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Proof. Let z,y € F(H) and c € H. As To{zy) = To(2)T.(y) it is easy
to see that F(H) is a subalgebra and that M (z) is a normed algebra norm
on F(H).

Clearly, M(z) > | z|| for all z € F(H). Let {z,} be a Cauchy sequence
in F(H) in the M(z) norm. Then {z,} is a Cauchy sequence in A so there
exists y € A where |z, —y|| — 0. As {M(z,)} is a bounded sequence we
have M(z,) < K, for a real K and all positive integers n. For ¢ € H we
have

ITe@) | < [ Tely = @a)l| + [ Te(@a)ll < el e 1y — @l + K
we let n — oo to see that y e F(H). w

THEOREM 4.2. F(H) is a closed subset of A if and only if the norms |||
and M(z) are egivalent norms on F(H).

Proof. Suppose that F(H) is closed in A. Now sup{||Te(z)|| : c € H} is
finite for each « € F(H). By the uniform boundedness theorem there exists
a real number L so that |Ti(z)|| < L|jz|| for all z € F(H), ¢ € H. Then
M(z) < L|z|| on F(H) so that the two norms are equivalent there. The
converse is clear. m

We have no example of a case where F(H) is not closed in 4.
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On sharp reiteration theorems and weighted norm inequalities
by

JESUS BASTERO (Zaragoza), MARIO MILMAN (Boca Raton)
and FRANCISCO J. RUIZ (Zaragoza}

Abstract, We prove sharp end forms of Holmstedt’s reiteration theorem which are
closely connected with a general form of Gehring’s Lemma. Reverse type conditions for
the Hardy-Littlewood—Pdélya order are considered and the maximal elements are shown
to satisfy generalized Gehring conditions. The methods we use are elementary and based
om variants of reverse Hardy inequalities for monotone functions.

1. Introduction. Given a fixed initial pair of compatible spaces, interpo-
lation theory provides us with methods to construct scales of spaces with the
interpolation property. The classical methods of interpolation all share the
following reiteration principle: by iteration these constructions do not gener-
ate new spaces. Reiteration theorems thus play a central role in these theo-
ries. In particular, reiteration simplifies the process of identification of inter-
polation spaces. Holmstedt’s reiteration formula [Ho|, for the real method of
interpolation, provides quantitative estimates and plays an important role
in a variety of applications to classical analysis and approximation theory.

Let A be a pair of compatible Banach spaces, 0 < 8p < 61 < 1,0 < ¢;
< o00,1=0,1, n =01 — 8. Then Holmstedt’s formula states that

YL d 1/q0
s -0 - 8
GRS S A P O R LS
0

T g, 48 M
+t{ ] (S“"lK(s,f;A))‘“—;} -
$i/n
Holmstedt’s formula is also valid if 8y = 0 or é; = 1. For example, if
8, = 1 we have
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_ A/ {1-80) C ge Ve
(1.2) K(t,f;Aan,qu,Al)w{ | (s—GOK(s,f;A))qo—S-} .
0

In [Mi], [BMR1], [MM] a connection between Holmstedt’s reiteration
formula and Gehring’s Lemma (cf. [Ge], and [Iw] for a recent survey) was
established and new methods to prove general forms of sell-improving in-
equalities, containing Gehring’s Lemma as a particular case, were developed
in the general context of real interpolation spaces. This general formulation
is not only of theoretical interest but also gives new results in the classical
setting. For example, it provides new methods to deal with the case of non-
doubling measures through the use of suitable substitutes for the maximal
operator of Hardy-Littlewood (for more on this we refer to [MM].)

In this note we reverse the flow and show how certain estimates for
averages, which are naturally associated with reverse Holder inequalities,
can be used to give new sharp reiteration formulae of Holmstedt's type.
We also apply reiteration formulae to obtain results related to the classical
theory of weighted norm inequalities.

In [Ho] one can find estimates for the constants implicit in (1.1) and
(1.2). These formulae often play a crucial role in applications of interpolation
theory to analysis, and have been extensively studied and extended in several
directions by many authors. For detailed studies of reiteration theorems of
Holmstedt type, as well as extensive lists of references, we refer the reader
to [BK], [BL], [BS], [Ni] and [Ov].

If one becomes fuzzy about constants one can notice some slight de-
fects of (1.1} or (1.2), which ironically are associated with some of the best
features (!) of the formulae, namely their compactness and intuitive form.
Indeed, Holmstedt’s elegant formulation is achieved through collecting to-
gether terms with a consequent worsening of some constants of equivalence.
In most applications this minor imperfection is of little consequence if any,
but it does become a crucial issue for certain problems. For example, in the
theory of extrapolation developed in [JM] careful control of the constants
involved is necessary and the different terms implicit in (1.1) and (1.2) need
to be kept under separate control. For example the following reiteration
formula was obtained by Jawerth and Milman in [JM]:

= _ t/n . _ ds /g
(1.3) K(t, f; ABO;(IT Aﬁm;‘) = c9n,q{ S (S °K(s, f; A)) "";}
0

oQ

+tcel,q{ S (s"ﬁlK(s,f;Z))q

t1/n

ds
8

1/q _
} +TOMR @, A,

where ¢, o = (1 — 8;)8;4)1/¢, i =0, 1.
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In this note we prove an end point version of (1.3) in the spirit of Holm-
stedt’s original end point formula (1.2). Let us explain in more detail what
we are going to do. Suppose that after having generated the space Ag, p
we want to further interpolate between (Ap, 5, 41)y,q = As, ¢ and A;, with
61 = (1 —n)o + n, i.e. n = (61 — fp)/(1— by). Then, according to (1.2)
applied to the pair (As, ,, 41), we will have

tlfu““ﬂ)

_ _ d 1/q
K(t, f; Ap, g, A1) ~ c,,,m{ V77K (s, £3 Apy py A2 ""sf} ,
0

or alternatively we can apply (1.2) directly, i.e. use A as our base pair, in
which case the constant of equivalence will depend on 6y, g. In Theorem 2.11
below we shall prove that if 8, = 1/p/, 6, = 1/¢’, then

(HO) K (=%, f; Aoyq, A1) € Cop,q, 0. K(E'™%, f5 Apy g, A1)
+ Ct-n/(lhﬂ)K(tll(lwn)g f; Eﬂu;?’ Al)’

with ¢pp,q6 — 0 as n — 0, that is, as 8, — 6. In connection with the
second term in (HO) note that

Kt/ f; Ag, n, A1)

g/ =M R (g O f Ry oy Ar) =t

t1/{1-n} !
and since K (s, f; Agy,p, A1)/5 decreases,
tK(;l;lf(l""?)’ f; -;1—30,391 Al)
1/ (1~
gL/ -m — q 1/q

K(s, f; Aggpr At) e ds

1/q,1 140 P {(L—g)e 22

S(l—-??)/qq/q{ § [ S° s -

gl (1=m) ds 1/q

==l | K fidap ) 2

0

which is (by Holmstedt's formula) again comparable with K (¢, f; Ag, ¢, 41)-
Therefore the second term of (HO) will vanish as 6, — 1, ie. as n — 1.
In other words if constants were not an issue we could do just as well with
Holmstedt’s original formula. The decoupling that we have achieved in this
fashion can be exploited to our advantage for certain crucial estimates for
functions that satisfy reverse Holder inequalities (cf. Example 2.7 below).
The (minor) price we pay is that we need to assume that the right hand
side ig finite in order to be able to use the formula (cf. Example 2.7 for more

on this).
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The proof of this result involves the use of some elementary variants
of reverse Hardy inequalities valid only for monotone functions. The con-
nection between reverse Hardy inequalities and Gehring’s Lemma has been
noted before. For example, in [Mil] reverse Hardy inequalities given in [Be]
and [Re] were used to prove a variant of Gehring’s Lemma. Here we use
closely related but different estimates (cf. (2.5) below). After completing
the first draft of this paper we realized that some cases of the modified
reverse Hardy inequalities we prove here were also contained in a paper
by Franciosi-Moscariello [FM]. Moreover, these authors also use their es-
timates to give a proof of the classical version of Gehring’s Lemma. We
have thus chosen to discuss this application to Gehring’s Lemma rather
briefly in Example 2.7 (cf. also [FM]). The reiteration formulae we obtain
here were conceived from a completely different point of view and seem to
have wider applicability. Indeed, we should note that the generalized setting
afforded by interpolation theory has made it possible to deal with Gehring
type lemmas for nendoubling measures (cf. [MM]) by means of replacing the
maximal function of Hardy-Littlewood with maximal operators agsociated
with packings ([AKMP], [MM]). The same remark applies to our results in
this paper.

In retrospect, one could argue that the genesis of our argument is already
present in the first proof of the usual Hardy inequality given by Hardy him-
self! In fact, if we follow mutatis mutandis the proof of Hardy’s inequality in
[HLP], page 242, adapted to a finite interval (0,t), we find that the inequal-
ity contains an “extra” term which only dissapears when £ tends to infinity,
namely

tPf(t)?
(p~— 1)(5; Pf{z)? dz)1/?

e §P F(@)P d) g
0

£
D i/p
< £ P
< p_l(gf (m)dm) :
where Pf(z) = (1/z) {3 f(u) du, and f is a measurable, bounded, positive
function. The last formula should be compared with a special case of Propo-

sition 2.1 below (cf. also [FM]) from which we deduce that the following
estimate holds for decreasing #:

1/p ¢t

(1:5) (S Flz)? dcc)l/ f< (%}1-) (SPf(m)Pdm)i/ ?

0

1\ VP ¢
+(;) 0 10} do.
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REMARKS. (i} For future use note that (1.4) obviously implies the Hardy
inequality frequently applied in the literature, namely, for £ > 0,

i/p

(16) (in(m)P d:c)”” < I;I_J—l(if(m)” dz)

(ii) One can further see the “reiterative” character of Hardy’s original
inequality by means of letting P,f = (Pf?}!/F in (1.4) to obtain

Pf(t)? D
BPIO+ oo mpapr < g1/ @

With. this notation (1.5) can also be rewritten as

Pt (t) < (“’%)mppf(t) + (}o)wpﬂt).

These inequalities are associated with the pairs of spaces (L', L*) and
(L?, L*) and “propagate” naturally through the P scale as we have out-
lined above.

The plan of the paper ig ag follows. In Section 2 we prove the reverse
Hardy inequalities and reiteration formulae we have just outlined. In Sec-
tion 3 we show how the K functional can be used to bridge between cer-
tain classes of weights associated with Hardy type operators and Calderon’s
operator and reverse Holder inequalities (cf. [AM], [Mul], [BR], [BMR])
which were briefly outlined in our previous work on this subject [BMRI1]. In
Section 4 we show how the interpolation theoretic framework we bave de-
veloped leads to an explicit connection between reverse Holder inequalities
and the Hardy-Littlewood-Pélya (HLP} order. It is well known that the
HLP order is preserved by convex functions and reversed by concave func-
tiong; we show that maximal elements that satisfy a reverse HLP condition
for concave functions must satisfy a generalized reverse Hélder inequality.
This fact is in turn connected to the classical theory of real interpolation of
Calderén and the method of orbits (cf. [Ov] and [MO], and the references
theroin).

2. Reverse Hardy inequalities and sharp reiteration formulae.
The following result is a reverse Hardy inequality in the spirit of Hardy’s
original proof of his inequality (cf. also [FM], Lemma 3.4).

PROPOSITION 2.1, Let f be a nonnegative measurable function in (0, 00).

(i) If f is nonincreasing, 0 < & < 00 and p > 1, then
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t 1/p t
(2.2) (Sm”(l ) ()P ) (a&
0 0
1 1/p _at
+ (}—)) t _f(ﬂ:) dz.
(i) If tf(t) is nondecreasing, 0 < 8 < o0 and p > 1, then

o (Joner )< (T (T ey %)”

Q)T

Proof. In order to prove (2.2) we assume that f is continuous (the
general case follows by an easy approximation argument). Pick ¢ > 0 small
enough; then integrating by parts we find

eV

ap

T

(Sf 4) dy)p @)1/1’

&

Let € — . Then by the monotone convergence theorem, and taking into
account that since f is nonincreasing we have Sm f 2 zf(x), we get

e () 4 2 (1) = Lo rastor s

which readily implies (2.2}.
For a proof of {2.3) we can also assume that f is continuous. Let N be
large; integrating by parts we find
N

j (Sf() ayd tgp(if() by’
+% § w’a”( S f(y)%)pmlf(w) %‘3

Let N tend to oo and take into account that if tf(t) is nondecreasing we
have

Sf = Sf(y)y——>f(w),

the proof then proceeds in the same fashion as that of (2.2).
Note that (2.3) can also be obtained from (2.2) by means of a change of
variables: take the nonincreasing function f(1/£)/t in (2.2) and let z = 1/y.

icm
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REMARKS. (i) If we let o = (p — 1)/p in (2.2) then we get

(i
(2.4) (if(m)p dm)ilp < (2%1") 1/p(§Pf($)P das)

+ (}_) 1/pt(1—P)/P S f(z)ds
Y

0

(ii) In order to deal with LP norms on (0, c0) observe that if we let
¢t — oc in (2.4) we obtain the following inequality due to Bennett [Be] and
Renaud [Re]:

1\ Up
25 115 < (252 1P Sl

(i) Applying part (i) of Proposition 2.1 to the nonincreasing function
f*, with exponent ¢/p (instead of p) and parameter o = 1 — p/q, we obtain
the following result (cf. [FM], Lemma 3.4):

on (rovey< (55 (i) ")

0
p/q
+ (2) tp/e=1 Sf"'(a:)” dz.
q 0
EXAMPLE 2.7. Using Herz's inequality (cf. [BS]) for the maximal oper-
ator of Hardy and Littlewood it is well known (cf. [Mi} and the references
therein), and easy to see, that if a given positive function f satisfies the
usual assumptions of Gehring’s Lemma (cf. [Ge]), then its nonincreasing re-
arrangement f* also satisfies a reverse Hélder inequality of the same order.
In this context we can take as our starting point the existence of a constant
M such that for some 1 < p < ooandallt >0,

t 1/p t
(2.8) (-1— gf*(m)p dm) < —-A;l[- (ij*(m) da.

Let ¢ > p and assume that f* € L9, We combine (2.6) and (2.8) and the
usual Hardy inequality (1.6} fo obtain

(2.9) (gf*(m)qdm)P/q O(qqp)wq(q—%—l)p(if*(w)“dm)p/q

0
v/4 t
+(2) i rera
g 0
g

where C is a constant independent of p and



14 J. Bastero et ol

1f we choose ¢ sufficiently close to p so that

_a\P/ P
(7)) <
q g-—-1

we can move the first summand in (2.9) to the left hand side and we get

t t

(2.10) (1 | 7(o) dm) " oa, (% |7y dm) "

and we have obtained the self-improving property of reverse Holder inequal-
ities for f*.

There is a process of approximation that is needed to remove the extra
assumption that f* € LY. This is done as follows (cf. (Iw]). Let f be a
positive, measurable, locally integrable function defined on a cube Qo C R™,
Let fo, 0 < s < 1, be defined by

1
folz) = |Q—ﬂ Qsof((l —8)x + sy)dy

for z € Qq.
It is clear that f. € C(Qo) C L9(Qq) for all s € (0,1) and all ¢ > 1, and
it also follows readily that for f € LP(Qq),
If- fS!an(Qo) —0
as s — 0. It is also easy to see that if f satisfles a reverse Holder inequality
then so does f;. We leave the details to the interested reader.

We now give a proof of (HO).

THEOREM 2.11. Let A = (Ao, 41) be o pair of Banach spaces, and let o
be an element in Ag + A;. Suppose that 1 < p < q < oo and let 6y = 1/7,

Ql = 1/q¢', where p' and ¢’ are the corresponding conjugate exponents, Then
if o € Agyp M Apy g

t -
K q K : 2 g
(t,a,As, q, A1) £ Cg, (,]l S (M) dm)

ta @

i/ -
< ceic’(g) TE(#/7, a5 Ago,p, A1)

tl/e

1/q t - N
co(1oE) " (A (Kl T A )
q t zh/P '
where cp, 18 bounded sway from 0 or 1, and C s an absolute constont inde-
-pendent of p and q.
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Proof The first inequality is simply Holmstedt’s formula (1.2). Then
we apply the Proposition 2.1 to the function (K (z, a; A)/z)? with exponent
g/p and parameter o = 1 — p/q. We get

(j(ehyy
0

/ 1 T
<o(2) i (M)‘”dm
0

q T

+O(q_"é£§ (:i .(&i’%@)?dy)m d_;—)p/q-

0 0

] -
K . 4 1/p —
(X (_(Ezi"_‘ﬂ) dm) < CK(t/%, a; Agy p, A1)

5 T
we obtain the result.

REMARK. Recall that for the pair (L¥,L™), 1 < p < oo, we have
(cf. [BL]) £ 1o
K(tY?, 0, 1P, L) {ga*(s)Pds} .
0

Next, since

Thus given a compatible pair of Banach spaces A = (Ap, A1), for any
a € Ap -+ Aj;, we can consider K (Y7 a5 Eg,P,Al)/tl/P as a generalized p
average. In this context one can formulate reverse Hélder conditions in a
very natural way and extend Example 2.7 in a substantial way. In particu-
lar, one can formulate and prove a generalized version of Gehring’s Lemma
(cf. [Mi}, [BMR1]). In the last quoted papers the self-improving properties
associated with reverse Holder conditions are obtained using Holmstedt’s
classical formula (1.2) to arrive at elementary differential inequalities from
which certain monotonicity properties follow. These monotonicity condi-
tions can be expressed in several different ways. On the one hand, as we
shall discuss in detail in the next section, they are related to properties of
weights associated with Calderdn operators (cf. [BR], [BMR], and the litera-
ture quoted therein). Monotonicity conditions can also be formulated using
the theory of indices for submultiplicative functions as has been done in
[MM], The new reiteration formula (HO} can also be used in this context
as we have indicated in Example 2.7. Moreover, combining the results in
this paper with those in [MM] we can prove Gehring type results for mea-
sures that do not satisfy doubling conditions. Interestingly, the key step in
our approach for nondoubling measures which is to consider maximal oper-
ators associated with packings (cf. [AKMP], [MM]) was suggested by the K
functional method.
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3. Reverse Holder inequalities and M, weights. In this section
we explicitly show how the K functional also provides a way to bridge the
theories for classes of weights associated with Hardy or Calderén. operators
and the A, classes of Muckenhoupt.

We begin by recalling the definitions of certain classes of weights. Let
1 < p < co. We say that a nonnegative locally integrable function on (0, o)
satisfies the condition M), (resp. MP) if there exists a constant C' such that

T w(z) Yp ¥ o' jp g N
(M) ( § — da:) (éw(m) dm) <,
t 1p [ —p'jp 1P
(M) e dm) ”P(g %dm) <C.
0 £
For p = 1 the classes M1 or M* consist of those weights such that
(M) Qu(t) < Cw(t) Yt>0,
(MY Pu(t) < Cw(t) ¥t>0.

We shall only need elementary forms of reverse Holder inequalities which
are associated with the classes M* and M; (cf. [BMR], [BMR1] and also

[MM]}):
(3.1) we M = Je>0, t™w(t) e M,
(3.2) weEM = Jg>0, te’w(t) € My,
where ¢ depends on the weight w.

For monotone weights, we have the following result.

LemMa 3.3. (i) If w is a nonincreasing weight, then w sotisfies M, for
all 1 <p < oo.

(2) If ww(z) is nondecreasing, then w® satisfies M? for all 1 < p < o0
and all 0 < a < 1,

Proof. (1) Let¢ > 0. Then

("5:’ B)%dm) v (S),w(m)—p‘/p dm) e
%

< wiyr (of i_j) Upw(t)“”“’(ﬁdm) Ry
£ 0

(2) Let ¢ > 0. Since z < ¢ implies that 2%w(z)® < t*w(t)* we have
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£ oo ’ !
1/p —ap’/p 1/p
(Sw(:n)"‘dm) ( S E@l—,——«dm)
0 t L

P’

t i/p © o'/ 1/%
< ta/Pw(t)"‘/?( gfg) t-a/pw(t)—a/p( i d,:c) <c
0 t

The proof for p = 1 is even easier.

Given a compatible pair of Banach spaces A = {4y, 4;), for any a € Ag+
A, we can consider K(t,q; A)/t as a weight. Note that since K (t,a; A) in-
creases and K (¢, a; A)/t is decreasing, Lemma 3.3 shows that K(t,a; 4)/t €
M, for all p € (1,00), and (K(t,a; A}/t)* € M* for all a € (0,1).

n [Mi], [BMR1] the self-improving properties of weights satisfying re-
verse Holder conditions were obtained by means of showing monotonicity
conditions of the type described by (3.1) and (3.2) for the corresponding
K functionals, thus at this level reverse Holder inequalities imply M*. We
shall now elaborate more explicitly on the converse: M conditions imply
the usual reverse Holder inequalities.

It will be convenient to organize things around averages and tie together
the values of the # and ¢ parameters although this is not necessary.

DEFINITION 3.4. Let A = (4o, A1) be a compatible pair of Banach spaces.
An element a € Ag + Ay will be called left-Gehring (respectively righi-
Gehring) if the nonincreasing function K (£,a; A)/t satisfies the condition
M? (respectively M;). We shall say that a is Gehring if it is simultanecusly
left- and right-Gehring.

REMARK, An element a is Gehring if and only if the corresponding weight
function w(t) = K (t,0; A)/t is a quasipower. In fact, we have the following
inequalities:

Sw = Puw+ Quw < Cw < CPw < C8v,
where the second one holds because w is nonincreasing and the constant C
is the sum of the constants appearing in the definitions of M1 and M L

For the converse note that if w is a quasipower, then w € L' + L* and

w is & Gehring element for the pair (L', L°°).

The relationship of all this with reverse Holder inequalities is now
given by S
PROPOSITION 3.5. Let a be an element in Ag + A1. Then

(1) a is left-Gehring if and only if there exists pp > 1 such that a €
Apypo + A1, where 1=1/po+ b, and
K(t4/%°,a; Ag, py; A1) N K(t,a; A)
tl/ro : t '
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(2) a is right-Gehring if and only if there exists pr > 1 such that o €
Ag + Ag, p,, where 6 =1/p1, and

K(t’lfpl , a; A, Zﬂum) ~ K(ta a; A-)
(3) a is Gehring if and only if there ezist po,p1 > 1 with1 < 1/po+1/p1
such that a € Agy po + Asy,pys where 1 =1/pg + 8, 61 = 1/p1, and
K(tﬂ1 —BO, a; -‘qﬁo,pos Eﬁi ) ™ t_GDK(t; a; *Z)
Under these conditions we shall say that po (resp. p1) is a left-exponent
(resp. right-exzponent) of the element a.

Proof. (1) Suppose that e is left-Gehring. The nonincreasing func-
tion K(t,a;A)/t satisfies the condition M* and therefore satisfies (3.1) for
some £. Consequently, by the embedding properties of the L7 gpaces, with
po = 1/(1 — &), we have

(3.6) (_1_§ (K(m, a, z))zﬂdm)up < oKD

to T t

for all £ > 0. Let 8y be such that 1 = 1/pg + 6o. Then Holmstedt’s formula
(1.2) implies that

~ t . AN\ Po 1/p
K(tll?U,G;Aeu,po,Aﬂ < Chy (S (E_(i’"é.giﬂ) .d_"f)

0 1
t . IV Po 1/po
o} (KDY
x
0

_ K{t,a, A
< Cpyt 1/p K0 4) - ),

The reverse inequality follows readily from Holmstedt’s formula and the fact
that K(t,a; A)/t is nonincreasing.

For the “only if” part observe that by Holmsied's formula, (3.6) is equiv-
alent to the hypothesis. Therefore, since 1 averages are dominated by p
averages it follows that K (¢, a; A)/t satisfies the condition M?.

(2) The proof is very similar to the preceding one; it uses (3.2) and
Holmstedt’s formula.

(3) This is an easy consequence of (1), (2) and the fact that Holmstedt's
formula (1.1) can be rewritten as

K(tal_ana a; «;{90,}307 261,171) ~ K(tl_go y B3 Aﬂ‘ospm Al)
+ t‘oDK(tel ya; Ay, Aﬂx,m)-

REMARK. Holmstedt’s formula has the following classical application:
Let A = (Ap,A;) and denote by X an intermediate pair, say X =
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(Asq.pos ;[6‘1,331)- Taking a,b € Ag + A;, we get
(3.7) K(t,b,A) < CK(t,0,A), V>0

= K(t,b,X) < CK(ta,X), ¥Vt > 0.
For Gehring elements we can reverse assertion (3.7).

CoroLLARY 3.8. Let a be a left-Gehring element with left-exponent po
(respectively right-Gehring with ezponent py or Gehring with exponents
(po,p1)). Denote by X the pair (Agypy, A1) (respectively (Ao, Ag, p,) or
(Agg,pos Aoy .,p,))- Suppose that b is any other element in Ag + A1 such that

K(t, 5 X) < CiK(t,a; X) Yt > 0.
Then B _
K(t, b A) £ CaK(t,a;4) Vvt > 0.

Proof. Weshall only deal with the case X = (Agq p, A1), the remaining
cases can be proved in a similar way.

We use once again Holmstedt's formula. Indeed, since the function
K(t, b; A)/t is nonincreasing, we have

/7 “ P 1/p
K(tup,b;;)stl/p—l( S (M) d_f”.)

o} 2 @
< O‘ptlfﬁ—lK(t, bi zﬂo Ba s Al)
< CpCit*/PE (8, 65 Agy o A1)

< CK(tYP 0; A),

as we wished to show.

4. Hardy-Littlewood—Pdlya order. Recall that given positive mea-
surable functions f and g on R™, we write f < g if
¢ i
Sf* < Sg*
0 0
for all ¢ > 0, where f* denotes the nonincreasing rearrangement of f. The
order relation of Hardy -Littlewood-Pélya [HLP] appears naturally in differ-
ent contexts. In interpolation theory it was used by Calderén and Mityagin
(cf. [Ca], [BS]) to characterize all the interpolation spaces between L' and
I, Tndeed, if A = (L*,L*), then the relation f < g is equivalent to
K(t, f; LY L) < K(t,g; L', L™) for all £ > 0.
The MLP order is preserved by convex functions (cf. [HLP]):

F<g = olf) <elg)

for all convex functions .



20 J. Bastero ef al.

We consider the following question: What happens when the HLP order
is reversed?

The last remark shows that f < g implies f? < g for all p > 1. Corol-
lary 3.8 will allow us to reverse this relation for left-Gehring elements.

PROPOSITION 4.1. Suppose that g € L' + L™ is a left-Gehring element
with left-ezponent p. Let f be another function in L 4L such that f? < gP.
Then f < g.

Proof. Note only that ({g fP)'/? ~ K(t'/7, f; P, L>°) and the proof
follows readily.

Next we shall prove that this property is essentially only satisfied by
left-Gehring elements!

‘We shall say that a compatible pair of Banach spaces satisfies the hy-
pothesis (H) if

(4.2) Vig > 0, by € Ao+ A1, Yt >0, K(t,bo; A) = min{t, {0}

PROPOSITION 4.3. Let A be a compatible pair of Banach spaces satisfying
the condition. (H). Denote by X the pair (Apgpos A1) (resp. (Ao, Apy p,) oF
(Asy,pos Asy,pr ). Let a be an element in Ag+A; such that, for all b € Ap+4,
satisfying K(t,5,X) € C1K(t,a;X) < oo for all £ > 0, it follows that
K(t,b;A) < C3K(t,0; A), for all t > 0, i.e. is mazimal. Then a is a left-
Gehring element (resp. right-Gehring or Gehring).

Proof. We first consider the case X = (Ag, py,A1). Fix tg > 0. Let
bo € Ag N Ay be such that (4.2) holds. Let A > 0. Then, by Holmstedt’s
formula (1.2), we have

Po 1/po
K(tl/m,)\bo;Aao,po,Aﬂ < C(S (M) d:c)

0 .'IJU T

=C) (i (in{f"tg”}")mdm) 1/po

t

(1P(xoea)ta)y da) "™
0

= CA
(by Hardy’s inequality)
A

=C (§ (Xjo,)(2))7° d2) e

= CAmin{t, to}*/?°.
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K 1/pa
N = ( S(M) dm) ,
tOO T
then

K (84779, Xobo; Agy gy At)
1/po
< C min{t, tp} /70 (t S (M) d:c) .
]

a &

If we now take

Consider two cases: if t < tg, then since the function (K (z, a; A)/z)Pe is
nonincreasing, P((K (z,a; A)/z)P°) is also nonincreasing and therefore

(] ()< (eny )

If on the other hand tg < ¢, then

1o a; A 1/p0 ¢ 2, a; 1/po
() ) "= (155 )

Therefore for all t > 0 we have

¥ CA)\Po N\
K(tlfpo )\obOaAao por A (S (M) dm)
0
CK(

K (82770 a; Agy poy A1)-
So by hypothesis ~
K (t, obo; A) < C'K(t,0; 4)
for all ¢ > 0. In particular, if we take £ = tp we get
to LAV Pe 1/po _
! ‘ (M) dw) to < C'K(ty, a; A).
tc) 5 T

and this is true for all to. Therefore by Proposition 3.5, @ is left—-Gehrmg
with left-exponent pg.
The case X = (Ao, Ag,,p; ) 18 dual and the arguments are similar.

We finally consider the case X = (Apo,po> Aty ,pa )- Take b such that
K(t,b; zGo,pmAl) <0 (t:“;Aﬁo,pmAl)- <00
for all + > 0. Since 8 < 64, by the reiteration theorem we have

Aalu?l = (AOUJPO’AI)WIP].’
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with (1 —n)8p + n = 01. Holmstedt’s formula implies that

- _ ® SK(r b A p1 1/p1
K(t:b;AGmPo:Ama)Nt(S ( (&b, QD,PQ?Al)) d_m) ’

il T
i/n

which leads to
K(t,b J:Ilf?o,:sﬂn ' ;‘:91,?1) < CiK(t,a; "190,1-"0! E61,p1)

for all £ > 0. By hypothesis we must have K (¢,b; A) < CoK (£, a; A) for all
t > 0. We now can apply the first part of this proposition to deduce that a

is left-Gehring. In a similar way we conclude that a is right-Gehring as well,
and the result follows.

.REMARKS. (i) We now show that pairs of I spaces, or more generally
pairs of rearrangement invariant spaces, satisfy condition (H} (cf. [BR]).
Indeed, suppose that Ap and A; are rearrangement invariant spaces (r.i.
spaces) such that the function ¢o/¢; : (0, 00) — (0, 00) is onto, where ¢;(t) =
lIx[o./l4; (¢ =0,1) is the fundamental function of A;.

Indeed, by taking conditional expectations, it follows readily that

Kt xjo.004) = Inf {aday(to) +¢(1 - @), (to))
= min{¢4,(to), tda, (to)}
. to)
= ¢4, (tg) min {M—,t},
s{fo) P4, (to)
and we only need to find one point ¢; such that ¢o(t1)/d1(¢1) = £o.

(ii) We can understand these results in the framework of Calderén pairs.
We define the orbit spaces Orbz(a) = {Ta}, where ¢ € Ag + Ay and T runs
over all bounded operators 4g — Ap and A; — A; (cf. [Ov]).

Let X be the pair (g py, A1) (resp., (Ao, Ag or (4 A I
is clear that ifa € X the::rlJ " ros) OF (o B0, T

Orbx(a) 2 Orbx(a).

On tl‘.le ot.her hand, supposing that A is a Calderén pair, Corollary 3.8 says
that if a is a left-Gehring (resp., right-Gehring or Gehring) element with
left-exponent pg then

Orbyg(a) = Orbz(a).

_ For pairs A satisfying condition (H), if we suppose that X = (4, A1)
is a Calderén pair we can prove the reverse statement, i.e., Orb(f(nc’n) =
Orb#(a) implies that @ is a left-Gehring element, *
Indeed, let b be an element such that K(¢,5X) < C1K(t,aX) for all
t > 0. Then there exists an operator T such that Ta =band T: X — X
s0 b € Orby(a) and therefore we can find another operator § bounded fron;
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Ag to Ag and from A; to A; and satisfying Sa = b. We achieve K(t,bA) <
CK(t,b; A) for all ¢t > 0 and hence, by Proposition 4.3, a is a left-Gehring

element.
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Orbit equivalence and Kakutani equivalence
with Sturmian subshifts

by

P. DARTNELL (Santiago), F. DURAND (Amiens) and
A. MAASS (Santiago)

Abstract. Using dimension group tools and Bratteli-Vershik representations of min-
imal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are
topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.

1. Preliminaries. In the last decade concepts and techniques coming
from the theory of C*-algebras have been exhaustively used in topologi-
cal dynamics in order to explain various phenomena appearing mainly in
Cantor dynamical systems. In particular, those concepts together with the
description of minimal Cantor systems by means of Bratteli-Vershik trans-
formations [HPS), [V1], [V2] gave rise to a complete invariant of orbit and
strong orbit equivalence for this class of maps [GPS], [HPS]. In the same
vein the authors of [BH| obtained new results about flow equivalence and
orbit equivalence for non-minimal Cantor systems. In particular they ob-
tained new conjugacy invariants for subshifts of finite type. The study of
gubstitution systems and Toeplitz systems in this scope was undertaken in
[F], [DHS] and [GJ] respectively.

If we consider two (strong) orbit equivalent Cantor systems, their Brat-
teli-Vershik representation without considering the order is in some sense
the same [GPS), [HPS]. Therefore, we can ask which additional property
could imply topological conjugacy, in other words how to recover the order.
In this direction it is proved in [BT] that with a continuity condition on the
cocycles involved in the orbit equivalence we get flip conjugacy. In general,
(strong) orbit equivalence is not enough. It is known [O], [Su| that in the
game class of orbit equivalence we can have all possible entropies. In the case
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