

On cyclic $\alpha(\cdot)$ -monotone multifunctions

b

S. ROLEWICZ (Warszawa)

Abstract. Let (X,d) be a metric space. Let Φ be a linear family of real-valued functions defined on X. Let $\Gamma: X \to 2^{\Phi}$ be a maximal cyclic $\alpha(\cdot)$ -monotone multifunction with non-empty values. We give a sufficient condition on $\alpha(\cdot)$ and Φ for the following generalization of the Rockafellar theorem to hold. There is a function f on X, weakly Φ -convex with modulus $\alpha(\cdot)$, such that Γ is the weak Φ -subdifferential of f with modulus $\alpha(\cdot)$, $\Gamma(x) = \partial_{\Phi}^{-\alpha} f|_{x}$.

Let (X, d_X) be a metric space. Let Φ be a family of continuous real-valued functions defined on X. Let f be a real-valued lower semicontinuous function on X. We say that f is Φ -convex if it is the majorant of some subset $\Phi_0 \subset \Phi$, $f(x) = \sup\{\phi(x) : \phi \in \Phi_0, \ \phi \leq f\}$. We say that $\phi_0 \in \Phi$ is a Φ -subgradient of f at a point x_0 if

(1)
$$f(x) - f(x_0) \ge \phi_0(x) - \phi_0(x_0)$$
 for all $x \in X$.

The set of all Φ -subgradients of f at x_0 is called the Φ -subdifferential of f at x_0 , and is denoted by $\partial_{\Phi} f|_{x_0}$. Of course $\partial_{\Phi} f|_x$ is a multifunction mapping X into subsets of Φ , $\partial_{\Phi} f|_x : X \to 2^{\Phi}$.

Let $\alpha(\cdot)$ be a continuous non-decreasing function mapping $[0, \infty)$ into itself such that $\alpha(0) = 0$ and $\alpha(t) > 0$ for t > 0.

We say that a function f is weakly Φ -convex at x_0 with modulus $\alpha(\cdot)$ if there is $\phi_0 \in \Phi$ such that

(2)
$$f(x) - f(x_0) \ge \phi_0(x) - \phi_0(x_0) - \alpha(d_X(x, x_0))$$
 for all $x \in X$.

The function ϕ_0 is then called a weak Φ -subgradient of f at x_0 with modulus $\alpha(\cdot)$.

The set of all Φ -subgradients of f at x_0 with modulus $\alpha(\cdot)$ is called the weak Φ -subdifferential of f at x_0 with modulus $\alpha(\cdot)$, and is denoted by $\partial_{\Phi}^{-\alpha} f|_{x_0}$. This yields a multifunction $\partial_{\Phi}^{-\alpha} f|_{x}: X \to 2^{\Phi}$. In the case when

²⁰⁰⁰ Mathematics Subject Classification: 46N10, 52A01.

Key words and phrases: Fréchet Φ -differentiability, cyclic $\alpha(\cdot)$ -monotone multifunction.

X is a normed space, $\Phi = X^*$ and $\alpha(t) = t^{\gamma}$ we obtain the definition of γ -subgradient and γ -subdifferential introduced by Jourani (1996).

If f is weakly Φ -convex at x_0 with the same modulus $\alpha(\cdot)$ for all $x_0 \in X$ we say that f is uniformly weakly Φ -convex on X with modulus $\alpha(\cdot)$.

In general, as in the case of Φ -subdifferentials, the knowledge of a weak Φ -subdifferential with modulus $\alpha(\cdot)$, $\partial_{\Phi}^{-\alpha}f|_x: X \to 2^{\Phi}$, does not permit one to determine the function f (up to a constant), as follows from

Example 1. Let X = [-1, 1]. Let Φ be the class of functions

$$\Phi = \{\phi(x) = -|x - x_0| : -1 \le x_0 \le 1\}.$$

Suppose that

$$\lim_{t \to 0+0} \alpha(t)/t = 0.$$

Let f be an arbitrary Lipschitz function with constant less than 1. Then $\partial_{\overline{\sigma}}^{-\alpha} f|_{x_0} = \{-|x-x_0|\}.$

In this example we can also construct two functions f and g such that $\partial f \subset \partial g$ and $\partial f \neq \partial g$. Indeed, let $0 \leq a \leq 1$ and let

$$f_a(x) = \begin{cases} |x| & \text{if } |x| \le a, \\ a & \text{if } a \le |x| \le 1. \end{cases}$$

By simple calculation we get

$$\partial_{\overline{\Phi}}^{-\alpha} f_a|_{x_0} = \begin{cases} \{\phi(x) = -|x - x_0|\} & \text{for } a \le |x_0| \le 1, \\ \{\phi(x) = -|x - y| : -a \le y \le x_0 \le 0\} & \text{for } -a \le x_0 \le 0, \\ \{\phi(x) = -|x - y| : 0 \le x_0 \le y \le a\} & \text{for } 0 \le x_0 \le a, \\ \{\phi(x) = -|x - y| : |y| \le a\} & \text{for } x_0 = 0. \end{cases}$$

Thus $\partial_{\bar{\Phi}}^{-\alpha} f_a|_{x_0} \subset \partial_{\bar{\Phi}}^{-\alpha} f_b|_{x_0}$ and generally $\partial_{\bar{\Phi}}^{-\alpha} f_a|_{x_0} \neq \partial_{\bar{\Phi}}^{-\alpha} f_b|_{x_0}$ if $a < b \le 1$. However in Banach spaces X and $\Phi = X^*$ we have

PROPOSITION 2. Let X be a set in a Banach space E such that $X \subset \overline{\operatorname{Int} X}$ and $\operatorname{Int} X$ is arcwise connected. Let $\Phi = E^*|_X$ be the space of continuous linear functionals restricted to X. Suppose that

$$\lim_{t \to 0+0} \alpha(t)/t = 0.$$

If for two locally Lipschitz functions f and g on X, $\partial_{\Phi}^{-\alpha} f|_{x} \subset \partial_{\Phi}^{-\alpha} g|_{x}$ for all $x \in X$, then the functions differ by a constant: f(x) = g(x) + c, $c \in \mathbb{R}$, and we have the equality $\partial_{\Phi}^{-\alpha} f|_{x} = \partial_{\Phi}^{-\alpha} g|_{x}$.

Proof (compare Rockafellar (1970), (1980)). Let $x,y\in X$ be such that the interval $[x,y]=\{tx+(1-t)y:0\leq t\leq 1\}$ is contained in X. Now we consider two functions of a real variable: $\widetilde{f}(t)=f(ty+(1-t)x)$ and $\widetilde{g}(t)=g(ty+(1-t)x)$. Those functions are locally Lipschitz (even Lipschitz, since the interval [x,y] is compact) and thus are differentiable almost everywhere.

Moreover we have

$$f(y) - f(x) = \widetilde{f}(1) - \widetilde{f}(0) = \int_{0}^{1} \widetilde{f}'(t) dt,$$

$$g(y) - g(x) = \widetilde{g}(1) - \widetilde{g}(0) = \int_{0}^{1} \widetilde{g}'(t) dt.$$

Since $\partial_{\Phi}^{-\alpha} f|_{x_0} \subset \partial_{\Phi}^{-\alpha} g|_{x_0}$ and (3) holds, we have $\widetilde{f}'(t) \leq \widetilde{g}'(t)$ at each point of common differentiability of \widetilde{f} and \widetilde{g} . Thus

$$f(y)-f(x)=\int\limits_0^1\widetilde{f}'(t)\,dt\leq \int\limits_0^1\widetilde{g}'(t)\,dt=g(y)-g(x).$$

Interchanging the roles of x and y we obtain

(4)
$$f(y) - f(x) = g(y) - g(x)$$
.

Now take arbitrary two points $x, y \in \text{Int } X$. Then there is a finite system of points $x = x_0, \ldots, x_n = y$ such that $[x_{i-1}, x_i] \subset \text{Int } X$. By the previous considerations

$$f(x_{i-1}) - f(x_i) = g(x_{i-1}) - g(x_i), \quad i = 1, ..., n.$$

Adding all those equations we get (4).

Since f and g are continuous on X and $X \subset \overline{\operatorname{Int} X}$ we trivially deduce that (4) holds for all $x, y \in X$.

Remark 3. It is easy to observe that Proposition 2 holds if we replace the condition that f and g are locally Lipschitz by the condition

(L) For any two x, y such that the interval $(x, y) = \{tx + (1 - t)y : 0 < t < 1\}$ is contained in X the functions f and g restricted to (x, y) are locally Lipschitz.

We recall (see for example Pallaschke–Rolewicz (1997)) that a multifunction $\Gamma: X \to 2^{\Phi}$ is monotone if for all $\phi_x \in \Gamma(x)$, $\phi_y \in \Gamma(y)$ we have

(5)
$$\phi_{x}(x) + \phi_{y}(y) - \phi_{x}(y) - \phi_{y}(x) \ge 0.$$

In particular, when X is a linear space, and Φ is a linear space consisting of linear functionals $\phi(x) = \langle \phi, x \rangle$, we can rewrite (5) in the classical form

$$\langle \phi_x - \phi_y, x - y \rangle \ge 0.$$

A multifunction $\Gamma: X \to 2^{\Phi}$ is called *n-cyclic monotone* if, for all $x_0, x_1, \ldots, x_n = x_0 \in X$ and $\phi_{x_i} \in \Gamma(x_i)$, $i = 0, 1, \ldots, n$, we have

(6)
$$\sum_{i=1}^{n} [\phi_{x_{i-1}}(x_{i-1}) - \phi_{x_{i-1}}(x_i)] \ge 0.$$

S. Rolewicz 266

A multifunction $\Gamma: X \to 2^{\Phi}$ is called *cyclic monotone* if it is n-cyclic monotone for all $n=2,3,\ldots$ Of course, just from the definition, Γ is monotone if and only if it is 2-cyclic monotone.

A multifunction $\Gamma: X \to 2^{\Phi}$ is called *n-cyclic* $\alpha(\cdot)$ -monotone if, for all $x_0, x_1, ..., x_n = x_0 \in X$ and $\phi_{x_i} \in \Gamma(x_i)$ i = 0, 1, ..., n, we have

(7)
$$\sum_{i=1}^{n} [\phi_{x_{i-1}}(x_{i-1}) - \phi_{x_{i-1}}(x_i)] + \sum_{i=1}^{n} \alpha(d_X(x_i, x_{i-1})) \ge 0.$$

The 2-cyclic $\alpha(\cdot)$ -monotone multifunctions are briefly called $\alpha(\cdot)$ -monotone (Rolewicz (1999)). In the case when X is a normed space, $\Phi = X^*$ and $\alpha(t) = t^{\gamma}$ we obtain the definition of γ -monotone multifunctions introduced by Jourani (1996). A multifunction Γ is called cyclic $\alpha(\cdot)$ -monotone if it is *n*-cyclic $\alpha(\cdot)$ -monotone for all $n=1,2,\ldots$

Just from the definition we see that each monotone (resp. n-cyclic monotone, cyclic monotone) multifunction is $\alpha(\cdot)$ -monotone (resp. n-cyclic $\alpha(\cdot)$ monotone, cyclic $\alpha(\cdot)$ -monotone) for every $\alpha(\cdot)$. Moreover, if $\alpha_1(t) \geq \alpha(t)$ for all $0 \le t < \infty$, then each $\alpha(\cdot)$ -monotone (resp. n-cyclic $\alpha(\cdot)$ -monotone, cyclic $\alpha(\cdot)$ -monotone) multifunction is $\alpha_1(\cdot)$ -monotone (resp. n-cyclic $\alpha_1(\cdot)$ monotone, cyclic $\alpha_1(\cdot)$ -monotone).

Using the same method as in Section 1.1 of Pallaschke-Rolewicz (1997) we obtain

Proposition 4. Let f be a uniformly weakly Φ -convex function with modulus $\alpha(\cdot)$. Then the subdifferential $\partial_{\Phi}^{-\alpha} f|_x$, considered as a multifunction of x, is cyclic $\alpha(\cdot)$ -monotone.

Proof. Take $x_0, x_1, \ldots, x_n = x_0 \in X$ and $\phi_{x_i} \in \partial_{\bar{\Phi}}^{-\alpha} f|_{x_i}, i = 0, 1, \ldots, n$. Since f is uniformly weakly Φ -convex with modulus $\alpha(\cdot)$, for $i = 1, \ldots, n$ we have

$$f(x_i) - f(x_{i-1}) \ge \phi_{x_{i-1}}(x_i) - \phi_{x_{i-1}}(x_{i-1}) - \alpha(d_X(x_i, x_{i-1})).$$

Adding all these inequalities we obtain

$$0 \ge \sum_{i=1}^{n} [\phi_{x_{i-1}}(x_i) - \phi_{x_{i-1}}(x_{i-1}) - \alpha(d_X(x_i, x_{i-1}))]$$

$$= \sum_{i=1}^{n} [\phi_{x_{i-1}}(x_i) - \phi_{x_{i-1}}(x_{i-1})] - \sum_{i=1}^{n} [\alpha(d_X(x_i, x_{i-1}))],$$

which is (7).

An $\alpha(\cdot)$ -monotone (resp. cyclic $\alpha(\cdot)$ -monotone) multifunction Γ is called maximal $\alpha(\cdot)$ -monotone (resp. maximal cyclic $\alpha(\cdot)$ -monotone) if for each $\alpha(\cdot)$ -monotone (resp. cyclic $\alpha(\cdot)$ -monotone) multifunction Γ_1 such that $\Gamma(x)$ $\subset \Gamma_1(x)$ for all x (in other words such that the graph of Γ , $G(\Gamma)$, is contained

in $G(\Gamma_1)$, we have $\Gamma(x) = \Gamma_1(x)$ for all $x \in X$. It is easy to see that an $\alpha(\cdot)$ -monotone multifunction Γ is maximal $\alpha(\cdot)$ -monotone if and only if for all $x, y \in X$ and $\phi_x \in \Gamma(x)$, the inequality

$$\phi_x(x) + \psi(y) - \phi_x(y) - \psi(x) + 2\alpha(d_X(x,y)) \ge 0$$

implies that $\psi \in \Gamma(y)$. Observe that a maximal $\alpha(\cdot)$ -monotone multifunction which is simultaneously cyclic $\alpha(\cdot)$ -monotone is maximal cyclic $\alpha(\cdot)$ monotone. As follows from Example 1, in general the weak Φ -subdifferential with modulus $\alpha(\cdot)$ of a function f, $\partial_{\sigma}^{-\alpha}f|_{x}$, need not be a maximal $\alpha(\cdot)$ monotone multifunction.

Now we shall discuss the possibility of reversing Proposition 1.

Let (X, d_X) be a metric space. Let Φ be a family of continuous real-valued functions defined on X. Let $\Phi_{\alpha} = \{\phi(x) - \alpha(d_X(x, x_1)) : \phi \in \Phi, x_1 \in X\}.$ Having this notation we can easily observe that if ϕ is a weak Φ -subgradient of a function f at a point x_0 with modulus $\alpha(\cdot)$ then $\phi(x) - \alpha(d_X(x, x_0))$ is a Φ_{κ} -subgradient of f at x_0 . However it may happen that $\phi(x) - \alpha(d_X(x, x_1))$ is a Φ_{α} -subgradient of a function g at x_0 and ϕ is not a weak Φ -subgradient of q(x) at x_0 with modulus $\alpha(\cdot)$.

Example 5. Let X = [-1, 1], let Φ consist of the constant functions only and let $\alpha(t) = t^2$. Let g(x) = 2x. At the point 0 the function g has a Φ_{α} -subgradient $\psi(x) = 0 - (x-1)^2$. On the other hand $\phi \equiv 0$ is not a weak Φ -subgradient of q at 0 with modulus $\alpha(\cdot)$.

It is essential to obtain conditions which guarantee that for all functions f and points x_0 the weak Φ -subdifferential with modulus $\alpha(\cdot)$ of f at x_0 with $\alpha(d_X(x,x_0))$ subtracted is equal to the Φ_{α} -subdifferential of f at x_0 .

We shall show that such a condition is provided by the following property of $\alpha(\cdot)$ and the class Φ :

for every x_0 the function $\alpha(d(x,x_0))$ has at each $y \in X$ a subgradient $\phi_{ij} \in \Phi$ such that for all $z \in X$,

(8)
$$\alpha(d(z,x_0)) - \alpha(d(y,x_0)) + \phi_y(z) - \phi_y(y) \le \alpha(d(z,y)).$$

It is interesting to know which $\alpha(\cdot)$ and Φ have property (\star) .

PROPOSITION 6. Let $X = \mathbb{R}$ and let Φ contain the class of linear functions. Let the function $\alpha(\cdot)$ be absolutely continuous. Assume that its derivative $\alpha'(t)$ exists for all t > 0 and moreover it satisfies the triangle inequality, $\alpha'(t+s) < \alpha'(t) + \alpha'(s)$. Then $\alpha(\cdot)$ and Φ have property (\star) .

Proof. Let $x_0, y, z \in \mathbb{R}$. Since |x-y| is an invariant metric, without loss of generality we may assume that $x_0 = 0$. Thus (8) is equivalent to

(9)
$$\alpha(|z|) - \alpha(|y|) + \phi_y(z) - \phi_y(y) \le \alpha(|z-y|).$$

We put |z| = s + h, |y| = s. Then

$$\alpha(s+h) - \alpha(s) - h\alpha'(s) = \int_{s}^{s+h} [\alpha'(t) - \alpha'(s)] dt.$$

If $h \geq 0$, then by the triangle inequality for $\alpha'(\cdot)$,

$$\int\limits_{s}^{s+h}\left[\alpha'(t)-\alpha'(s)\right]dt\leq \int\limits_{s}^{s+h}\alpha'(t-s)\,dt=\int\limits_{0}^{h}\alpha'(u)du=\alpha(u)|_{0}^{h}=\alpha(h),$$

i.e. (9) holds.

If h < 0, then again by the triangle inequality,

$$\int_{s}^{s+h} [\alpha'(t) - \alpha'(s)] dt = \int_{s-|h|}^{s} [\alpha'(s) - \alpha'(t)] dt \le \int_{s-|h|}^{s} \alpha'(s-t) dt$$

$$= -\int_{|h|}^{0} \alpha'(u) du = \int_{0}^{|h|} \alpha'(u) du = \alpha(|h|),$$

i.e. (9) also holds.

Observe that the function $\alpha(t) = t^{\gamma}$, $1 < \gamma \le 2$, satisfies the assumption of Proposition 6. Indeed, in this case $\alpha'(t) = \gamma t^{\gamma-1}$ is a concave function, and thus it satisfies the triangle inequality.

If additionally $\alpha(\cdot)$ is convex (in particular if $\alpha(t) = t^{\gamma}$, $1 < \gamma \le 2$) we can extend Proposition 6 to normed spaces.

PROPOSITION 7. Let $\alpha(\cdot)$ be convex. Assume that its upper derivative

$$\alpha^{+}(t) = \lim_{h \downarrow 0} \frac{\alpha(t+h) - \alpha(t)}{h}$$

satisfies the triangle inequality, $\alpha^+(t+s) \leq \alpha^+(t) + \alpha^+(s)$. Let $(X, \|\cdot\|)$ be a normed space and let Φ contain the conjugate space X^* of all continuous linear functionals. Then $\alpha(\cdot)$ and Φ have property (\star) .

Proof. Since $\alpha(\cdot)$ is convex it is absolutely continuous. As in the proof of Proposition 6, replacing $\alpha'(s)$ by the upper derivative $\alpha^+(s)$ we get

(10) $\alpha(\|z\|) - \alpha(\|y\|) + \alpha^+(\|y\|)(\|z\| - \|y\|) \le \alpha(\|z\| - \|y\|) \le \alpha(\|z - y\|)$. Since $\alpha(\cdot)$ is convex we have $\alpha^+(\|y\|) \ge 0$. Let $y^* \in X^*$ be a functional of norm one such that $y^*(y) = \|y\|$. Of course $y^*(z) \le \|z\|$. Then by (10) we get

$$\alpha(||z||) - \alpha(||y||) + \alpha^{+}(||y||)y^{*}(z - y) \le \alpha(||z - y||),$$

i.e. (9) holds for $\phi_y = \alpha^+(||y||)y^*$.

PROPOSITION 8. Suppose that Φ is linear. Suppose that $\alpha(\cdot)$ and Φ satisfy condition (\star) . Then there is a weak Φ -subgradient $\phi \in \Phi$ of a function f at x_0

with modulus $\alpha(\cdot)$ if and only if there is $\psi \in \Phi$ such that $\psi(x) - \alpha(d_X(x, x_0))$ is a Φ_{α} -subgradient of f at x_0 , where $\Phi_{\alpha} = \{\phi(x) - \alpha(d_X(x, x_1)) : \phi \in \Phi, x_1 \in X\}$.

Proof. If ϕ is a weak Φ -subgradient of f at x_0 with modulus $\alpha(\cdot)$, then by definition

$$f(x) - f(x_0) \ge \phi(x) - \phi(x_0) - \alpha(d_X(x, x_0)).$$

This trivially implies that $\phi(x) - \alpha(d_X(x, x_0))$ is a Φ_{α} -subgradient of f at x_0 . Suppose now that $\phi(x) - \alpha(d_X(x, x_1))$ is a Φ_{α} -subgradient of f at x_0 . Then by definition we have

(11)
$$f(x) - f(x_0) \ge \phi(x) - \phi(x_0) + \alpha(d_X(x_0, x_1)) - \alpha(d_X(x, x_1)).$$

By property (\star) there is a $\phi_{x_0} \in \Phi$ such that for all $x \in X$,

$$\alpha(d_X(x,x_1)) - \alpha(d_X(x_0,x_1)) + \phi_{x_0}(x) - \phi_{x_0}(x_0) \le \alpha(d_X(x,x_0)),$$

i.e.

$$(12) \quad \alpha(d_X(x_0,x_1)) - \alpha(d_X(x,x_1)) \ge \phi_{x_0}(x) - \phi_{x_0}(x_0) - \alpha(d_X(x,x_0)).$$

Thus by (11) and (12) we get

$$f(x) - f(x_0) \ge \phi(x) - \phi(x_0) + \phi_{x_0}(x) - \phi_{x_0}(x_0) - \alpha(d_X(x, x_0)).$$

Therefore $\psi(\cdot) = \phi(\cdot) + \phi_{x_0}(\cdot) \in \Phi$ is a weak Φ -subgradient of f at x_0 .

Let Γ be a multifunction mapping X into 2^{Φ} . We denote by $(\Gamma - \alpha)$ the multifunction mapping X into $2^{\Phi_{\alpha}}$ defined in the following way:

$$(\Gamma - \alpha)(x) = \{\psi(\cdot) = \phi(\cdot) - \alpha(d_X(\cdot, x)) : \phi \in \Gamma(x)\}.$$

We call $(\Gamma - \alpha)$ the multifunction Γ with $\alpha(d_X(x, \cdot))$ subtracted.

From Proposition 8 we trivially obtain the following

COROLLARY 9. Suppose that Φ is linear. Suppose that $\alpha(\cdot)$ and Φ satisfy condition (\star) . Then the weak Φ -subdifferential with modulus $\alpha(\cdot)$ of a function f at x with $\alpha(d_X(x,\cdot))$ subtracted is equal to the Φ_{α} -subdifferential of f at x,

$$(\partial_{\sigma}^{-\alpha} f|_{x} - \alpha(d_{X}(x,\cdot))) = \partial_{\Phi_{\alpha}} f|_{x}.$$

By simple calculation we get

PROPOSITION 10. Let Γ be a cyclic (resp. n-cyclic) $\alpha(\cdot)$ -monotone multifunction mapping X into 2^{Φ} . Then $(\Gamma - \alpha)$ is cyclic (resp. n-cyclic) monotone.

Proof. By definition for all $x_0, x_1, \ldots, x_n = x_0 \in X$ and $\phi_{x_i} \in \Gamma(x_i)$, $i = 0, 1, \ldots, n$, we have

$$\sum_{i=1}^{n} [\phi_{x_{i-1}}(x_{i-1}) - \phi_{x_{i-1}}(x_i)] + \sum_{i=1}^{n} \alpha(d_X(x_i, x_{i-1})) \ge 0.$$

Let $\psi_{x_i} \in (\Gamma - \alpha)(x_i)$. We put $\phi_{x_i}(\cdot) = \psi_{x_i}(\cdot) + \alpha(d_X(x_i, \cdot))$. Then $\phi_{x_i} \in \Gamma(x_i)$ and from the above we get

$$\sum_{i=1}^{n} [\psi_{x_{i-1}}(x_{i-1}) - \psi_{x_{i-1}}(x_i)] \ge 0,$$

which shows that $(\Gamma - \alpha)$ is cyclic (resp. n-cyclic) monotone.

COROLLARY 11. Suppose that Φ is linear. Suppose that $\alpha(\cdot)$ and Φ satisfy condition (\star) . Then $\partial_{\Phi}^{-\alpha} f|_x$ is n-cyclic (resp. cyclic) $\alpha(\cdot)$ -monotone if and only if $(\partial_{\Phi_{\alpha}} f|_x - \alpha(d_X(x,\cdot)))$ is n-cyclic (resp. cyclic) monotone.

From Proposition 10, as in Section 1.1 of Pallaschke-Rolewicz (1997), we trivially obtain the following extension of the Rockafellar theorem (compare Rockafellar (1970)).

THEOREM 12. Suppose that Φ is linear. Suppose that $\alpha(\cdot)$ and Φ satisfy condition (\star) . Let $\Gamma: X \to 2^{\Phi}$ be maximal cyclic $\alpha(\cdot)$ -monotone. Suppose that $\Gamma(x) \neq \emptyset$ for all $x \in X$. Then there is a function f weakly Φ -convex with modulus $\alpha(\cdot)$ such that Γ is the weak Φ -subdifferential of f with modulus $\alpha(\cdot)$, $\Gamma(x) = \partial_{\Phi}^{-\alpha} f|_{x}$.

Proof. By Proposition 10 the multifunction $(\Gamma - \alpha)$ is cyclic monotone. We do not know if it is maximal or not. However, using the Kuratowski–Zorn Lemma we can find a maximal cyclic (resp. n-cyclic) monotone multifunction $(\Gamma - \alpha)_{\max}$ such that $(\Gamma - \alpha)(x) \subset (\Gamma - \alpha)_{\max}(x)$. Thus by Proposition 1.11 of Pallaschke–Rolewicz (1997) we can find a function f such that $\partial_{\Phi_{\alpha}} f|_{x} = (\Gamma - \alpha)_{\max}(x)$.

By (*) and Corollary 9 we get

$$(\partial_{\varphi}^{-\alpha} f|_{x} - \alpha(d_{X}(x,\cdot))) = (\Gamma - \alpha)_{\max}(x).$$

This implies

$$(\partial_{\varPhi}^{-\alpha}f|_x - \alpha(d_X(x,\cdot))) \supset (\Gamma - \alpha)(x).$$

Therefore $\partial_{\varPhi}^{-\alpha} f|_x \supset \Gamma(x)$, and by maximality of Γ we get $\partial_{\varPhi}^{-\alpha} f|_x = \Gamma(x)$.

In general, the knowledge of a weak Φ -subdifferential with modulus $\alpha(\cdot)$, $\partial_{\Phi}^{-\alpha}f|_x:X\to 2^{\Phi}$, does not permit one to determine the function f (up to a constant) (see Example 1). But in Example 1, $\partial_{\Phi}^{-\alpha}f|_x$ is not a maximal cyclic $\alpha(\cdot)$ -monotone multifunction, and we do not know if the equality $\partial_{\Phi}^{-\alpha}f|_x=\partial_{\Phi}^{-\alpha}g|_x$ together with the maximal cyclic $\alpha(\cdot)$ -monotonicity of the multifunction $\partial_{\Phi}^{-\alpha}f|_x$ implies that f(x)=g(x)+c. In the case when X is a Banach space, $\Phi=X^*$ is the conjugate space and $\alpha(t)=t^{\gamma},\ 1<\gamma\leq 2$, the answer is positive. More precisely we have

PROPOSITION 13. Let X be a Banach space, let $\Phi = X^*$ be the conjugate space and let $1 < \gamma \le 2$. Let $\Gamma : X \to 2^{\Phi}$ be maximal cyclic t^{γ} -monotone. Suppose that $\Gamma(x) \ne \emptyset$ for all $x \in X$. Then there is a function f such that Γ

is the γ -subdifferential of f, $\Gamma(x) = \partial_{\Phi}^{-t^{\gamma}} f|_{x}$, and the function f is uniquely determined up to a constant.

Proof. By Theorem 12 there is a function f such that $\Gamma(x) = \partial_{\Phi}^{-t^{\gamma}} f|_{x}$. Using the result of Correa, Jofré and Thibault (1994) (see Jourani (1996), Theorem 7.1) we find that f is γ -paraconvex, i.e. there is C > 0 such that for all $x, y \in X$ and all $t \in [0, 1]$ we have

(13)
$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + C||x-y||^{\gamma}.$$

Observe that (13) immediately implies that f is bounded from above on [x,y]. We shall show that it is also bounded from below. Indeed, suppose that there is a sequence $\{z_n\} \subset [x,y]$ such that $\lim_{n\to\infty} f(z_n) = -\infty$. By compactness we can assume that $\{z_n = t_n x + (1-t_n)y\}$ is convergent to $z = t_0 x + (1-t_0)y \in [x,y]$. We can also assume that $\{t_n\}$ is either increasing or decreasing. In both cases we can choose $u \in [x,y]$ such that either $u \in \operatorname{Int}[x,z_n]$ or $u \in \operatorname{Int}[z_n,y]$ and replacing [x,y] by $[x,z_n]$ and $[z_n,y]$ respectively we obtain a contradiction with (13).

Then by Jourani (1996), Remark 2.1, f is locally Lipschitz in the interval (x,y). Thus by Proposition 2 the equality $\partial_{\Phi}^{-\alpha} f|_{x} = \partial_{\Phi}^{-\alpha} g|_{x}$ implies that f and g differ by a constant, f(x) = g(x) + c, $c \in \mathbb{R}$.

COROLLARY 14. Let X be a Banach space, let $\Phi = X^*$ be the conjugate space and let $1 < \gamma \le 2$. Then the γ -subdifferential $\partial_{\Phi}^{-t^{\gamma}} f|_x$ of every function f, weakly Φ -convex with modulus t^{γ} , is a maximal cyclic t^{γ} -monotone multifunction.

Proof. By Proposition 4, $\partial_{\bar{\Phi}}^{-t^{\gamma}} f|_{x}$ is a cyclic t^{γ} -monotone multifunction. Of course we do not know if it is maximal or not. However, using the Kuratowski–Zorn Lemma we can find a maximal cyclic t^{γ} -monotone multifunction Γ such that

(14)
$$\partial_{\sigma}^{-t^{\gamma}} f|_{x} \subset \Gamma(x).$$

By Theorem 12 there is a function g, weakly Φ -convex with modulus t^{γ} , such that Γ is the weak Φ -subdifferential of g with modulus t^{γ} , $\Gamma(x) = \partial_{\overline{\phi}}^{-t^{\gamma}} g|_{x}$. Thus by (14), $\partial_{\overline{\phi}}^{-t^{\gamma}} f|_{x} \subset \partial_{\overline{\phi}}^{-t^{\gamma}} g|_{x}$. Therefore by Proposition 13, f(x) = g(x) + c and we have the equality

$$\partial_{\Phi}^{-t^{\gamma}} f|_{x} = \partial_{\Phi}^{-t^{\gamma}} g|_{x} = \Gamma(x).$$

Since Γ is a maximal cyclic t^{γ} -monotone multifunction, so is $\partial_{\Phi}^{-t^{\gamma}} f|_{x}$.

References

R. Correa, A. Jofré and L. Thibault (1994), Subdifferential monotonicity as characterization of convex functions, Numer. Funct. Anal. Optim. 15, 531-535.

S. Rolewicz

- icm
- A. Jourani (1996), Subdifferentiability and subdifferential monotonicity of γ -paraconvex functions, Control Cybernet. 25, 721–737.
- D. Pallaschke and S. Rolewicz (1997), Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer, Dordrecht.
- R. T. Rockafellar (1970), On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33, 209-216.
- R. T. Rockafellar (1980), Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 32, 257-280.
- S. Rolewicz (1999), On $\alpha(\cdot)$ -monotone multifunctions and differentiability of γ -paraconvex functions, Studia Math. 133, 29-37.

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8, P.O. Box 137 00-950 Warszawa, Poland E-mail: rolewicz@impan.gov.pl

> Received September 7, 1999 Revised version February 2, 2000

(4390)

STUDIA MATHEMATICA 141 (3) (2000)

On the complemented subspaces of the Schreier spaces

by

I. GASPARIS (Stillwater, OK) and D. H. LEUNG (Singapore)

Abstract. It is shown that for every $1 \leq \xi < \omega$, two subspaces of the Schreier space X^ξ generated by subsequences $(e^\xi_{l_n})$ and $(e^\xi_{m_n})$, respectively, of the natural Schauder basis (e^ξ_n) of X^ξ are isomorphic if and only if $(e^\xi_{l_n})$ and $(e^\xi_{m_n})$ are equivalent. Further, X^ξ admits a continuum of mutually incomparable complemented subspaces spanned by subsequences of (e^ξ_n) . It is also shown that there exists a complemented subspace spanned by a block basis of (e^ξ_n) , which is not isomorphic to a subspace generated by a subsequence of (e^ξ_n) , for every $0 \leq \zeta \leq \xi$. Finally, an example is given of an uncomplemented subspace of X^ξ which is spanned by a block basis of (e^ξ_n) .

1. Introduction. The Schreier families $\{S_{\xi}\}_{\xi<\omega_1}$ of finite subsets of positive integers (the precise definition is given in the next section), introduced in [1], have played a central role in the development of modern Banach space theory. We mention the use of Schreier families in the construction of mixed Tsirelson spaces which are asymptotic ℓ_1 and arbitrarily distortable [3]. The distortion of mixed Tsirelson spaces has been extensively studied in [2]. In that paper, as well as in [14], the moduli $(\delta_{\alpha})_{\alpha<\omega_1}$ were introduced measuring the complexity of the asymptotic ℓ_1 structure of a Banach space. The definitions of those moduli also involve the Schreier families. Other applications can be found in [6] and [5] where the Schreier families form the main tool for determining the structure of those convex combinations of a weakly null sequence that tend to zero in norm, or are equivalent to the unit vector basis of c_0 . For applications of the Schreier families in the construction of hereditarily indecomposable Banach spaces, we refer to [3] and [4].

A notion companion to the Schreier families is that of the Schreier spaces. These are Banach spaces whose norm is related to a corresponding Schreier family. More precisely, for every countable ordinal ξ , we define a norm $\|\cdot\|_{\xi}$ on c_{00} , the space of finitely supported real-valued sequences, in the following

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B03; Secondary 46B15, 03E10. Key words and phrases: complemented subspace, Schreier sets.