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On cyclic a(-)-monotone multifunctions
by

5. ROLEWICZ (Warszawa)

Abstract. Let (X,d) be a metric space. Let & be a linear family of real-valued func-
tions defined on X. Let I' : X — 2% be a maximal eyclic a(+)-monotone multifunction
with non-empty values. We give a sufficient condition on «(-) and & for the following
generalization of the Rockafellar theorem to hold. There is a function f on X, weakly
&-convex with modulus (-}, such that I" is the weak @-subdifferential of f with modulus
al), I(@) = 8% f|a.

Let {X, dx) be a metric space. Let ¢ be a family of continuous real-valued
functions defined on X Let f be a real-valued lower semicontinuous function
on X . We say that f is @-convez if it is the majorant of some subset &y C P,
flz) = sup{e(z) : ¢ € Pg, ¢ < f}. We say that ¢g € & is a $-subgradient
of f at a point xq if '

(1) flz) — flzo) = do(z) — ¢o{ze) forallze X.

The set of all P-subgradients of f at zg is called the P-subdifferential
of f at xzp, and is denoted by 8 f|e,. Of course 85 f|, is a multifunction
mapping X into subsets of &, g f|. : X — 2%.

Let c(-) be a continuous non-decreasing function mapping [0, c0) into
itself such that (0) = 0 and () > 0 for ¢t > 0.

We say that a function f is weakly $-conver at zy with modulus a(-) if
there is ¢bg € P guch that

(2)  F(=) = f{wo) = dolz) ~ do(z0) — aldx (2, z0)) forallze X.

The function ¢y is then called a weak $-subgradient of f at xp with modu-
lus (-}

The sct of all P-subgradients of f at zp with modulus af-) is called
the weak $-subdifferential of f at zo with modulus a(-), and is denoted by
85%f|zo- This yields a multifunction 85%f|_ : X — 2%. In the case when
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264 S. Rolewics

X is a normed space, = X* and a(t) = t7 we obtain the definition of
~-subgradient and y-subdifferential introduced by Jourani (1996).

If f is weakly $-convex at zo with the same modulus o) for all zy € X
we say that f is uniformly weakly &-conver on X with modulus c(-).

In general, as in the case of $-subdifferentials, the knowledge of a weak
& subdifferential with modulus a(-), 87%f|. : X — 2%, does not permit one
to determine the function f (up to a constant), as follows from

ExaMpLE 1. Let X = [~1,1]. Let @ be the class of functions
P = {p(z) = ~|z — 30| 1 =1 S zp £ 1}

Suppose thab
]. ' U
0111 0 CE( )/

Let f be an arbitrary Lipschitz function with constant less than 1. Then

97 flao = {—|z —zo|}. -
In this example we can also construct two functions f and g such that
Of C 8g and 8f # Hg. Indeed, let 0 < o < 1 and let

o el izl <,
falz) = {a, if o < |z < 1.
By simple calculation we get
{#(z) = —|z — 20l} for a < |zo| < 1,
5% fuley = {p(z)=—|z—yl: ~a <y <z <0} for —a<xg <0,
@ Jaiwo {p() =~z —yl:0< s <y<a}l for0< o <a,
{(z) = |z —y|: [y| <a} for zg = 0.
Thus 35% folse C 05% folmy and generally 85 folze 7 05 fola, if @ < b < 1.
However in Banach spaces X and € = X* we have

PrOPOSITION 2. Let X be a set in o Banach space E such that X € Int X
and Int X s arcwise connected. Let & = E*|x be the space of continuous
linear functionals restricted to X, Suppose that

(3) t_l%g}rﬂ aft)/t = 0.

If for two locally Lipschitz functions f and g on X, 85°%f|o C 87%g|s for
all z € X, then the functions differ by a constent: f(z) = g(z) -+ ¢, c €R,
and we have the equality 85% f|. = 7 %gl..

Proof (compare Rockafellar (1970), (1980)). Let 5,y € X be such that
the interval [z,y] = {t2 + (1 —t)y : 0 < ¢ < 1} is contained in X. Now we
consider two functions of a real variable: f(t) = f(ty + (1 — t)z) and §(t) =
g{ty + (1 —t)z). Those functions are locally Lipschitz (even Lipschitz, since
the interval [z, y] is compact) and thus are differentiable almost everywhere.
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Moreover we have

Fy)— @)= F(1) - (o) = | F'(2) dt,

9(y) — g(z) = g(1) — §(0) = \ ' (t} dt.

O 2 O e

Since 95%flzy C O07%gle, and (31 holds, we have Jy"v’(t) < ¢'(t) at each

point of common differentiability of f and §. Thus
1

1
F) ~ fz) = | F(tydt < {7 (1) dt = g(w) — g(2).

0 0
Interchanging the roles of  and y we obtain
(4) fy) - f(@) = gy) — g().

Now take arbitrary two points z,y € Int X. Then there is a finite system
of points & = zp,...,Z, = y such that [z, 1, 7;] C Int X. By the previous
considerations

Fl@ie1) = flai) = glzioa) —g(z:), 4=1,...,n
Adding all those equations we get (4).

Since f and g are continuous on X and X C Int X we trivially deduce
that (4) holds for all z,y € X. =

REMARK 3. It is easy to observe that Proposition 2 holds if we replace
the condition that f and g are locally Lipschitz by the condition

(L)  For any two x,y such that the interval (z,y) = {tz + (1 —t}y: 0 <
t < 1} is contained in X the functions f and g restricted to (z,y) are
locolly Lipschitz.

We recall (see for example Pallaschke-Rolewicz (1997)) that a multi-
function I : X — 2% is monotone if for all ¢, € I'(z), ¢y € I'(y) we
have
(5) b (@) + ¢y (y) — d2(y) — ¢y(2z) 2 0.

In particular, when X is a linear space, and @ is a linear space consisting
of linear functionals ¢(z) = (¢, ), we can rewrite (5) in the classical form
(ff)a: —éy:w—y> 2 0.

A multifunction I' : X — 2% is called n-cyclic monotone if, for all
Tg, XY, - -, Tp = o € X and ¢, € I'(2), 1 =0,1,...,n, we have

® S Wb (1-1) = s (w211 2 0.

i=1
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A multifunction I' : X — 22 is called cyclic monctone if it is n-cyclic mono-
tone for all n = 2,3,... Of course, just from the definition, I" is monotone
if and only if it is 2-cyclic monotone.

A multifunction I" : X — 2% is called n-cyclic a(-)-monotone if, for all

T, T1,...,Tn =Zo € X and ¢, € '(z;) i=0,1,...,n, we have
™ 27

(7) S 1o (1) = foiy (@) + Y, ldx (@i, 2i-1)) 2 0.
=1 i=1

The 2-cyclic a{-)-monotone multifanctions are briefly called (- )}-monotone
(Rolewicz {1999)). In the case when X is a normed space, ¢ = X* and
a(t) = t* we obtain the definition of y-monotone multifunctions introduced
by Jourani {1996). A multifunction I is called cyclic a(-)-monotone if it is
n-cyclic a-)-monotone for alln=1,2,... :

Just from the definition we see that each monotone (resp. n-cyclic mono-
tone, cyclic monotone) multifunction is a(-}-monotone (resp. n-cyclic af:)-
monotone, cyclic af-)-monotone) for every a(-). Moreover, if a;(t) > ot)
for all 0 < ¢ < oo, then each a(-)-monotone (resp. n-cyclic a(:)-monotone,
cyclic a{-}-monotone) multifunction is ay (-}-monotone (resp. n-cyclic oy (-)-
monotone, cyclic o (-)-monotone}.

Using the same method as in Section 1.1 of Pallaschke-Rolewicz (1997)
we obtain

PrOPOSITION 4. Let f be o uniformly weakly &-convex function with
modulus a(-). Then the subdifferential 87 % f|;, considered as o multifunction
of x, is cyclic a(-)-monotone.

Proof. Take zq,z1,...,2n =z¢ € X and ¢y, € 35 fl0,,t=0,1,...,7.
Since f is uniformly weakly #-convex with modulus (-}, fori=1,...,n we
have

Fl@d) = F(2i1) 2 oy (23) = oy (mim1) — a(dx (4, 1))
Adding all these inequalities we obtain

0> Z[¢Ii——1 (m1) - (lsa:,'..l (-'Ei—l) - a(dx(mi,miMl))]
=1
= 2I¢wi_1 () — oy (mi1)] — Z[a(dx (i, 2im1))],

which is (7). =

An a(-}-monotone (resp. cyclic a(-)-monotone) multifunction I is called
maztmal of-)-monotone (resp. mazimal cyclic a(-)-monotone) if for each
a(-)-monotone (resp. cyclic a(-)-monotone) multifunction Iy such that I'(z)
C In(z) for all = (in other words such that the graph of I', G(I'), is contained
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in G(I)), we have I'(z) = I'(z) for all z € X. It is easy to see that an
a(-)-monotone multifunction I is maximal e(-)-monotone if and only if for
all z,y € X and ¢, € I'(x}, the inequality

(bm(m) + w(y) - ¢m (y) - "/[J(m) + 2Q(dX ("Bu y)) = 0

implies that ¢ € I'(y). Observe that a maximal a(-)-monotone multifune-
tion which is simultaneously cyclic a(-)-monotone is maximal cyclic a(-)-
monotone, As follows from Example 1, in general the weak @-subdifferential
with modulus o) of a function f, 85%f|,, need not be a maximal a(-)-
monotone multifunction.

Now we shall discuss the possibility of reversing Proposition 1.

Let (X, dx} be a metric space. Let @ be a family of continuous real-valued
functions defined on X. Let €, = {¢(z) — a(dx(z,21)) 1 d € &, 1 € X}.
Having this notation we can easily observe that if ¢ is a weak $-subgradient
of a function f at a point zg with modulus a(-) then ¢(z) —a(dx(z,zo)) is a
¢ ,-subgradient of f at xy. However it may happen that ¢(z) - a(dx(z, 1))
is a P,~subgradient of a function g at zp and ¢ is not a weak P-subgradient
of g{z) at zp with modulus af-).

ExAMPLE 5. Let X = [~1,1], let & consist of the constant functions
ouly and let a(t) = ¢*. Let g(z) = 2. At the point 0 the function g has a
&,-subgradient 73(z) = 0 — (z — 1). On the other hand ¢ = 0 is not a weak
P-subgradient of g at 0 with modulus ).

It is essential to obtain conditions which guarantee that for all functions
f and points zy the weak $-subdifferential with modulus a(:) of f at g
with a{dx(z, o)} subtracted is equal to the &,-subdifferential of f at zp.

‘We shall show that such a condition is provided by the following property
of ao-) and the class $:

(%)  for every zq the function a(d(z,zo)) hes at each y € X o subgradient
¢y € P such that for oll z € X,
(8) a{d(z, z0)) — a{d(y, z0)) + by (2} — dy(y) < ald(z,y))-
It is interesting to know which e(-) and & have property (x).
PROPOSITION 6. Let X = R and let & contain the class of linear fune-
tions. Let the funclion a(-) be absolutely continuous. Assume that its deriva-

tive o' (t) exists for allt > O and moreover it sotisfies the triangle inequality,
o/ (t + 8) < o (t) + o/ (s). Then a(-) and & have property (*).

Proof Let zg,y,2 € R Since |2 — y| is an invariant metric, without
loss of generality we may assume that zo = 0. Thus (8) is equivalent to

(9) al2]) — allyl) + dy(2) — dy(v} < e(lz = y))-
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We put |z| = s+ h, [y| = s. Then
a+h
a(s + h) — a(s) — ha'(s) = S o/ (t) — a'(s)] dt.

If k > 0, then by the triangle inequality for a/(-),

s+h s+h h
S [&/(£) — o&(8)]dt < S o (t—s)dt = Sa'(u)du = ofw)|} = a(h),

i.e. (9) holds.
If h < 0, then again by the triangle inequality,

s4h 8 . 8
V@ -a(s)dt= | [o'(s)—/@ldt< | o'(s—t)dt
8 g~ h| s—|h|
0 Al
= - S o (u)du = ‘ o (u)du = a(|h)),
I 0

i.e. (9) also holds. m

Observe that the function e(t) = ¢7, 1 < v < 2, satisfies the assumption
of Proposition 6. Indeed, in this case ¢(t) = v¢7~! is a concave function,
and thus it satisfies the triangle inequality.

If additionally o) is convex (in particular if et} = ¢7, 1 < v < 2) we
can extend Proposition 6 to normed spaces.

PROPOSITION 7. Let ax(-) be convew. Assume that its upper derivative
ot (t) = lim alt+h) - aft)
B0 h
satisfies the triangle inequality, ot (t+s) < a™(t) + o™ (s). Let (X, |- ||) be
a normed space and let & contain the conjugate space X* of all continuous
linear functionals. Then o(-) and & have property ().

Proof. Since () is convex it is absolutely continuous. As in the proof
of Proposition 6, replacing o/(s) by the upper derivative o (s) we get
(10) ezl = (vl + e+ (i l=l — lyl) < alliz] = Ivl) < ez~ y)).

Since a(-) is convex we have o (|y||} > 0. Let y* € X* be a functional
of norm cne such that y*(y) = [ly||. Of course y*(2) < |2l Then by (10)
we get

afllz]) - a(llyll) + e (lul)y* (= = v) < olllz - y]),
ie. (9) holds for ¢, = ot (||y|)y*. =

PROPOSITION 8. Suppose that & is linear. Suppose that af-) and & satisfy
condition (x). Then there is a weak -subgradient ¢ € P of a function f at xg
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with modulus a(-) if and only if there is ¢ € @ such that () ~ a(dx (z, 2p))
is a Bo-subgradient of f at zo, where &, = {¢(z) — aldx(x,2,)) : ¢ € &,
Ty € X}
Proof. If ¢ is a weak $-subgradient of f at zo with modulus af-), then
by definition
f@) — fmo) 2 d(=) — d(z0) — (dx (=, 0))-
This trivially implies that ¢(z)—a(dx (2, z¢)) is a $,-subgradient of f at z.
Suppose now that ¢(z) — a(dx(x,21)) is a $,-subgradient of f at zq.
Then by definition we have
1) flz) ~ f(=o) 2 é(z) — d(zo) + a(dx (o, x1)) — adx (2, 21)).
By property (x) there is a ¢y, € & such that for all ¢ € X,
aldx (z,21)) — a(dx (20, B1}) + Pag(2) = P, (20) < a(dx (z, 30)),
i.e.
(12)  c(dx(zo, 1)) — aldx (®, 1)) Z doo{z) — Pao(20) — adx (2, %0))-
Thus by (11) and {12) we get

f(z) = flzo) 2 d(z) — Pl2o) + by (T) — duo (T0) — e{dx (2, 20))-
Therefore ¥ (-) = @{*) + ¢y (-) € @ is a weak P-subgradient of f at zg. m
Let I' be a multifunction mapping X into 2%. We denote by (I — e) the
multifunction mapping X into 2%« defined in the following way:
(I' = a)(x) = {4() = ¢() ~ a(dx (-, 2)) : ¢ € '(2)}.
We call (I" — @) the multifunction I' with a(dx (,-)) subtracted.
From Proposition 8 we trivially obtain the following

COROLLARY 9. Suppose that ¢ is linear. Suppose that o) and & satisfy
condition (x). Then the weak $-subdifferential with modulus a(:) of a Junc-
tion f at x with o(dx (z,')) subtracted is equal to the &,-subdifferential of
F at m,

(05 flo — a(dx (z,°))) = Ba, fla-

By stmple calculation we get

PROPOSITION 10. Let I' be a eyclic (resp. n-cyelic) a(-)-monotone mul-
tifunction mapping X into 22, Then (I'-a) is cyclic (resp. n-cyclic) mono-
tone.

Proof. By definition for all zg,21,...,%n = Zo € X and ¢a, € I(z;),
t=0,1,...,n, we have

il n

Z£¢wi—1(mi“1) - ¢M~1(mi)] + Za(dx(whmiwl)) = 0.

towd, =1
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Let 5, € (I' — @){(m;). We put ¢, (-) = ¥s,(-) + aldx (zi,-)). Then ¢,, €
I'(2;) and from the above we get

i["’bxiwl(mi_l) - ¢wim1($i)] 20,

i=1
which shows that (I" - «) is cyclic (resp. n-cyclic) monotone. m

COROLLARY 11. Suppose that  is linear. Suppose that a(-) and & satisfy
condition (x}. Then 07%f|, is n-cyclic (resp. cyclic) a(-)~monotone if and
only if {8z, flo — a(dx(z,-))) is n-cyclic (resp. cyclic) monotone.

From Proposition 10, as in Section 1.1 of Pallaschke~Rolewicz (1997), we

trivially obtain the following extension of the Rockafellar theorem (compare
Rockafellar (1970)).

THEOREM 12. Suppose that & is linear. Suppose that a(-) and & satisfy
condition (x). Let I : X — 2% be mazimal eyclic c:(-)-monotone. Suppose
that I'(z) @ for allz € X. Then there is a function f weakly &-convex with
modulus a(-) such that I' is the weak -subdifferential of § with modulus
(), I'(z) = 05° flo-

Proof. By Proposition 10 the multifunction (I' - @) is eyclic monotone.
We do not know if it is maximal or not. However, using the Kuratowski~Zorn
Lemma we can find a maximal cyclic (resp. n-cyclic) monotone multifunction
(I' = &)max such that (I'— a)(z) C (I~ @)max{z). Thus by Proposition 1.11
of Pallaschke-Rolewicz (1997) we can find a function f such that 83, fle =
(I~ &) max(z).

By (x} and Corollary 9 we get

(93 fla — c(dx(z,))) = (I' ~ )max(2).
This implies
' (0% flo — odx (z,))) D (T — a)(x).
Therefore 85 f|, > I'(z), and by maximality of I" we get 9% fly = I'(z). w

In general, the knowledge of a weak S-subdifferential with modulus a(-),
95%flz : X — 2%, does not permit one to determine the function f (up to
a constant) (see Example 1). But in Example 1, 85%f], is not a maximal
cyclic a(-)-monotone multifunction, and we do not know if the equality
85°fle = 87%g|. together with the maximal cyclic a(-)-monotonicity of
the multifunction 7% f|, implies that f (z) = g(z) + c. In the case when X
is a Banach space, & = X* is the conjugate space and o) =17, 1 <y < 2,
the answer is positive. More precisely we have

PROPOSITION 13. Let X be @ Banach space, let & = X* be the conjugate
space and let 1 < v <2, Let I': X — 9% pe mazimal cyeclic t7-monotone.
Suppose that I'(z) #  for all z € X. Then there is o Junction f such that I”
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is the y-subdifferential of f, I'(x) = 85% f|,, and the function f is uniquely
determined up lo a constant.

Proof. By Theorem 12 there is a function f such that I'(z) = 65t7f|w-
Using the result of Correa, Jofré and Thibault (1994) (see Jourani (1996),
Theorem 7.1) we find that f is v-paraconvez, i.e. there is C > 0 such that
for all 2,y € X and all ¢ € [0, 1] we have

(13) Flte + (1= ty) <tf(2) + (1~ t)f(y) + Cllz — y||".

Observe that (13) immediately implies that f is bounded from above on
[z,y]. We shall show that it is also bounded from below. Indeed, suppose
that there is a sequence {2z} C [x,] such that lim,_,. f(2,) = —co. By
compactness we can assume that {z, = t,z + {1 — £,)y} is convergent
to 2 = toz + (1 — to)y € [2,y]. We can also assume that {¢,} is either
increasing or decreasing. In both cases we can choose u € [z,y] such that
either u € Int[z, 2,] or u € Int[z,, y] and replacing [z, ] by [z, 2] and [z, ]
respectively we obtain a contradiction with (13).

Then by Jourani (1996), Remark 2.1, f is locally Lipschitz in the interval
(z,). Thus by Proposition 2 the equality 8% |, = 85 %g|, implies that f
and g differ by a constant, f(z) =g(z) 4+ ¢, c€ R w

COROLLARY 14. Let X be a Banach space, let & = X* be the conjugate
space and let 1 < v < 2. Then the v-subdifferential 65 i fle of every func-
tion f, weakly $-conver with modulus t7, i3 a mazimal cyclic ¥ -monotone
multifunction.

Proof. By Proposition 4, 85 ' fl. is a cyclic t?-monotone multifunc-
tion. Of course we do not know if it i3 maximal or not. However, using
the Kuratowski-Zorn Lemma we can find a maximal cyclic t7-monotone
multifunction I' such that

(14} 85" fla © ().

By Theorem 12 there is a function g, weakly @#-convex with modulus 7,
such that I'" iy the weak @-subdifferent}al of g with modulus t”',-l."(m) =
B;twg!m. Thus by (14), Bgﬂf‘]m C 03" glz- Therefore by Proposition 13,
Fz) = g(z) + ¢ and we have the equality

837 flu = 85" gl = I'(z)-

. . . —t7
Since I is a maximal cyclic £7-monotone multifunction, so i8 87" f|z. =
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On the complemented subspaces of the Schreier spaces
by

I GASPARIS (Stillwater, OK)and D. . LEUNG (Singapore)

Abstract. It is shown that for every 1 € £ < w, two subspaces of the Schreier space
x¢ generated by subsequences (efﬂ) and (ESnn }, respectively, of the natural Schauder basis
(eﬁ) of X% are isomorphic if and onty if (el‘E“) and (efn“) are equivalent. Further, X¢ admits
a continuum of mutually incomparable complemented subspaces spanned by subsequences
of (eﬁ,). It is also shown that there exigts a complemented subspace spanned by a block

basis of (e,‘%), which is not isomorphic to a subspace generated by a subsequence of (eg),
for every 0 < ¢ < £. Finally, an example is given of an uncomplemented subspace of X
which is spanned by a block basis of (ef,,).

1. Introduction. The Schreier families {S¢}¢«., of finite subsets of pos-
itive integers (the precise definition is given in the next section), introduced
in [1], have played a central role in the development of modern Banach space
theory. We mention the use of Schreier families in the construction of mixed
Tsirelson spaces which are asymptotic £; and arbitrarily distortable [3]. The
distortion of mixed Tsirelson spaces has been extensively studied in [2]. In
that paper, as well as in [14], the moduli {§4)a<w, Were introduced measur-
ing the complexity of the asymptotic £; structure of a Banach space. The
definitions of those moduli also involve the Schreier families. Other applica-
tions can be found in [6] and [5] where the Schreier families form the main
tool for determining the structure of those convex combinations of a weakly
null sequence that tend to zero in norm, or are equivalent to the unit vector
basis of . For applications of the Schreier families in the construction of
hereditarily indecomposable Banach spaces, we refer to [3] and [4].

A notion companion to the Schreier families is that of the Schreier spaces.
These are Banach spaces whose norm is related to a corresponding Schreier
family. More precisely, for every countable ordinal £, we define a norm || - |l
on cgp, the space of finitely supported real-valued sequences, in the following

a—
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