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Operators with an ergodic power
by

TERESA BERMUDEZ (LaLaguna), MANUEL GONZALEZ (Santander)
and MOSTAFA MBEKHTA (Lille)

Abstract. We prove that if some power of an operator is ergodic, then the operator
itgelf is ergodic. The converse is not true.

1. Introduction. Ergodic theory is concerned with the existence of the
limit of the Cesaro means

n-—1
Mn(T):=I+T+.?.L.+T ,
where T is a (bounded linear) operator on a Banach space. The operator T'
is said to be uniformly, strongly or weakly ergodic if the sequence (M, (T))
is convergent in the uniform, strong or weak operator topology in the space
L{X) of all operators in X.
Dunford [7, Theorem 3.16] proved that, if 1 is a pole of the resolvent
operator, then

n €N,

T

M, (T) converges in norm < lm -~ = 0.
n—oo 711

Wacker [14, Satz 4] extended the result of Dunford, proving that if 1 is
a pole of the resolvent operator of order less than or equal to p, then

n—1 n
1 & . . T
— E T* converges in norm < lim — = 0.
ne anp n—oo NP

Note that the direct implications are trivial. Other generalizations and local
versions of thege results are given in [4, 6, 9, 10]. '
We say that an operator T' € L(X) is ergodic if for every 2 € X,
" .
(1) lim Tz _ 0 = M,(T)s converges.
n

[ lamd ]
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This concept is weaker than that of strongly ergodic, because the subspace
{z € X : limyeo T"z/n = 0} does not necessarily coincide with X or
is closed. For example, take T == 2B, where B is the unilateral backward
shift on £2(N). Then defining coo := {z = (z(k)) € £2(N) : 3Im, Yk > m,
z(k) = 0}, we have

coo C {mGi’Z(N) : lim = :0}.

n—oa 1

Moreover, the set ¢pp is dense on £2(N), but T"y/n does not converge to 0
for y .= (1,1/2,1/3,...).

In this paper, we study ergodic operators in the sense of the previous
definition by analyzing the relations between some sets of vectors that satisfy
the right side or the left side of (1).

Our main result is Theorem 3, where we prove that if some power of
an operator T is ergodic, then T is ergodic. Our proof also works for the
concepts of uniformly, strongly or weakly ergodic operator.

The converse of Theorem 3 is not true. We give an example of an operator
T such that 7% is ergodic if and only if k is an odd integer.

We also give conditions on T' and = so that the implication (1) holds,
i.e., localizations of some results of ergodic theory. These conditions are
related with the local spectral theory. Finally, for T a Riesz operator, we
characterize the vectors z € X such that (M, (T)z) converges.

Some of these results were announced in [2].

2. Preliminaries and notation. Along the paper, X denotes a complex
Banach space and L{X) the Banach algebra of all bounded linear operators
defined on X. If T € L(X), we denote the kernel and the range of T' by
N{T') and R(T), respectively. Moreover, a complex number A belongs to the
resolvent set o(T) of T"if there exists (A — T)~! € L(X). We denote by
o(T) :=C\ p(T") the spectrum of T

The resolvent map A € o(T) — (A—T)"! € L(X) is analytic. Therefore,
w(p) = R, T for every 1 € o(T) is an analytic solution of the equation

@ C (u-Tup ==
The function w(y) could have analytic extensions for certain z € X. So, we
say that a complex number A belongs to the local resolvent set of T' at =,
denoted by e(z,T), if there exists an analytic function w : U — X, defined
on a neighbourhood U of A, which satisfies (2) for every u € U. The local
spectrum of T at « is the complement o(z, T') := C\ o(z, T).

Since w is not necessarily unique, a complementary property is needed
to prevent ambiguity. An operator 7' € L{X) has the single-valued extension
property (hereafter referred to as the SVEP) if (A — T}h()\) =0 has only
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trivial analytic solutions on any open subset of the plane. For example, every
operator with empty interior of the point spectrum, int (o, (7)) = @, has the
SVEP.

If T satisfies the SVEP, then for every z € X there exists a unique ana-

lytic function Zr on (2, T') satisfying (2), which is called the local resolvent
function of T at x.

For every subset H C C, we define
X(T.H)y={seX 0(z,T) C H}.
If X(T, F) is closed for all closed sets F, we say that T has property (C).
Radjabalipour [11, Theorem 2.3] proved that property (C) implies the SVEP.

The following characterization of the poles of the local resolvent function
will be useful.

THEOREM 1 [1, Theorem 3.3]. Assume that T € L{(X) has the SVEP and
let x € X. Then o is a pole of Zr of order n if and only if there exists o
unique decomposition x = y--z such that y € N((a—T)*)\ N((a—=T)"1),
and o(2,T) = o(xz,T) \ {a}. o

For T € L(X) we consider the following subsets of X:

i

Ep = {:c € X: COnverges },

T
By = {m € X : lim Ti:o},
n—es 1
={z € X : M,(T)x converges},
Mp={zeX: VJEEQM”(T)GC = 0}.
Clearly, these four sets are (not necessarily closed) subspaces of X which

are invariant under any operator commuting with T". Moreover, My C Ep.
Hence,

My C My C Ep C Ep.
DEFINITION L. An operator T' € L(X) is said to be ergodic if Ex = M.

ReEMARK 1. Note that T' € L(X) is strongly ergodic if and only if T" is
ergodic and By = X

The following result is well known as the mean ergodic theorem and is
useful in finding examples of non-ergodic operators.

THEOREM 2 [8, Theorem 2.1.3]. Let T € L(X) be an operator suc such that
Er = X and sup,, | M.(T)|| < oo. Then Mr =N(I-T) & R(I-T).

REMARK 2. It follows from Theorem 2 that if 7' is power bounded (i.e.,
if there exists a constant M > 0 such that |T"]| < M forall n € N) and 1 is
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a pole of (A — T)~! of order 1, then By = Mp = X; ie, T is ergodic (and
strongly ergodic).

See Corollary 1 below for related results.

3. Properties of ergodic operators. Now, we prove some basgic results
for the subsets My, My, Ey, and £y defined in Section 2 which will be useful
later.

ProrOSITION 1. Let T € L(X) and n € N. Then:
(i) (I — T)—IMT =&Er and (I - T)'_lMT = Ep.
(ii) My = Mrp @N(I - T) and Ey = BEp -|-N((I—T)2).
(iil) ExNN((I-T)™+1) = N(I-T)? and BpAN{((I-TY*) = N{I-T).

Proof. Property (i) follows easily from
(3) Mu(THI — Tz = (I —T™)z/n.

For the first part of (ii), we fix £ € Myp. Since My C Er, formula (3)
implies that z := limy,.,0 M, (T)2 € N(J—T). Thus we write z = (2—2)+z,
where z — 2z € Mg because M, (T)z = 2 for every n.

For the second part of (ii) we apply part (i), the first part of (ii) and
NI-TP2=({1~T)y*N{I-T) to get

br=(I-T)""Mr=(I~T) " Mr®N(I-T))
={I-T) Mg+ (T -T)'N({I ~T)= Er + N{(I - T)?).

The case n = 1 of (iii) is proved by observing that (I — T)Er ¢ Ep and
applying (i) and (ii). _

For the case n > 1, assume that z € N((I — T)"*') N £p. Then
(I —T)y'z € Br N\ N{(I~T)?) = N(I —T); hence z € Er N N{(I - T)™).
Repeating this process n — 1 times, we conclude z € £r N N((I — T)?) =
N{(I-T)%).

Moreover, By NN((I ~ T )= Er NN((I-T)?) = NI ~T). u

CoROLLARY 1. Let T € L(X).

(i) If 1€ o(T), then E7 = Eq = (I ~T)Ep = Mg = Mr. In particular,
T is ergodic.

(ii) If 1 is a pole of (A —T)~* of order p > 1, then BEp # X

Proof. The first part is an immediate consequence of the previous
proposition.

. For the second part, note that p > 1 implies N(I —T) # N((I — )%
[13, Theorem V.6.2]. u R -
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Although = € My whenever (T"z) is convergent (convergence implies
Cesaro convergence), the following example shows that the converse impli-
cation failg,

EXAMPLE 1. Let T' € L(£3(N)) be the unilateral weighted shift defined
by

N1
Tey 1= Ent1.
f

Taking z := (I — T)ey, we deduce that & € My (since e; € E7) and Tz
does not converge (since T2z = +/n + 1 Entl — VN +2€n42). W

The following result will be useful to describe operators with an ergodic
power. A related property was studied in [3, Proposition 2.4].

THEOREM 3. Let T' € L(X). Then Epx = Ep and M« C My for every
ke N

Proof. Clearly, Er C Epx. Moreover, if © € Eps, since Tz /n — 0 as
n — 0o the gequences

T'n,kw Tnk+1m Tnk-l—k-—lm
( nk )’(nk-}—l )"'" (nk+k—1)
converge to zero. Hence T™x/n — 0 as n — oo, that is, z € Eq.

On the other hand, if z € My, the convergence of M,,(T%*)x implies the
convergence of

TM,(TH)z, ..., T M, (TF)z.
Consequently, My,(T)z converges to y, hence
Trk+i g '
nk+ j
for 0 £ j € k — 1. Taking into account the equality
TR pkgg 41
- = Mopagjrr (T) — Mpp+ i (T
T T nE w1 (T) = Mue1 (T,
for 0 < 7 < k—1, we find that My p44(T)x converges to the same limit y for
0<7 £k~ Hence M,(T)z converges, that is, 2 € Mp. m

—0 asn—co

A particular case of Theorem 3 can be found in [8, page 84: If T" € L{X)
ig a contraction and M, (T?)z converges for all z € X, then M,(T)z also
converges for all x € X,

The next result is a generalization of [12, Corollary].

COROLLARY 2. Let T € L(X) and k=1,2,... If T* is ergodic, then T
is ergodic. Moreover, if T® is uniformly, strongly or weakly ergodic, then T
has the same property.
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The following example shows that the inclusion in Theorem 3 is not an
equality and the converse of Corollary 2 is not valid, in general.

EXAMPLE 2. Let T be the multiplication operator on C([~1,0]) defined
by Tf{(t) = tf(t) for f € C(|~1,0]). Then o(T) = [~1,0] and ||T| = 1.
Hence Er = Eqpn = C([~1,0]) for every k. Since 1 € o(T"), by Theorem 2
we get My = C([—1,0]), and T is ergodic.

On the other hand,

Mzz: = N{(I - T*)® R(I - T?).

Note that N(I ~1?) = {0} and R(I + T'} is contained in the proper closed
subspace {f € C([-1,0]) : f(~1) = 0}, hence R(I — T?) # C([-1,0)). So,
M2 # C([—1,0]) = Erz and T2 is not ergodic. m

REMARK 3. (a) Clearly, in the above example T* is ergodic if and only
if ~1 is not a root of 2¥ = 1, or equivalently, if & is an odd integer.

In fact, for integers 1 < I < k such that ! does not divide &, it is possible
to give a multiplication operator similar to that in Example 2 such that 7%
is ergodic, but 7" is not.

(b) In the case By = X, T is ergodic if and only if T is strongly ergodic.
So the previous counterexample is also valid for strongly ergodic operators.

Next we prove a local ergodic result that gives conditions on a fixed
vector z € X s0 that z € Er implies x € Mp.

PROPOSITION 2. Suppose that T' € L(X) has property (C) or 1 is an
isolated point of o(T). Let © € Br. If 1 € o(x, T) or 1 is a pole of &y of
order 1, then T € Mr.

Proof As a consequence of Theorem 1, we can write z = Y -+ z, where
y € N(I-T) and o(2,T) = o(z,T) \ {1}. By part (ii) of Proposition 1, we
have y € My, hence z € Eyp.

Suppose that T has property (C) and define F := o(z,T). Using
I5, Theorem 1.3.8} we have o(T'| X (T, F')) C FNo(T'), hence 1 €o(T|X (T, FY).
On the other hand, as z € X (T, F) N By, by Corollary 1 we have z € M.
Hence = € M.

Suppose that 1 is an isolated point of o(T). Then by [13, Theorem V.9.1]
we obtain X =Y & Z, where ¢(T|Y) = {1} and o(T|Z) = o(T)\ {1}, Hence
2 € ZN Ey and by Corollary 1 we have z € Mp. Thus z € Mr. =

COROLLARY 3. Let T € L(X). If 1 is a pole of (A —T)~1, then T is
ergodic. '

Proof. Suppose that = € Er. By [1, Theorem 4.2, either 1 & oz, T)
or the local resolvent function of T at 2 has a pole of order p at 1.

If 1€ o(x,T) or p=1, then by the proof of Proposition 2 we see that
x & My, :
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Assume that p > 1. By Theorem 1, we can write ¢ = y + 2 where
y € N((I =TI\ N((I ~T)"Y) and 0(2,T) = o(z,T) \ {1}. Using part
(ii) of Proposition 1 we get y & Ep; hence z & Ep. Now, as in the proof
of Proposition 2, we have X =Y @ Z with z € Z and 1 € p(T|2). Then
(I-T)Pax = (I-T)"z € Ep and by Corollary 1 we obtain z € Er, which is
a contradiction. m

Finally, we give several characterizations of the vectors in. My for T a
Riesz operator, similar to [10, Théoréme 3] in the uniform case. Recall that
T € L{X}is Riesz if every non-zero complex number is a pole of (I -T) !
with finite multiplicity. We denote by ID the open unit disc in the set of all
complex numbers, and by I' the boundary of I.

THEOREM 4. For a Riesz operator T' € L(X) and = € X, the following
assertions are equivalent,

(i) (T™z) is bounded.
(ii) z € By,
(iii) x € Myp.
(iv) o(2,7) c D and o(z, T) NI consists of poles of T of order 1.

Proof. The implication (i}=-(ii) is obvious and (ii)=(iii) follows from
Corollary 3, since 1 is a pole of the resolvent (A — T)~1. Let us prove
that (iii)=(iv). If £ € Mrp then z € Ep, hence o(z,T) C D. So, it is
encugh to prove that the poles of Zp on the unit circle are of order 1.
Since T' is a Riesz operator, we can write & = z1 + ... + Zx + y, where
z; € N(A; — T)™ for some n;, ¢ = 1,...,k and oy, T) C D. Moreover,
since each of the vectors xy,...,zg, v is the image of z under a projection
commuting with 7" and € Mr, we have ©y,...,2,y € My C Ep. Note
that Ex = Exy when {A| == L. Thus, by part (iii) of Proposition 1, we obtain
z; € N(A; —T) for i = 1,..., k. Hence, the poles of Zr on the unit circle
are of order 1. _

For the implication (iv)=-(i), assume that o(2,T) C D and (2, T) N I
consists of peles of Tp of order 1. We write » = z1 + ... 4+ o + y, where
oy, T) = {2} with |A| =1 and o(y, T) C I

We have z; € N(A; — T') by Theorem 1, hence T"z; = Aj'z;. Moreover,
oy, T) ¢ DD implies limsup,, [T™y[*/" < 1; hence lim, T™y = 0. Thus
(I™z) is bounded. m
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Polynomial inequalities on algebraic sets
by

M. BARAN and W, PLESNIAK (Krakéw)

Abstract. We give an estimate of Siciak's extiremal function for compact subsets of
algebraic varieties in C™ (resp. R"). As an application we obtain Bernstein—~Walsh and
tangential Markov type inequalities for (the traces of) palynomials on algebraic sets.

0. Preliminaries. The theory of the multivariate Markov inequality fur-
nishing estimates of the derivatives of a polynomisal in n variables in terms
of its degree and its uniform norm on an n-dimensional compact subset of
C™ or R™" was essentially developed in the last ten years. For an exhaus-
tive survey on this subject we refer the reader to [Pl3]. In recent years,
Markov and Bermstein type inequalities have been intensively investigated
on algebraic subvarieties of R® (see [BLT], [BLMT1], [BLMT?2], [FeNal],
[FeNa2], [FeNa3], [Bru], [BaPl2], [BaP13], [RoYo], [Gen]). In particular, in
[BLT], [BLMT1)}, [BaP12] and [BaP13] the authors have characterized semial-
gebraic curves as well as semialgebraic manifolds in R” in terms of tangential
Markov or Bernstein and van der Corput—Schaake type inequalities.

The purpose of this paper is to establish Bernstein-Walsh or (tangential)
Markov type inéqualities on subsets N of an algebraic set in R™ that are
images under non-degenerate analytic maps of non-pluripolar, compact sets
in R*. Our results vield, as particular cases, some recent results of Bos-
Levenberg-Milman-Taylor [BLMT1], [BLMT2] and Brudnyi {Bru].

Let us note that if N is a subset of an analytic variety then, in general,
it need not admit a tangential Markov inequality with any finite exponent.
A relevant example is due to Izumi {Iz] (see [BLMT1]).

2000 Mathematics Subject Classification: 41A17, 41425, 14P10, 14P05.

Key words and phroses: traces of polynomials on algebraic sets, Siciak’s extremal
function, pluricomplex Green function, Bernstein-Walsh and tangential Markov type in-
equalities on algebraic sets.
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