suppose (¢') holds. By Proposition 2.6, choose a lift L : Y™ X
— Y** of the identity on ¥**/X** with | L] < 4. Let W = L(¥Y**/X**)
and P = L o ™. It follows easily that P is a projection from Y™** onto W
with kernel equal to X**. Let G = L{E), and let F be a finite-dimensional
subspace of X L. Now by the definition of A-extendable local reflexivity,
choose a linear operator T': Y** — Y™* so that

(2.40) Tl < A+ /8,
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(2.41) TG CY

and

(2.42) (Tg,fy={g,fy forall fe FandgeqG.

Now let Ty = T := T'o L|y;x. Then

IT) S ITIHLN < (A +e/B)8 =28 +e.

By (2.42), identifying (Y/X)* with X+ and using the fact that L is a
lift, we have

(2.43) {e—nTpe,fY=0 forall feF

Now let D be the set of finite-dimensional subspaces of X L, directed by
inclusion. We then deduce by (2.43) that the net ((7TF)|g)rep converges
to Iy in the WOT. Since E is finite-dimensional, convex combinations of
this net converge to Ip in norm. Thus given 5 > 0, there exists a convex
combination S of the Tp’s such that || Iz — S| < 7. Of course, S(E) C ¥
and ||S|| < AB+ ¢ also. Now suppose k = dim E; choose a normalized
Auerbach basis {e;) for F; so there also exist normalized f’s in X+ with
fi(e;) = 8;; and e = 3 fi(e)e; for all e € E. Now [|wSe; — e;|| < n for all 4.
Hence for each 7, we may choose y; € ¥ with my; = e; and ||Se; — ;]| < .
Finally, define §: ¥/X — Y= by

5() = S(2)+ Y fi(2)(yi — Ses).
Then clearly ||S|| < A8 + e+ kn, g(E) CY,and if e € E, then
n8(e) = §(e) + Zfi(e)e,‘ - Z file}S(es) = e.

Thus)Sl e is indeed a lift of Iy, completing the proof (since n > 0 is arbi-
trary). =

REMARK. The proof of 2.7 case (c) yields that the assumption that
(X, Y). has extendable local liftings is considerably weaker than the joint as-
sumption that (X, Y’) has local liftings and Y is extendably locally reflexive.

Indeed the proof yields the following result: Suppose that X C Y are
Banach spaces with X** 8-co-complemented in Y™ andlet P: Y™ — V™
be a projection with kernel equal to X**, ||P)| < 8. Now assume that for all
finite-dimensional subspaces ECY, F C X L, and e > 0, if we set G = PE
then there exists an operator T : Y** — Y** with TG C Y, 1Tl < A+ E’
and (Tg,f) = (9,f) forall g € G, f € F. Then (X,Y) has )\ﬁ-emtendabl;
local Iiftings.

T].J.UF if e.g., Y is separable, we need only find “extensions” of local-
reflexivity operators on a certain countable family of finite-dimensional sub-
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spaces of Y**, rather than all its finite-dimensional subspaces, as in the
definition of elr.

‘We are now prepared for the second main result of this paper. The fol-
lowing qualitative special case provides its main motivation: Suppose J s an
approzimately injective ideal in o C*-algebra A with A/J separable. Then
J is complemented in A provided (J, A) has extendable local liftings.

THBEOREM 2.8, Let X C Y be operator spaces with X approxzimaliely
injective. Assume that

(a) (X,Y) has A-eztendable local liftings.
(b) X admits a weak special M-cai in Y .

Then for all operator spaces Z with X € Z C Y with Z/X separable, and
Jor all & > 0, there exists a lift L: Z/X — Z of Ig;x with |L|| <X +e.

NoTE. Weak special M-cai’s are defined in the Remark following the
proof of Theorem 2.4.

Proof of Theorem 2.8. Let (Uy)aep be a weak special M-cai for X in Y.
We shall define a NEW operator space structure on Y with the following
properties (where {X, OLD) denotes the given operator space structure on
X, and (X,Y )ngw denotes the pair {X,Y) in the NEW structure).

(244)  The identity injection ¢ : (¥, NEW) — (¥, OLD) is a semi-isometry.
(2.45)  (X,NEW) = (X, OLD).

(2.46)  (U,) is also a weak special M-cai for X in (¥, NEW).

(2.47)  (X,Y)new has A-complete local liftings.

(Recall that if Z and W are operator spaces, T': Z — W is a semi-isometry
provided T is a norm-preserving complete contraction.) Once this is ac-
complished, the conclusion of Theorern 2.8 follows immediately from Theo-
rem 2.4', Proposition 2.2 and Proposition 2.6. Indeed, X is now an approx-
imately injective subspace of (Y, NEW) satisfying (2.46) and (2.47), hence
by Proposition 2.6(iii), (X, Z)ngw has A-cll’s, and also (by the proof of
Proposition 2.2(C)), (U.|z) is a weak special M-cai for X in Z. Hence by
Theorem 2.4/, for all £ > 0, there exists a lift L : (Z/X)ngw — (Z,NEW)
of Iz;x with || L]y < A+¢. But then of course |L]| < A+&, and since (2.44)
holds, the Banach norm of L is the same in the NEW and OLD structures.

We define NEW as follows (where 7 : ¥ — Y/X is the quotient map}:
Forr e K®Y, set

(2.48) 7w = max{||7]l, |(Zx ® m)(7) [max}-

We first note that || - ||ngw is indeed an operator space structure on Y,
and moreover, for all T € L@ Y™,

(2.49) 7| new = max{||7||, ||(Tc & 7*)(7)|lmax}-



176 A. Arias and H. P. Rosenthal

(This fact uses only the definition of NEW; none of the other assumptions
on (X,Y) are needed.) To see this, define T : ¥ — Y & Y/X (£%°-direct
sum) by Ty = y @ wy for all y € ¥, and set Y' = T'(V). It is trivial that
T:Y — Y’ is a surjective isometry. Now simply endow ¥ @& Y/ X with the
£%=.direct sum operator space structure of (Y, OLD)} and (Y/X)max, and
call this (Y @Y/X, NEW). Now (¥, NEW) is nothing but the operator-space
structure induced on ¥’ by (¥ @Y/X, NEW). Hence, since (Y @Y/X,NEW)
is an operator space, so is (Y, NEW). But furthermore,

(2.50) (Y & Y/X)™ NEW) = (Y**, OLD} & (Y**/X*", MAX),

and so again (Y**,NEW) is nothing but the operater space structure in-
duced on (Y')** in (Y** @ Y*/X** NEW), which is of course given by
(2.49).

Now it is trivial that (2.44) and (2.45) hold; it remains to verify (2.46).
Since the Banach norms in (Y, OLD) and (Y, NEW) coincide, all of the norm
properties of (U,) remain valid in (¥, NEW), so in fact we only need to verify
that given k and V¥ satisfying “weak” (iv) of Definition 2.1 for (¥, OLD),
also “weak” (iv)(d) holds in (Y,NEW). Precisely, 5 o (U¥|x @ Vi¥) is a
complete contraction on (X @ ¥, 0LD}, and we must verify the same for
(X ® Y,NEW). '

Now by Theorem 1.1, X is a complete M-ideal in ¥'; let then W be the
{w*-closed) linear subspace of Y** such that X** @ W is a complete M-
decomposition of (Y**, OLD) and let R be the projection from ¥** onto W
with kernel X™**. It follows that 7** is a complete surjective isometry from
W onto ¥**/X**. But then (2.49) yields that

(2.51) (Y**,NEW) = (X**,0LD) & (W, MAX)

(where we take the complete £°°-direct sum norm in this decomposition).
Now to verify (iv){a), it is enough to show that for all o,

(2.52) 8% o (UX**|x.- ® V&™) is a complete contraction from (X** &
v* NEW) to (Y**, NEW).

Take then n and n x n matrices (z]}), (¥ff) of elements of X** and ¥™*

respectively; choose unique Z7}'s and wi;’s in X** and W respectively so
that

(2.53) (vi) = (@]) @ (wyy).
Then
(254) (U5 + VE "y Inew

= max{ | (UF™ 23 + V), IRV wis)|[maax}
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< max{ || (@)1, | @) IRVED ™ 1l (wig) [max }
= max{||(z}} )Inew, || (@5) Ivew -

Here, in the above inequality, we have used the fact that UX and OE’“) sat-
isfy “weak (iv)(a)”, plus the crucial observation that since (W,NEW) =
(W, MAX),

IRV ilen = RV = 1.

The latter holds since the Banach norm of VA*'** in the NEW and OLD
structures is the same, namely equal to one, since weak (iv)(b) implies 1A
is a complete contraction in OLD and hence a contraction.

Of course, (2.54) now yields that {2.52) holds, completing the proof that
(U,) is a weak special M-cai in (Y, NEW).

It remains to prove that (2.47) helds. Let F be a finite-dimensional
subspace of Y/X, and let & > 0. Since (X,Y") has A-ell's, we may choose a
linear operator T : Y/ X — ¥™* so that

(2.55.1) 1T < A +e,
(2.55.i1) T(EYCY
and

(2.55.1ii) T|g is a lift of Ig.
We claim that

(2.56) L= RT|g

is the desired lift. Of course, L is a lift of Iy/x; the crucial point is to
compute its cb-norm. But as we have pointed out above, (Y/X,NEW) =
(Y/X,MAX). Hence

(2.57) [iLlleb < |BT|leo = | BT < A+e
as desired. This completes the proof of Theorem 2.8. m

COROLLARY 2.9. Let J be an approzimately injective ideal in a C”-
algebra A and let Y be a closed Linear subspace of A with J C Y and
Y/J separable. Then J is Banach-complemented in Y provided (J, A) has
extendable local liftings. In particular, for a given A > 1 and every € > 0,
there ezists a lift L:Y/A Y of Iy, with |[L]| <A+ & provided any of
the following holds:

(i) A/J has the A-bounded approzimation property.
(i) Y/J has the A-bounded approzimation property.
(iil) Y** is a A-injective Banach space.

(iv) ¥ is A-estendably locally reflexive.

(v) A is A-extendably locally reflexive.
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Proof. This is an immediate consequence of our previous work. First
of all, J has a special M-cai in .4, by Proposition 2.3, and of course such
is then a weak special M-cai. Secondly, since J is a (complete) M-ideal
in A, (J,A) has 1-II's by Proposition 2.6(ii), whence also (J,Y") has this
property. Thus cases (i) and (v) yield that (7,.4) has A-ell's by (a’) and
(¢') of Proposition 2.7, while cases (ii)~(iv) yield that (J,Y} has A-ell’s by
(a}-(c") of 2.7. Thus Theorem 2.8 yields the conclusion of the corollary. m

CoroLLARY 2.10. If (K, B(£2)) has extendable local liftings, then K is
Banach complemented in Y for any separable operator apace Y with K C Y.

3. Examples and complements. We first consider the case of (closed
two-sided) ideals 7 in non-self-adjoint operator algebras A. We say that a
net (un) in J is a contractive approzimate identity for J if ||ual < 1 for
all & and both u,z — z and zu, — z for all £ € 7. A remarkable result
of Effros-Ruan yields that o closed linear subspace J of an operator algebra
A is an M-ideal tn A ff J is an ideal tn A which admits a contractive
approzvimate identity [ER1]. (The same equivalences were established earlier
by R. Smith [S] in the case of uniform algebras A.) The discussion in [ER1]
eagily yields that when this happens, 7 is a complete M-ideal in A.

We obtain the additional information that these conditions are equivalent
to J having an M-cai in A; in fact, we obtain the direct generalization of
Proposition 1.4 to the non-self-adjoint case.

THEOREM 3.1. Let J be an ideal in an operator algebra A such that 7

has @ contractive approzimate identity. Then J admits a strong contractive
M-cai in A.

Proof. We assume that A is a (closed) subalgebra of B(H) for some
Hilbert space H. We may easily reduce to the case where A is unital (then
A may be assumed | to be a unital subalgebra of B(H)). Indeed, if .4 is non-
unital, simply let A be A with I adjoined (where A is a non-unital closed
subalgebra of B(H)). Then J remains an ideal in A; if (Uy) is a strong
contractive M-cai for 7 in A, (Ua|4) is such for 7 in A. Let then (u,) be
a contractive (algebraic) approximate identity for J in A. By passing to a
subnet, and regarding A C A* C B(H)**, we may assume that

(3.1)  (Ua)aep converges weak* to an element e** of A**.

This is nothing but the first step of the proof by Effros-Ruan that the

stated hypotheses yield that 7 is an M-ideal in A (p. 919 of [ER1]). Now it
is proved in [ER1] that then

{3.2) €™ is a self-adjoint idempotent in the center of 4**, with e**z =
for all x € J**.
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Of course, this uses remarkable properties of C*-algebras such as the fact
that .4** is a subalgebra of B{H)**, a von Neurnann algebra. We also make
use of the fact that if (v,) is a bounded net in B{H)** with w*-lims vq = v
(v € B{(H)**), then for any w € B(H)**,

(3.3) ) Foow and wug > wo.

Finally, the set of positive elements in Ba B(H) is w*-dense in the set of
positive elements of Ba(B(H))**; hence we may choose a net (en) in B(H)
with

(3.4) 0<e,<1 forall aande, LA

It then follows that we may choose an appropriate directed set D and “re-
labeled” new nets (#q)acp a0d (€4)aep such that

: — p** 1 .
(3.5) ilé’% Uy =€ a%% €n

Hence it follows that

{3.6) Uy —€a — 0 weakly.

But then we may find a new net of “far out” convex combinations of
(Urs € )areD, 58Y (Uar, €ax) o5y With

3.7 || e — €all — O

Of course, the G, ’s remain a contractive approximate identity in J and still
0 <&, <1 for all & with &, — &** weak™. Thus, by re-labeling again we
may assume without loss of generality that

(3.8) i]é% |ta — €xll =0 and W*“iié%ea = e =w* iié:% Uy

Now moreover we have, for any a € A,
(3.9) limu,a =e**a and limaug = ce*”

(24 [=4
(using (3.3)). But since e** is central in A, for all a € A we obtain
(3.10) lim(uae — aug) =0  weakly in A
o

Finally, by again taking far out convex combinations in our net (Vars € ) xeD>
we may assume without loss of generality that
(3.11) iié% ot — atgl| =0 forallec A
and still that (3.8) holds.

Define then U, : A ~+ A by
(3.12) Ualo) =uqa forallac A
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We shall now prove that (U, )eep is a strong contractive M-cai for J
in A (by essentially the same argument as the proof of Proposition 1.4). It
is trivial that U, is a complete contraction for all o, since 0 < |ju,j| < 1.

Since the u,'s lie in 7, it is trivial that U,.A C 7 for all o, and of course
Ua(z) — z for all z € J since (u,) is an approximate identity. We deduce
that (iv) of Definition 1.1 holds just as in the proof of Proposition 1.4.
Indeed, for any z** ¢ 7**,

UZ(2™) = uga™ 2 ez = 2™ by (3.2) and (3.3).

To complete the proof, it remains to verify condition (iii') of Defini-
tion 1.1. Now by (3.8) and (3.11),

(3.13) lileat — aeq|| = 0 forallac A
Thus we obtain
(3.14) enl — /g —+ 0, 1 —eqa—avl—e,—0 forallac.A

{See the comment following (1.30).)
Then just repeating the proof of (1.31.i,ii), for all a € A we obtain

(3.15.0) Eal — \/Ealn/Ey — 0
and
(3.15.1i) (1-ea)a—+v1—eqav/T—e4 — 0.

Now define operators {7, and V,on B (H) by

(316)  Uey = Veatya, Voy=vI—eapv/T—e, forallye B(H).
Then by (3.8) and (3.15), for all a € A,

(3.17) Usa—~Usa — 0 and (I— Uu)a — Vaa — 0.

But as we showed in the proof of Proposition 1.4,

(3.18) So(U,®V,): B(H) & B(H) — B(H) is a complete contraction,

where S(y® z) = y+ z for all y, z € B(H). Thus, given n and (@5), (biy) in
M, (A),

(3.19)  lim [{Ua(ass) + (I - Ua)(bs3)]]
=Tim |Ua(ais) + Val(bss)|| by (3.17)

< max{[{{as;) i, )b} by (3.18). u

REMARK. See [DP] for an application, in a different direction, of alge-

braic approximate identities and M-ideal theory to non-self-adjoint operator
algebras. :
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We next deal with ¢q sums of operator spaces. Our methods vield many
previously obtained results, in this setting, via the following very simple
result.

ProrosiTION 3.2. (a) Let X1,Xz,... be given operator spaces and lel
X=(X10X2® .. ), Y =(X1,8X0® .. )eo. Then X admits a strong
special M-cai in Y.

{(b) If the X;’s are all approzimately injective, so is X.

Proof (a)Define I : ¥ = X by Tn(y) =21 & ... @ =, if y = ()32,
regarding X @ ... @ X, as canonically embedded in X. It is then essentially
immediate that (7},) is the desired strong M-cai for X in Y. Indeed, fixing n,
we see, since T, is a projection, that forany k> 1, T® =T, (I -T,}F = T —
Ty, and in fact So(T,@1—T,) : Y @Y — Y is a complete contraction, where
S:Y®Y — Y is the sum operator. Moreover, TEt! — Tk =0, T,(Y) C X,
and T,z — z for all z € X. Finally, we have X*™* = (X}* @& X3* @ .. e
and X* = (o] @ 23 © ... )pr. Thus if z** € X™, 2™ = (27")32,, then
To*(z**) = zt* @ ... B — =™ weak”, completing the proof of (a).

To prove (b), let P, = (T, — Tp—1)X for all n > 1 (where Ty = 0), i.e.,
P, is just the canonical projection onto the nth coordinate. Of course, P, is
completely contractive for all n. Now suppose E C F are finite-dimensional
operator spaces, S : E — X is a given linear map, and ¢ > 0 is given. For
each 7, choose an extension Sy, : F' — X, of §,, := .5 so that

(3.20) 18nlle < (L +&)lISnlles < (1 + )] Slles-
Now simply define § : F — Y by §(f) = (§n(f))§°=1, f € F. Let us first

note: If f € F, S(f) € X. We obtain that because E is finite-dimensional
and ||Spel — 0 for all e € E,

(3.21) 1Snleb — 0.

Hence

(3.22) 182 (A £ 1Sl f] < @+ e[ Sulles — 0 as n— oo,
Thus S(F) ¢ X. Moreover,

(323) 18l = smp 1B lan < (1-+ €)Sles

and of course S|p=G5. w

An example by A, M. Davie (as refined by W. Lusky) yields a sequence of
finite-dimensional Banach spaces (X1, Xa,...) and a separable Z with X C
Z ¢ X** so that X is uncomplemented in Z, where X = (X1 ®Xa®...)q, (cf.
Proposition I11.2.3 of [HWW] for an exposition and the relevant references).
Thus although X admits a strong special M-cai in Z and Z is 1-locally
reflexive (using the MIN structure), there is no bounded lift L : Z/X — Y



182 A. Arias and H. P. Rosenthal

of Iz;x. When the X;’s are all approximately injective and Z is locally
reflexive, however, we do obtain a (completely) bounded lift via the next
result.

COROLLARY 8.3. Let X3, Xs,..., X, and Y be as in Proposition 3.2(a),
and suppose X C Z C Y with Z/X separable.

(a) X is a complete M-ideal in Y. Hence if the X, ’s are all reflexive, X
is a complete M-ideal in X**.

(b} If the X;’s are all approzimately injective and Z 1s A-locally reflexive,
or more generally, if (X,Z) admits A-complete local liftings, then X is
completely (A -+ €)-co-complemented in Z for all € > 0. Moreover, if Z is
1-locally reflexive, X is completely co-contractively complemented in Z.

(c) If (X,Y) or (X, Z) admits A-extendable local liftings and the X;’s
are approzimately injective, X is (A+e)-co-complemented in Z for all € > 0.
In porticular, this is the case if Y or Z is h-extendably locally reflezive, or
Y** or Z** is a M-injective Banach space, or Y/X or Z/X has the A-bap.

Proof. (a) follows immediately from Theorem 1.1. (b) follows imme-
diately from Proposition 3.2(b) together with Theorem 2.4 in case A > 1
and Z is A-locally reflexive, or the Theorem in the Appendix in case A =1
(since then X is approximately injective and 1-locally reflexive, hence X is
nuclear). Theorem 2.8 yields (a) under the A~cll’s hypothesis. Finally, (c) fol-
lows immediately from Theorem 1.1 and Theorem 2.8 and the (elementary)
Proposition 2.7. m

In turn, Corollary 3.3 yields as special cases certain theorems discovered
by the second author of the present paper.

COROLLARY 3.4 [Ro]. Let X1, Xs,... be l-injective Banach spaces, and
X = (X1€3X2 @...)CO,Y= (X1®X2®...)gm.

(a) X has the 2-SEP. In particular, co(£>) has the 2-SEP.,

(b) Suppose the X;’s are all l-injective operator spaces, and let Z be
an operator space with X C Z CY and Z/X separable. Suppose that Z is
A-locally reflexive, or more generolly, that (X, Z) admats A-complete local
lftings. Then X is completely (A + )-cocomplemented in Z for all € > 0. If
Z is 1-locally reflesive, X is completely co-contractively complemented in 7.

Proof. Part (b) follows immediately from Corollary 3.3, since the X '8
are thus all approximately injective.

Part (a) follows from the last statement in (b). Indeed, let X Y be
separable Banach spaces and T : X — X be a bounded linear operator. Then
Y is a l-injective Banach space, hence there exists T : ¥ — ¥ extending T
Let Z denote the closed linear span of X and T(X). Then Z satisfies the
hypothesis of the final statement in (b), since of course we have Z endowed
with MIN, which is thus 1-locally reflexive. Hence there is a linear projection
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P:Z— X with | - P < 1,50 |P|| <2 PoT is thus an extension of T
with || < 2{T7) =

REMARK. Corollary 3.4(a) is obtained {up to £ > 0) as Theorem 1.1 of
[Ro]. Corollary 3.4(b) is a special case of Theorem 3.4 of [Ro|; the quantita-
tive result obtained there is not as good. However, the full qualitative result
in [Ro| is more general than 3.4(b), for it is assumed in [Ro| that the X’s
are A-injective operator spaces, for some A > 1. Thus if A > 1, the X;’s need
not be approximately injective, and hence the methads of the present paper
do not apply.

We next recapture the main results in [Ro] concerning the CSEP (using
also some recent work of L. Ge and P. Hadwin [GH]). We first recall a
concept introduced in [Ro.

DeriniTiON 3.1. Let C > 1. A family Z of operator spaces is said to be
of C-finite matriz type if for any finite-dimensional operator space G, there
is an n = n(G) so that

(3.24)  ||T)leb € C||IT||w for all linear operators T: G — Z and all Z € Z.

Briefly, we say that Z is C-finite with function n; a single space Z is called
C-finite provided {Z} is C-finite.
(Recall that for operator spaces X and Y and T : X — Y a bounded
linear map, ||T||n = ||In ® T||, where I, denotes the identity map on M,.)
C-finite operator spaces are C-locally reflexive, thanks to the following
interesting operator space extension of the Banach local reflexivity principle,
due to L. Ge and P. Hadwin.

Lemvma 3.5 [GH]. Let Y be an arbitrary operator space, € > 0, n > 1,
and F,G be finite-dimensional subspaces of Y™ and Y™ respectively. Then
there exists a linear operator T': G — Y satisfying the following:

(325) (i) |[T|ln <1+e.
(i) (Tg, f)={g,f) forallge G and f € F.
(iti) Tleny = I|eny-
(iv) T is 1-1 and [T |z(g)lln < 1+&.

REMARK. The case n = 1 ig precisely the Banach local reflexivity prin-
ciple as formulated in [JRZ]. (We only use (3.25)(i)-(iii) in our discussion
here.) We obtain an extension of Lemma 3.5 in Lemma 3.13 below.

‘We may now easily obtain the following permanence properties for C-
finite families.

PROPOSITION 3.6. Let C, A = 1.

(a) Let X1, Xa,. .. be operator spaces such that {Xy, X», ...} is C-finite.
Then (X1 @ Xo @ .. .)4= s C-finite.
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(b) Let X be an operator space which is C-finite for all C' > A. Then X
18 A-locally reflexive.

Proof. (a) This is a simple consequence of Definition 3.1. Let G be a
finite-dimensional operator space, and n = n{G) be the n which works for
the family {X1,X2,...}. Let T: G — (X1®X29...)co be a linear operator
and let P; be the canonical projection onto X; for all j. Then

(3.26) 1T ||eb = sup | 5T lew
i
<supC||P;T||lr by C-finiteness
i

= Ol

where the first and last equalities follow by the definition of the £°°-operator
sum.

(b) Let X satisfy the given hypothesis and let G and F be finite-dimen-
sional subspaces of X** and X* respectively, and let £ > 0 be given. Let
n = n(G) be the C-finiteness function for X. Choose C with A < € < A+¢,
and then choose £ with C + &'C < A+ ¢. Now by Lemma 3.5 (i.e., [GH]),
choose T': G — X satisfying (3.25) (for & = &'}. Then

(3.27) Tlle» < C|T)ln  since X is C-finite
<C(1+¢) by (3.25)
<A+e m '

We are mainly interested here in the case C = 1 in 3.6, to obtain the
following

PROPOSITION 3.7. Let n > 1. Then £°(M, 00 ® Moo,n} 15 1-locally re-
Hexive.

Proof. It is shown in [Ro, Proposition 2.6] that for all § > 1, M, ; and
M;, o are 1-finite, with function n(G} = jdim G, where G ranges over all
finite-dimensional operator spaces. Thus by Proposition 3.6(a), £%°(M; . ®
M ;) is also 1-finite with the same function n, and hence is 1-locally re-
flexive by Proposition 3.6(b). =

The following is the main result concerning the CSEP, obtained in [Ro,
Corollary 2.7].

COROLLARY 3.8. ¢o(Mn,co @ Meo,n) has the 2-CSEP for alln > 1.

Proof Let X C Y be separable operator spaces and T : X — Z be
a completely bounded map, where Z = ¢g(My, oo & Moo n). Then Z2** =
£2°( My, 00 ® Moo,n) is an isometrically 1nJect1ve operator space, hence there
exists a completely bounded extension T :Y — Z* of T with 1Tl =
17|l Set ¥ = [T(Y), Z]. Then Z** is 1-locally reflexive by Praposition 3.7,
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hence so is Y. So Z is an approximately injective complete ideal in ¥ by
Proposition 3.2 and Theorem 1.1, whence Z is completely co-contractively
complemented in Y by the Theorem in the Appendix. Thus choosing a
projection P : ¥ — Z with I =Pl £ 1, we obtain that Po T is an
extension of T satisfying [P o Tleo < 2||T|lcb. =

REMARK. It is proved in [Ro] (see Corollary 2.5 and Proposition 2.15
therein) that if Zy, Z,,... are operator spaces so that for some ) and C,
Z1, 2, . .. have the A-CSEP and {7, Z,...} is C-finite, then again (Z, &
Zy @ ...)e; has the CSEP (in fact the (CA? 4+ A + ¢)-CSEP for all £ > 0).
This result does not follow from the methods of the present paper, in part
because the Z;’s may not be approximately injective. However, if the Zi's
have this property, the next result yields better quantitative information
than the cited results in [Ro].

COROLLARY 3.9. Let C > 1 and let X1, Xa,... be approzimately injec-
tive operator spaces with {X1, Xp,...} C-finite; let X = (X1 @ X265 .. )g
and Y = (X1 & X2 @ .. ). Then if X C Z C Y with Z separable, X is
completely (C + e)-co-complemented in Z for all £ > 0.

Proof Y is C-locally reflexive by Proposition 3.6(b), hence the Corol-
lary follows by Corollary 3.3(b). m

‘We now continue with further study of the converse of Theorem 1.1. We
shall show that this is valid in the setting of the Appendix, namely the case
where X is a nuclear complete M-ideal in a 1-locally reflexive operator space
Y. In fact our result here holds in the more general situation of A-finitely
injective complete M-ideals; these include the A-nuclear ones (cf. [KR] for
some results concerning the latter).

DerintTioN 3.2. Let A > 1 and an operator space X be given.

(a) X is called A-finitely injective if for all operator spaces Y, finite-
dimensional subspaces &, ¢ > 0, and linear maps T': G — X, there exists
a linear extension T : ¥ — X with | Tll, € (A4 &) T eb. In case T can
always be chosen finite ramk, we shall call X A-finite rank injective.

(b) X is called A-nuclear if for all finite-dimensional subspaces F of
X and all ¢ > 0, there exists an n and linear maps U : ¥ — M, and
VM, — X with

(3.28.3) [Tlleul[V]en < A+e

and

(3.28i) Vol =4, whered: F — X is the identity injection.
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That is, we have the diagram

M,
VA
P x

Thus, X is 1-nuclear precisely when X is nuclear.

REMARK. (a) It can be proved that in the Banach space category, the
A-nuclear operator spaces coincide with the L..-spaces. Precisely, (X, MIN)
is A-nuclear for some X if and only if X is an L.-space (ff X™** is an
isomorphically injective Banach space), while (X, MIN) is nuclear iff X is
an L'-predual (i.e., X** is isometrically injective).

(b) Results in [Pi] yield that B{H) is not A-finite rank injective for any
X (we are indebted to T. Oikhberg for this fact). Note however that trivially,
if X is A-injective, X is A-finitely injective.

The next simple result shows the connection between the concepts given
in parts {(a) and (b) of Definition 3.2.

LEMMA 3.10. Let A > 1 and X be a A-nuclear operator space. Then X
i§ A-finite rank injective.

Proof. Let F = T(G) and choose n and U : T(G) — My, V : M, — X
satisfying (3.28). Next, using the l-injectivity of M, choose an extension
S:Y o> M, of UT with

[Slles = U7 co-
Finally, let T' = V'S. By this equality,
I1Tleb < 1Yol Tllenl Tllew < (A + )T i|co
and T is an extension of T by (3.28.ii). w

by (3.28.)

The following gives a converse to Theorem 1.1 in the case of A-finitely
injective complete M-ideals in 1-locally reflexive operator spaces, or in the
case of arbitrary ones in spaces with the bap.

THEOREM 3.11. Let X C Y be operator spaces with X a complete M-
ideal in Y, and lef A > 1. Then X admits an M-cai (T,) in Y if either of
the following holds:

(a) Y has the Banach \-bap.
(b)Y is 1-locally reflezive and X is A-finitely injective.

In case (a), the T s may be chosen to be finite rank operators with |\ Ty|| < A
for all a. In case (b), the To’s may be chosen with |Tullcw < A for all a;
moreover, if X is A-nuclear, again the T, ’s may be chosen to be finite rank.
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ReEMARK. Thus if X is l-nuclear and Y is 1-locally reflexive, Theo-
rem 3.11 yields that X admits a contractive M-cai in ¥, consisting of finite
rank operators.

We first require an extension of the local reflexivity concept (due to
S. Bellenot {Be] in the Banach space category).

LeMma 3.12. Let X C Y be operator spaces with Y A-locaily reflevive,
and let G and F be fintie-dimensional subspaces of Y** and Y™ respectively.
Then for all € > 0, there exists a linear operator T : G — Y satisfying the
following:

(1) 1T)lee < X+

(ii) (Tg,fy={g.f) forall g€ G, f€ F.
(iii) T|Gmy = Ilgﬂy.
(iv) T(GN X*) C X.

COMMENTS. 1. A-local reflexivity may be defined as the existence of T's
satisfying (i) and (ii) only. (iii) is known as folklore. (iv) is the new extension.
2. We only use Lemma 3.12 here in the case A = 1.

Proof of Lemma 3.12. We first obtain (i), (ii) and (iv). By the basic
known equivalences, we may alternatively express A-local reflexivity as fol-
lows:

For all finite-dimensional operator spaces &,

(3.29) Bach(G,Y**) C ABacb(G,Y) .

(Since Bacb(G, YY) =Bach((, Y)** by Goldstein’s theorem, this is equiv-
alent to the identity map i: cb(G,Y**) — cb(G,Y)* having the property
that |l < A; note that [[i™||c = 1 always). Now fixing G C Y** finite-
dimensional, set H = GNX* and W = {T' € ¢b(G,Y**) : T(H) C X**}.
So of course we may just identify ch(G,Y™) with G* @, Y =G* @Y™
algebraically. Since G is finite-dimensional, we have

(3.30) W=H-QY"+G ®X"
Then

(3.31) W, =He X"

hence

(3.32) W, =H'QY+G"®X.

But then W = W"ﬂ_ and
(3.33) W, . ={T € cb(G,Y): T(H) C X}.
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Now Iz € BaW, so given ¢ > 0, since W = (W | **, again applying
Goldstein’s theorem, and the fact that Iy € A(Ba Wi.) by (3.29), for each
finite-dimensional subspace & of ¥* with o > F', we may choose T, € W
satisfying (i) and (ii) for “e” = &/2; of course, (iv) holds by (3.33) (where
T =Tq in (i)-(iv}).

Now let D be the family of all finite-dimensional subspaces a of ¥™* with
a D F, directed by inclusion. But then it follows that

(3.34) T.g—g weakly forallge&GNY.

Hence we may choose a net (T ) of far-out convex combinations of the Ty ’s
50 that

(3.35) Tog— g strongly forallgeGnY.

Of course it follows trivially that each T, still satisfies (i), (i}, and (iv)
(for T = Ty).

Finally, a standard perturbation argument yields that for one of these
To’s, there exists a perturbation T of T, satisfying (1)-{(iv). =

We next obtain an extension of the result of Ge-Hadwin (stated as
Lemma 3.5 above).

LemmA 3.13. Let X C Y be operator spaces, ¢ > 0, n > 1 and F,G
be finite-dimensional subspaces of Y* and Y** respectively. There exists a
linear operator T : G =Y satisfying (3.25) so that

(3.36) T(GNX*) C X.

Proof Let G be the group of nxn unitary matrices and m its associated
Haar measure. Let T, = M} (with elements regarded as n x n matrices) and
let F,G be finite-dimensional subspaces of ¥* and Y** respectively. Since
Mp(G) is finite-dimensional, we may assume (by enlarging F if necessary)
that T,(F) (1 + )-norms M, (G); that is, for all § in M, (G), there exists
an f € T,(F) with ||f|] =1 and

(3.37) gl < L+ e)l{g, £l
(We only need this to obtain (3.25)(iv), which we did not really need in our
subsequent discussion.)

Now let ¥ = M.(Y), X = M (X), G = M,(G), and F = T (F).
By Lemma 3.12 applied in the Banach space category, we obtain a linear
operator T:G-¥ satisfying (i)—(iv) of 3.12 (where Y = ¥, X = X, etc.,
and ¥**, X** are identified with Mn(Y**) and M,{X**) respectively). NOW
define a linear operator S on G by

(3.38) S(@) = | T(guyu” dm(u),
g
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forall § € G. Now it follows that also S satisfies (i}—(iv) of 3.12 (for T = S,
Y =7, ete.). For example, to see that (ii) holds, let § € G, f € F. Then

(3.39) (G, ) = {(T(Gu), v ) dm(u)

g
= | Gu, v f) dm(u) = { {Guu”, £ dm(u) = (3, F.
g G

The first equality follows since the pairing between M, (Y™*) and T5,(Y™)
is taken so that (gb, f) = {7, bf) for all § € Mn(Y**), f & T.(¥Y*), and
b € M,.. The second equality follows since for eachuw € G, § & G, and f e F,
we have gu & G and u*fe F.

It then follows moreover that

(3.40) Sis1-1 and [[(Siz)7t < 1+e.
Indeed, if § # 0 in G, choose f € F of norm one, satisfying (3.37); then
(341) 155l > {57, F)| > (L + ) {gl

by (3.37), which yields (3.40). B
Now, moreover, we have for all ug € G and ¥ € G,

(342)  S(Fuo) = | T (Guor)u” dm(u) = | T(Fv)v*uo dm(v) = S(H)uo

where the second equality holds by left translation invariance of Haar mea-
sure. But then

(3.43) S(7A4) = S(HA
In turn, {3.43) yields there is a unique linear operator T : G — Y with
S =1, ®T (where I, = Ip,). It now follows immediately that T' satisfies
the conclusion of Lemma 3.13, since S satisfies (i)-(iv) of Lemma 3.14 and
also satisfies (3.40). w

The main part of the proof of Theorem 3.11 is conveniently isolated in
the following result.

LEMMA 3.14. Let M\, X and Y be as in the hypotheses of Theorem 3.11,
let G be o given finite-dimensional subspace of Y with G N X # {0}, and
let n>1,¢> 0. Let a = (G,n,e). There exists an operator Tp : ¥ — X
satisfying the following:

(i) || Tull < A+ e if (a) of Theorem 3.11 holds, or

(i) | Tallew < A-+€ if (b) of 3.11 holds.

(i) (Tu)lanx = Ilanx-

(1) || T (uig) + (T — Ta)(vig)]| <
and (vi;) € Mn(G).

for all A € M,.

(L&) max{ || (i), 1 (vig I} for all (usy)
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(iv) Ty is finite rank in case 3.11(a) holds, or 3.11(b) holds with X
A-nuclear.

Proof Let X** @ W be the complete M-decomposition of ¥** and P
the projection onto X** with kernel W. Let Gy = PG and G2 = (I —~ P)G,
and set G = G1 @& (5. Then evidently

(3.44) GcG.

Now first assume 3.11(h). By Lemma 3.13 {applied to 6‘) we may choose a
linear operator T': G — Y so that

(3.45) ITlien < 1+e/A,
(8.46) Tlany = any
and

(3.47) T(G) C X.
Since P is a complete contraction, we have
(3.48) ITPlleo < 1+¢/A

Hence by the definition of A-finite injectivity, since A(1 4 &/A) = A+ ¢, we
may choose a linear extension T, : ¥ — X of P|g satisfying (i') of 3.14,
which is moreover finite rank if X is A-nuclear, by Lemma, 3.10.

Suppose now that 3.11(a} holds. Let ¢’ > 0, to be decided, and choose a
finite rank operator 4 : ¥ —» ¥ such that

(3.49) Alg =I|g
and
(3.50) Al <A +¢.

Now set G' = A(Y), G} = PG, Gy = (I — P)G', and &' = G & G}. Of
course, G’ O G by (3.49). Then by our extension of the Ge-Hadwin result,
namely Lemma 3.13, we may choose a linear operator 7" : G' =Y so that
(3.51) Tn<14+¢€

and again, (3.46) and (3.47) hold (in fact, they hold on replacing G by &/
and G1 by GY). Now define T}, by

(3.52) T,=TPA.
Thus
{(3.53) ITall < @A+ A+&Y<A4e

if &' is chosen with &'A + &' + (£)? < e. It follows that if z € G X,
then Tz = x, and so in case (b), Toz = TPz = z, while in case (a),
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To(z) = TPAz = ; thus (i) of 3.14 holds. Now note that if v € G, then
by (3.44) and (3.46),

(3.54) Tv=u.
Hence for any such v,
(3.55) (I~TP)w)= (T - TP)(«v).

Finally, let (u;;) and (vi;) be elements of M,,(G). Then
(3.56) | Teuss + (I — Tojvi) |
= (T Pusz) + (T — T'P)uys)|
(by (3.55) and the definition on Ty )
< (1+ &)1 Pusy + (T — Poys|
(by (3.45) in case (b), (3.51) in case (a))
= (1 + &) max{||(Puqj)[|, [ (T = P)vy 1}
< (14 &) max{]| (uss) ], [[ (o)}
(The last equality holds because X** & W is a complete M-decomposition

of Y**, while the last inequality holds because P and I — P are complete
contractions.) Thus 3.14(iii) holds. w

We are finally prepared for the

Proof of Theorem 8.11. Let D be the directed set consisting of all
a = (G,n,e) where G is a finite-dimensional subspace of ¥ with GNX # {0},
n > 1, and & > 0. Of course (G,n,e) < (&,n',e"Y)f G C G' ' n <7 and
€ > &', For each such «, choose T, satisfying the conclusion of Lemma 3.14.
Finally, let Ty, = Th(1 4+ £/A)~L. Then trivially

(3.56) |1 Talls < A+e)(1+e/N)7t =X (by 3.14(1)).
Since also trivially
(3.57) tim | T — Tl =0,

it suffices to prove that (Ts)aep i8 an M-cai, for then (3.57) yields that
(fa)a@'p is an M-cai. Now fix n, and z € X with @ # 0, and (ug), (vi;) €
M, (Y). If we let G = sp{z,us, vy : 1 <4, < n}and e > 0, then o =
(G,n,e) € D; hence for any 8 € D with 8 > «, Tpe = z and (iii) of
Lemma. 3.14 holds. This completes the proof of the theorem. m»

We next briefly discuss the case when K(X) is an M-ideal in B(X).
Here, X is a fixed Banach space, X(X) denotes the space of compact oper-
ators on X, and B(X) denotes the space of bounded operators on X. For
a comprehensive survey of known facts, see Section VL4 of [HWW]. These
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results yield immediately (via our Theorem 1.1) that K(X) is an M-ideal
in B(X) if and only if K(X) admits a (contractive) M-ai in B(X). (See
Theorem VI.4.17 of [HWW] and [W].)

Tt is known that if X = ¢p or £, 1 < p < oo, then K(X) is an M-ideal
in B(X) (generalizing the p = 2 case), but this is not necessarily true for
subspaces of these spaces. Indeed, C.-M. Cho and W. B. Johnson proved thai
for X C P, 1 < p < oo, K(X) is an M-ideal in B(X) iff X has the compact
metric approximation property [CJ]. (The same result for cg is obtained in
[W2]. See also [KW] for a remarkable generalization.) In fact, fundamental
work of P. Harmand and A. Lima [HL}, and later of N. J. Kalton (K}, yields
that if K£(X) is an M-ideal in B(X), then X has a shrinking contractive
approximation to the identity (K,), consisting of compact operators, so
that in fact, if we let T, € B(B(X)) be defined as To(T) = KT for all «,
then (7,) is an M-ai for X(X) in B(X). It is also known that X is then an
M-ideal in X**. We now pose the following question (which certainly seems
accessible via the technology given in [HWW])}. Does X then admit an M-ai
in X**7 In fact, can the shrinking compact approximation to the identity
{K.) be chosen as above, so that additionally (K72*) is an M-ai for X in X**
{in case X is non-reflexive)? Note that this question is simply equivalent to:
can (K,) be chosen so that in addition,

lim || K372 + (1 — K" )y™|| < max{ [z 1)1}

for all **,y™ & X™**7
(By Theorem VI.5.3.b of [HWW] (see also [PW]), this is indeed so if
K(X & X) is an M-ideal in £{X & X)) {L°°-direct sum), for then (K,) may
be chosen so that im, |S o (K, & (I~ Kg))|| =1, where S X 0 X — X
is the sum operator.)

We conclude with an example of a Banach space X which is an M-ideal in
X, but so that there does not exist either an M-ai or a weak contractive
M-ai for X in X**, The example follows quickly from known (but rather
non-trivial!) results; the same example (for a different purpose) is given in
[JO].

We first need a standard fact (also given in [JOJ).

LEMMA 3.15. Let X be a closed linear subspace of cq.

(a) Let T : X — X be a given (bounded linear) operator. Then either T
15 compact or there is a subspace YV of X with Y isomorphic to cy so that
T|y is an isomorphism. .

{b) Let T : X** —+ X be a given operator. Then T|x is compact.

Proof (a) Any semi-normalized weakly null sequence in ¢y contains
a subsequence equivalent to the usual ¢y basis. This implies X* has the
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Schur property (i.e., weak and norm sequential convergence coincide on X*),
whence T" weakly compact implies T' compact. But if T is not weakly com-
pact, there exists a bounded sequence (u;) in ¢g so that (T'u;) has no weakly
convergent subsequence. We may then pass to a subsequence (un;) of (u;)
s0 that both (un;) and (T'u,,) are equivalent to the summing basis of ¢y,
which implies that ¥ = [uy;] is isomorphic to ¢p and Tjy is an isomor-
phism.

(b) Suppose that T'|x were not compact. Then by part (a), there exists
a subspace Y of X so that ¥ is isomorphic to ¢g and T'|y is an isomorphism.
Hence Y™** is isomorphic to £° and P := (T|y)~'T|y+- is a projection from
Y** onto V', which. contradicts the fact that ¢ is uncomplemented in £°°, =

Finally, we recall a rather deep result of A. Szankowski (cf. [LT, Theo-
rem 2.2.7]):

(3.58)  there exists a subspace X of cp failing the compact bounded ap-
prozimation property.

PROPOSITION 3.16. Let X satisfy (3.58). Then X is an M-ideal in X*",
but X has no M-ai or wesk contractive M-ai in X**.

Proof. Since ¢y is an M-ideal in £*° = ¢f*, X is an M-ideal in X**
(cf. [HWW, page 111] and [HL]). If (T,,)aep were either an M-ai or a weak
contractive M-ai for X in X™**, we would have

(3.59)  (T,) is uniformly bounded,
(3.60) Ta:X** C X foralla,
and

(361) Tyr—zforalzelX.

But then by Lemma 3.15(b), Ta|x is compact for all &, hence by (3.59) and
(8.61), X has the compact bounded approximation property, a contradic-
tion. m

We conjecture that one may also find a separable situation in which there
are no M-ai's for a certain M-ideal. Precisely,

CoNJBCTURE. Let X satisfy (3.58). Then there erists a separable ¥
with X C Y C X** so that there is no uniformly bounded sequence (Tn) of
operators satisfying

(i) T,Y C X for all n;
(i) The — z for all x € X;
(iif) Timy, || oz + (I — Tn)y|| € max{H:ﬂH lyll} forall z € X and y € Y.
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Of course, if X satisfies (3.58) and X C ¥ C X**, then X is an M-ideal
in ¥ if X satisfied the Conjecture, X would admit no M-ai or weak con-
tractive M-ai in Y. The Conjecture, however, appears to lie much further
below the surface (modulo known results) than Proposition 3.16.

Appendix. An isometric lifting theorem. We obtain here an oper-
ator space generalization of the Effros—Haagerup lifting result.

THEOREM. Let X C Y be operator spaces with X nuclear, Y 1-locally
reflexive, and Y/X separable. Assume that X is o complete M-ideal in Y.
Then there exists a completely contractive lift L:Y/X —Y of Iy/x.

In the classical case (i.e.,, MIN operator structures), a nuclear operator
space X is an I'-predual, and since all Banach spaces are 1-locally reflexive,
the Theorem reduces to Ando’s result [An] that one always has contractive
liftings of the identity on Y/X when Y/X is separable and X is an L!-
predual which is an M-ideal in Y. In fact, our proof of the Theorem is the
quantized version of Ando’s argument, as expressed in [HWW, page 58].

We first assemble the facts needed to obtain the isometric assertions of
the Theorem. Throughout, we assume that X C Y are Banach spaces with
X an M-ideal in ¥'; 7w : ¥ — Y/X denotes the quotient map.

LEMMA Al. Given eg € Y/X, there exists a yo € Y with |leo| = ||mo]
and Ty = eg.

Proof. Let ¥ € Y be such that #y = ep. Then d(y,X) = ||eg]- By
Proposition IL1.1 of [HWW] (the proximality of M-ideals) there exists an
2o € X with |ly — 2ol = d(y, X). Then yg := y — %o is the desired element
of V. m

LEmMMA A2, Let V be a closed linear subspace of X end L € Y. Suppose
d(L,V) :=inf{{|[L—v| :v €V} =1. Then for all e > 0, there exists V, € V
and L, € BaY so that

(A1) I(L~Ve) = Lefl €& and (L—-V:)-L. € X.

Proof. This follows from Lemma 2.5 of [HWW]. We sketch a proof for
completeness. Since X is an M-ideal, besides its proximality, X also has the
“strict 2-ball” property: given closed balls By, By in Y with Int(By N By) # ¢
and BiNX # @ fori=1,2, we have By N By N X 5t {.

First choose V; € V with

(A2) |E]<1+e, where L'=L-V,.

Now let By = B(L/,1). Of course, d(L', V) = d(L,V) = 1, so by the proxi-
mality of X, B1 N X # 0. Now set By = B(0,¢) (= £BaY). Since |L'|| > 1,
(A2} yields that Int(B; N Bs) # 0. Hence choosing z € By N By N X, and
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letting L. = I/ — =, we get
(A3) |Lell €1 (since z € B(L/,1))
and of course
(L-V)~L;=L~L,=z€X. n
A simple compactness argument yields the next result.

Lemma A3. If X is a nuclear operator space, then X** is an isomet-
rieally injective operator space.

REMARK. In fact, it is proved in [EOR] that X is nuclear iff X is locally
reflexive and X** is 1-injective.

LeMMA Ad. Let E be o finite-dimensional operator space, Y an operator
space, and let cb(E,Y) be the operator space of completely bounded maps
from E toY. Then if Y is 1-locally reflexive, cb(E,YY** is (canonically
isometric to) cb(E,Y™**).

Proof (sketch). Of course, ¢b{E,Y) is nothing but the space of linear
maps T from E to Y, endowed with ||T||cp. Thus ¢b(E,Y) = E* Qqp Y.

But Y is 1-locally reflexive iff F ®up Y** = (F ®op ¥)** isometrically for all
finite-dimensional operator spaces ¥ (cf. [EH]). =

The next result is again a quantization of an observation in [HWW]
(page 62).
LEvMMA A5, Assume that X and Y are operator spaces with Y 1-locally

reflexive and X a complete M-ideal in'Y, and let B be o finite-dimensional
operator space. Then cb(E, X) is a complete M-ideal in cb(E,Y).

Proof Let W be the (weak*-closed) subspace of Y™** so that Y™ =
X* @ W is a complete L°°-decomposition for Y**, and set F' = E*. Then
(F @op X*™} @ (F ®op W) is a complete L>°-decomposition for F @qp ¥'**.
The result now follows upon identifying F ®qp X** with cb(E, X}** and
F @qp ¥Y™** with cb(E,Y)™, via Lemma A4. =

Finally, we are prepared for the fundamental lemma yielding the proof
of the Theorem.

LeMMA A6 (The Crucial Lemma). Let X C Y be operaior spaces with
X nuclear and ¥V 1-locally reflexive. Let By C E be finite-dimensional sub-
spaces of Y/ X, and let Ly : By — Y be a completely contractive lift of Ig, .
Then given € > 0, there exists a completely contractive lift La : E — Y of
Ip with ||Lg|g, — Ly} £ €.

A6 is a simple consequence of the results already assembled and the basic

SUBLEMMA. Assuming the hypotheses of A6, there exists o lift L, -
B Y of Iy with Lg|g, =Ly and | Lelles < 1+
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Proof. Let P be the M-projection from Y** onto X** and L : Y**/X**
-+ ¥** the completely contractive lift of the identity on ¥**/X™ induced
by P. Since L|g, and L are then both lifts of Ig, into Y**, L{e) — L1(e)
e X** for all e € Ey, hence

(Ad) (I~ PY(I|s, — Ly) =0.

Since X** is 1-injective by Lemma A3, we may choose a complete contraction
g: Ey — X** with

(AB) f|g, = PL;.

Next, define L:Ey - Y™ by

(A6) L=0+(I—P)Lig,

Then if e € Ea,

(AT) 7 L{e) = **(I — P)L(e) = m**L(e) = e.

Thus, L is a lift of Ig, into Y**. i e € Fy, then

(A8) L{e) = PLy(e) + (I — P)L(e)
= PLi(e) + (I ~ P)Li(e)  (by (A4))
= L1{e).

Since P is an M-projection, X **& (I — P)Y™** is a complete M-decomposition
of Y**, whence by (A6)~(A8), I is a completely contractive lift of Iz, ex-
tending Ly.

Of course, L lifts into Y**, not Y. To get a lift into Y, we apply our
extended local reflexivity principle for operator spaces, Lemma 3.12. First
let ¥ : E — Y be a linear lift of Ig. Now let G = L(E) + x(E). Choose
T : G — Y satisfing (i), (iii) and (iv) of Lemma 3.12 (for A = 1). Define
L.:E—=Y by

(A9) L.=TL.
Then if € € F, we have L{e} = L (e) = L.(e), where the last equality holds
by 3.12(iii) since Li(e) € Y. '

Next | Le|lop < 1 +& by (A9) and Lemma 3.12(1), since L is a complete
contraction. Finally, if e € B,

(A10)  TL(e) = T(L(e) — x(e) + Tx(e) = T(L(e) — x(e)) + x(e)

since T'gny = I|lgny. But then .
(Al1) : T L(e) = mx(e) = e,

since L{e) —x{e) € X** = T(L(e)—x{e)) € X by 3.12(iv). Thus L, satisfies
the conclusion of the Sublemma. m
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Proof ofNLemma, A6, Let )Z' = cb(F, X) and V = cb(E,Y), and let
V ={T¢&X :kerT D Ey}. Let L be a lift of I so that L|g, = L1, and
let £ > 0. Let L, be a lift of Ir satisfying the conclusion of the Sublemma.
Then I, — L. € V. This proves that

(A12) d(L,V)=1.

We now apply Lemuna A2 to Xc Y X is an M-ideal in ¥ by Lemma AB.
Thus, choose V; € V and L, € BaY satisfying (Al), and set Ly = L.. Now
it is trivial that L — V; is a lift of I, and moreover, (L-V¢)|g, = I1. Since
(L-V.)— L € X, [(L—V.)— L3}(E) C X, whence n(L—V;) = wls = I,
i.e., Lo is indeed a lift of Iy, which is completely contractive. Finally,

(A13)  |iLi~La|g, || = [(L-Ve)—Le)lmll < [(L-Ve)—Lel <& by (Al);

thus Lo satisfies the conclusion of the Jlemma. w

Proof of the Theorem. Let eg € Hy with [jeg|| = 1. Choose p € ¥ with
7y = eo and |yo|l = |leo] (by Lemma Al) and set E; = [eo]. Choose
finite-dimensional spaces Eg C By C ... of Y/X with |J;Z, B; dense in
Y/X. Define Ly : g — Y by Lyg (Aeg) = Ayg for all scalars A. It is trivial
that Lg is a completely contractive lift of Ig,. Now let £ > 0 and suppose
i > 0 and a completely contractive lift L; : B; — Y of Ig, has been cho-
sen. By the Crucial Lemma, we may choose a completely contractive lift
L,;+1 : E,‘,.{_l — Y of IEi+1 with

(Al4) 1 Lita

Then it follows (as in the proof of Theorem 2.4) that if we set Z = Useo B
then Hmy_,eo Li(2) =: L(z) exists for all z € Z, and L extends to a com-
pletely contractive lift of Iy;x. m

B — Ll £ E/2i+1.

REMARK. In the above argument, we also have
o0 o e
(A15) |L(eo) = voll € 3 WL = L) o)l € 3 5 =&
je=l j=x0

That is, we have also proved that for given ¢ > 0, e € Y/X and yo € ¥
with ||eg| = 1 = ||yoll and myo = eo, the lift L may also be chosen so that
|| Leo —yo|| < &. At this level of generality, however, it is impossible to ensure
that L may be chosen with Leg = yo. Indeed, one may give an extreme
point obstruction by constructing X and Y satisfying the hypotheses of the
Theorem with eg, yo as above, yo an extreme point of BaY', but so that eg
is not an extreme point of BaY/X. Since L is an isometry, Leo cannot be
an extreme point of BaY.
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