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Dimension of a measure
by

PERTTI MATTILA (Jyviskyli), MANUEL MORAN (Madrid) and
JOSE-MANUEL REY (Madrid)

Abstract. We propose a framework to define dimensions of Borel measures in a metric
space by formulating a set of natural properties for a meagure-dimension mapping, namely
monotonicity, bi-Lipschitz invariance, (o-)stability, et¢. We study the behaviour of most
popular definitions of measure ditmensions in regard to our list, with special attention to
the standard correlation dimensions and their modified versions.

1. Introduction. There is a well defined set of properties that a sen-
sible definition of dimension of sets should satisfy, namely monotonicity,
bi-Lipschitz invariance, stability, o-stability, etc. (see {3] for a typical list).
In this paper we propose a counterpart for the case of dimension of measures.
In Section 2 we propose a sort of general definition of a measure dimension
in a metric space X as a mapping from the Borel measures in X to the
non-negative reals satisfying a list of natural properties (see items (a) to (g)
in Section 2). We then check for a number of popular definitions of measure
dimensions in fractal geometry whether each property is satisfied or not.

In particular, we concentrate on the study of the correlation dimension of
a measure (see the definition in (2)), which is the most important dimension
in chaotic time series analysis. Whereas correlation dimension mainly owes
its popularity to its good computational accessibility through the fast algo-
rithm introduced by Grassberger and Procaccia in [5], our analysis shows
that it fails some important theoretical properties of our list. We thus thor-
oughly study the modified correlation dimension introduced by Pesin in [8]
(see the definition in (4)), which turns out to be a much better theoretical
tool according to our list (see Theorem 2.10 below).

In the case where a finite measure p is eract-dimensional, i.e. there exists
a > 0 such that

2000 Mathematics Subject Classification: Primary 28A78; Secondary 28A80, 37C45.

JMR. thanks people from ONDA at University College London for their kind hospi-
tality during his visit to the Centre. MM and JMR. are partially supported by DGES,
PB97-0301. :

(219}



220 P. Mattila et al.

logr

many different definitions of dimensions of 4 collapse to the value a (see [9,
8)). In particular, modified correlation dimensions and Hausdorfl dimension
coincide. It has recently been proved in [1] that invariant measures of C*
hyperbolic diffeomorphisms are exact-dimensional.

2. Measure-dimension mappings and correlation dimension.
Given a metric space (X,d), let B(X) denote the Borel c-algebra in X,
and let BM(X) be the class of non-null finite Borel measures defined on
X. We will denote by ||| the total mass of u. Let dim be a non-negative
real-valued function defined in BM(X). For a Borel measurable mapping
g: X — Y, the measure gypr := p o g~ belongs to the class BM(Y).
Natural properties that a measure-dimension mapping dim should satisfy
are.

(a) (Monotonicity) If u,» € BM(X) are such that u is absolutely con-
tinuous with respect to ¥ {we write 4 < v), then dimy > dimv.

(b) (Lipschitz mappings) Let g : X — Y be a Lipschitz mapping, u €
BM(X), and assume that the mapping dim is also defined in BM(Y). Then
dim(gyu) < dim p.

(c) (Boundedness) If X = R™, then dim g < m for any y € BM(R™).

(d) (Absolutely continuous measures) If X = R™, and p € BM(R™)
is absolutely continuous with respect to the Lebesgue measure £™, then
dim = m.

(e) (Discrete measures) If u € BM(X) is a discrete measure, then
dim g = 0.

(f) (Stability) dim{x + v) = min{dim g, dimv} for any p,» € BM(X).

(g) (o-stability) dim(3 5o, pi) = infiew{dim;} for any collection
{u:}ien such that 37°, pi € BM(X).

There are further useful properties that follow from the above ones.

Since v = po g™ implies that 4 = v o g provided that g is injective, it
is readily seen that property (b) above implies

(W) If g : X — Y is bi-Lipschitz (i.e. both g and g~* are Lipschitz)}, then
dim p = dim pog™t.

Usually, an interesting definition of a mapping dim depends only on the
metric structure of the space X. Property (b') implies that such a definition
remains unchanged if the space X is endowed with a metric d’ which is
equivalent to d, i.e. there exist positive constants c1, ¢y such that c;d(z,y) <
d'(z,y) < cod(z,y) for 2,y € X. Indeed, the identity mapping id : (X, d) —

(X, d") is obviously bi-Lipschitz in this case and therefore dim p = dim’ u,
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where dim’p denotes the dimension mapping defined in the metric space
(X,d").

Also, notice that property (a) implies that dim(Cu) = dimp for any
constant C' > 0 so that the dimension of any measure remains unchanged if
the measure is probabilized.

For p,v € BM(X), write u < Cv if there is a constant C' > 0 such
that u(4) < Cv{A) for A € B(X). The weakest form of monotonicity for a
dimension mapping dim may be formulated as

(1) dimy > dimy  whenever p < Cu.

Of course, ¢ < Cv if and only if 4 has an L..-density with respect to v.
Also, notice that (a) implies (1) whereas the opposite implication does not
hold in general. However, it does provided that dim also satisfies (g).

LEMMA 2.1. Assume thet dim satisfies (1) and (g). Then dimx also sat-
isfies (a).

Proof From the Radon-Nikodym theorem there exists f € L;(v) such
that u(4) = §, f(z)dv for any A € B(X). For every n € NU {0} define
E, ={z :n < f(z) < n+1} and pgn = ujg,, where u|g, denotes the
measure y restricted to the set B,. Since =Y xin and tn < (n+ v
for every n, from (g) and (1) we get dim y = inf,endim py, > dimy. m

Notice that property (e) holds provided that property (1} does and that
the dimension of any Dirac measure is zero.

LEMMA 2.2. Suppose that dim satisfies (1) and also dim{8;) = 0 for any
z € X, where §,(A) = 1 if z € A and §,(A) =0 otherwise. Thendimu =10
for any discrete measure p € BM(X).

Proof Let g =3, .npilz;. Since p; := pids, < p for any 4, (1) gives
that 0 = dim u; = dimp. »

Observe that it is easy to give a careless definition of measure dimension
(e.g. based on the box-counting set dimension [3]) that does not satisfy (e).

The most relevant set-dimension concepts in geometric measure theory
are the Hausdorff and packing dimensions, which we denote by dimg and
dimp, respectively. Definitions and properties of these dimensions can be
found in [3, 7). Hausdorff and packing measure-dimension mappings asso-
ciated with these set-dimension definitions are naturally defined as follows.
For 1 € BM(X),

dimHu = inf{dimHA : ;J.(A) > 0, Aeg B(X)},

dimp p = inf{dimp 4 : p(4) > 0, A € B(X)}.
Using standard properties of Hausdorff and packing dimensions of sets, it
can be checked that the definitions above have properties (a) to (g).
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LeMMA 2.3. The Hausdorff and packing meosure-dimension maeppings
defined above have properties (a) to (g).

Definitions of measure-dimension mappings based on Hausdorfl and pack-
ing set-dimensions might also be defined by

dim}; p = inf{dimg A : u(A) = ||u|, A € B(X)},
dimp p = inf{dimp A : p(A) = ||g||, 4 € B(X)}.

However, these definitions do not have the monotonicity property (a) in
general. A measure p € BM(R™) is called of lower ezact dimension o if

(e {o s timipe BRI gL o,

r—0 logr

and p is said to have upper ezact dimension & if

p(m (o stimonp PEEEET) gl ) o

Pt logr

It is well known that u is of lower exact dimension a if and only if dimg g =
dimf p = @, and it is of upper exact dimension @ if and only if dimp u =
dimyp g1 = @ (see e.g. {4] for a proof of these facts). As a consequence we
have the following property.

LEMMA 2.4, Suppose that v € BM(R™) is of lower exact dimension
. Then any measure u € BM(R™) such that p < v is of lower exact

dimension o. If v is of upper ezact dimension &, then any u <€ v is of upper
exact dimension &.

Proof. From absolute continuity we have, within the class B(R™),

{A:v(4) = [/} S {A: u(d) = ||ull}
C{A:u(d) >0} C{4:v(A4) >0}

It follows that dimy v < dimy p £ dimy 4 < dimf; v, which in turn implies
that 1 is of lower exact dimension g for » is. The proof in the case of upper
exactness follows in the same way. w

In view of Lemma 2.3, Hausdorff and packing measure-dimension map-
pings are good theoretical candidates to work with. There are, however,
severe limitations in practice to obtain numerical estimates of such quanti-
ties. The most widely used dimension concept in chaotic time series analysis
has been the correlation dimension, which we will denote by 8, introduced
by Grassberger and Procaccia in [5]. We adopt the theoretical approach
to correlation dimension considered by Cutler [2], i.e. the upper and lower
correlation dimensions of a measure p € BM(X) are defined by
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i log §p(B(m, 7)) dps

(2) Blu) = Hn gt logr
log { u(B(x,r)) du
logr '

B(p) = limsup
—0

We study below the behaviour of the correlation dimension with regard to
properties (a) to (g). The next example shows that the correlation dimension
does not have properties (a), (d) and (g).

ExaMPLE 2.5, Consider the unit interval I endowed with the usual met-
ric. Let 0 < @ < 1, and consider the sequence of subgntervals gf I given by
I, = [anz -~ Ep, o™ +&n), n € N, where 0 < g, < £(a™ — a1 for each n.
For n € N, let ¢, = a™/(2¢,) and define a measure p, = ¢, £}z, so that the
total mass of py, is given by wn(I) = a™. Since ¢, < pn(B(z, 1)) < 2c,r for
z € I, and for all # > 0 small enough, it follows that F(un) = B(un) = 1 for
all n. Now consider the measure = 3, -y kn, and notice that u € BM(I).
Let r > 0 be small, ¢ € (0,7), and n = n(r) = min{k : a” &5 < r}. Notice
that p(B(z,r)) 2 35, 6 = (1 —a)~"a", so that

ot a® ; a2n
Ju(Blo, ) du() 2 T ——p((0,7) 2 T Z = T_ap
This gives
_ . 2nloga—2log(l —a) _
(3) Bw) = flp) < limsup (n—1)2loga+log2 0

which proves that property (g) does not hold in general for the correlation
dimension. Since p is absolutely continuous with respect to A = £y and
B(A} = B()) = 1, (3) also implies that the correlation dimension does not
have properties (a) and (d).

Recall that the essential supremum of a v-measurable function f : X — IR
is defined by ess sup, f = inf{K : v({z : f{z) = K}} = 0}. Notice that the
measure u in Example 2.5 has an L;-density with respect to the Lebesgue
measure given by h(z) = ¥, cn¢nl1, (), where 14 denotes the character-
istic function of A. Notice also that esssupp, h = oco. In view of Example
2.5, we consider weaker versions of properties (a) and (d) above.

(a*) If p,v € BM(X) are such that p has a density i € Lo (v) with
respect to v, then dimy > dimv.

(d*) If X = R™ and p € BM(X) has a density h € Loo(£™), then
dim g = ™.

Notice that (a*) is a restatement of the monotonicity property defined
in (1) and it requires a form of absolute continuity which is stronger than
that demanded by (a).
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THEOREM 2.6. The upper and lower correlation dimensions have prop-
erties (a*), (b), (c), (d*) and (e), and the lower correlation dimension also
has property (f) for measures in BM(X).

Proof. (a¥) Let x, v € BM(X) be such that u has a density h € Loo(v)
with respect to v and ess sup, h < M. Therefore, forany r >0 and z € X,
w(B(z,7)) < My(B(z,r)). This gives, for r > 0,

{u(B(z, 7)) dp(z) = | w(B(z,m))h(z) dv(z) < M* [ v(B(a,r)) dv().

Taking lim sup (respectively lim inf), after some algebra, we get B(u) > 3(v)
(resp. B{u) = B(v)).

(e) follows from Lemma 2.2 since trivially 8(6;) = 0.

(b) Assume that v = po g™, where p € BM(X) andg: X — Y is a
Lipschitz mapping with Lipschitz constant K > 0. It is easy to check that
g(B{z,r/K)) C B(g(x),r) for any z € X and any r > 0. This fact along
with the change of variable gives

{v(Ble,r) dv(z) = [u(Blg(x),r)) du()
={ulo™*(Blo(z), 7)) du(z) = {u(B(=,7/K)) dufa),

which in turn gives

log { v(B(z, 7)) dv(z) < log(r/K) log { u(B(z,r/K)) du(z)
logr = logr log(r/K) !

so that, letting r — 0, we get 3(v) < B(u) and B(v) < B(u).

{c) Let 4 € BM(R™). The Lebesgue decomposition theorem gives p =
p* +p®, where u* < L™ and p is singular with respect to £™. By standard
differentiation theorems of measures (see e.g. [7, Theorem 2.12]),
liminf,_,o pu®(B(z,7))/r™ = cf () > 0 for p>-almost all z € R™, where f is
the Radon-Nikodym derivative of p*, and liminf,_q u*(B(z,r))/r™ = o
for pf-almost all z € R™, Hence the set

E= {m L0 < 1imin.f#—(§~(-w}
.r-m,
has positive u-measure. Fix a decreasing sequence 7, — (0 as n — oo, and
define, for each n € N,
En={ze€E:n ™ < u(B(z,r)) forall r < r,}.

Choose n large enough so that u(E,) > 0 (notice that | J,, Ex = E with the
union increasing). We have

nT u(En)r™ < § w(B(w,7)) du(z) < | u(B(z, ) du(z)
B _
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so that, for all r < 7,

log { 1(B(z,r))dufz) _ log(n~"p(En))
logr - logr

-+ m.

Letting » — 0, we get B(u) < m.

(d*) Let g € BM(R™) be absolutely continuous with respect to L™,
with density A € Loo(£™). As in the proof of (a), we see that u(B(z,r)} <
ML™(B(z,r)) = Mkgr™ for all £ and r > 0, where k, is a constant
independent of z and r. This gives

{log u(B(z,r)) du(z) S log Mk,
logr —  logr
so that letting r — 0 we obtain §(u) > m. The equality B(p) = B(u) =
thus follows from (c).

(f) Let p1, po € BM(X). To prove S(u1 + p2) Smin{f(u), f{s2)} ob-
serve that, for all r > 0,

§ G+ p2) (B, ) s + pa)(z) > max { § (B, ) dpa(e) 1§ = 1,2}

Notice that this also applies to countably many measures.

We now prove the reverse inequality. For » > 0 let A = {z : uy (B(x, 2r))
< pa(B(z,2r))} and B = X \ A. If AN B(z,7) # 0, then there is y €
AN B(z,r). Then B{z,r) C B(y,2r) C B(z,3r), whence, as y € 4,

p1(AN Bz, 1)) < pu(Bly, 2r)) < p2(B(y, 2r) < p2(B(z, 3r)).

This is trivial if AN B{z,r) = {, so by Fubini’s theorem and the definition
of B,

Vua(B(z,7)) dps (@) = | pa(Bl,m)) dua (@) + § 1a(B(2, 7)) dpus ()
A B

< (4N Bz, 7)) dua() +\ (B (2,2r)) dpa ()
< {a(B(z, 3r)) dpsa() + | 1 (B(2, 2r)) dpa ().

Assume that 8 < B(u1) < B(u2). By Fubini’s theorem again, it follows
from above that, for arbitrarily small values of r,

V(o1 + p2) (B(=,7)) d(p1 + pa) (@) = {1 (Ble, 7)) dpin ()
+{ ua(B(a, 7)) dua(2)
+2{ p2(B(z, 7)) dus ()
<278 4+4.3%F

so that we get B(ua + pe) > B. This proves (£) for the lower correlation
dimension. m
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Below we shall give an example which shows that (f) fails for the upper
correlation dimension.

Monotonicity is a key property for a measure-dimension mapping in order
to compare the geometric sizes of two different measures. Example 2.5 shows
that the correlation dimension is far from satisfying the general monotonic-
ity property (a). The bad behaviour of the correlation dimension in Example
2.5 is a consequence of the poor regularity of the density A, which does not
belong to Ly for any p > 1. The lemma below shows that the monotonicity
property of the correlation dimension is related to the Lp-space which con-
tains the relative density of the measures. In particular, the monotonicity
stated by property (a*) is obtained as the limit case p -+ oo of Lemma 2.7,

LeMMA 2.7. Let p,v € BM(X) be such that i has a density f € Ly(v),
1 < p < oo, with respect to v. Then

B2 E=2p0) and B(w 2 ).

Proof. Let ¢ be such that 1/p+1/g = 1. Applying Hélder's inequality
twice, we obtain

/g
Ju(Bz,7)) du(z) < |712([¥(Bla.r)) dv (=)
so that, after some algebra and letting r — 0, the result follows. m

Pesin defined in [8] the modified correlation dimensions as follows: for
p € BM(X) with total mass ||u]], let

log § ; w(B(z, 7)) du(z)

B, (1) = lim sup lim inf
(4) - 80 {ZeBX)u(2) 2|l -8} "0 logr ’
] 1 B
Brlp) = }:‘m}) sup lim sup og {7 #(Blz; 7)) dp(z) .
—012eB(X):u(B)2||u]|-8} r—0 log r

It turns out that in R™ these modified versions of correlation dimensions
have all the properties listed in Section 1, except that EM does not satisfy
(f) {see Example 2.14 below). This is the content of Theorem 2.10 below, We
first give an alternative useful definition of modified correlation dimensions,
by expressing modified dimensions in terms of unmodified ones.

LEMMA 2.8. For u € BM(R™),
(6) Bl = limsup{lulz) : 7 € BR™), w(2) 2 ] =,
Br() = lim sup{Buiz) : Z € B(R™), u(Z) 2 ||u] - 6},

~where p|z denotes the measure deﬁnej by | z(A) = u{ANZ) for A € B(R™).
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Proof. Write 8 (p) for the right-hand side of (5). It can be easily
proved that 8, (p) < @_*M(,u) To prove the opposite inequality, take 3 <
B,(1) and let & > 0. It follows from the above that there exists Zp = Zo (8)
such that 4(Zo) > {|ull —6/2 and §,_ u(B(z,7) N Zp)dyu < rP for all r small
enough. Borel’s density theorem plus Egorov’s thecrem [6] imply that there
is a Borel set Z C Zg and a number g > 0 such that u(Z) > p(Zy) —6/2 =
| ]| ~ & and u(B(z,r)) < 2u{B(z,r)NZy) forall x € Z and 0 < r < ro. We
thus get, for any 0 < r < rq,

| 4(B(o,r)) du(a) < 2| u(Bla,r) N Zo) du(z)
z z
<2 S p(Blz,r) 0 Zo) du(z) < 2rP.
Zy
Since ¢ > 0 is arbitrary this gives EM(;L) > 3. This completes the proof
since 8 < Q*M(,u,) was arbitrary. The proof for the upper dimension follows
in a similar way. =

We next show that the modification of the correlation dimension intro-
duced above gives something new only once. We give a proof in a more
general context.

LEMMA 2.9. Suppose that dim s a measure-dimension mapping satisfy-
ing property (a*) and let

dimyy b = lim sup{dim ulz : 4(2) 2 [|u] — 6}.

Then (dimy)y = dimm p. In particular, (8, )m = B,, and (Baim = Bur-

Proof. Since i|z < u for any set Z of positive y-measure, property
(a*) implies that dimy 4 > dim . Notice that dimy also satisfies (a*) and
thus we get (dima)m p = dimnpg o

To obtain the reverse inequality, consider § < (dimp)m p and let 6 > 0.
It follows that there exist sets Z and Z such that p(Z1) > |ull — 4/2,
dimy(ulz,) > 8, #iz (%2) 2 ||plz.ll —9/2 2 |l —§ and dim(p|zinz,) > 5
Now taking Z = Z1 M Z, we have u(Z) > {[u|| — ¢ and dim(p|z) > B. This
means that dimpy p > 5. =

THEOREM 2.10. The lower and upper modified corrvelation dimensions
and By have (a)—(e), and f,, also satisfies (f) and (g) for measures in

B
BAM(R™).

Proof. We prove the statements of the theorem for the lower modified
correlation dimension. The proofs of (a)—(e) for the upper dimension follow
in the same manner.



228 P. Mattila et al.

(a) Let & > 0 be given. It follows from the -4 characterization of absolute
continuity that there is a § > 0 such that, for any A € B(R™), u(A) >
||l — €/2 provided that v(4) = |lv|| — 8.

Let 8,,(v) > B. The definition of B,,(v) implies that there exists Zo =
Zo(6) such that v{Zo) = |[v]| -6 and {, v(B(z,r))dv(z) < r# for all r small
enough. Notice that we also have pu(Zg) = ||p]| — £/2.

From Lemma 2.8 it is enough to show that there exists a Borel set Z such
that 4(Z) > ||| —£ and B(p|z) > B. Let f € L(v) be the density of 4 with
respect to . There exist M = M(§) < oo and A = {z : f(z) < M} such
that v(4) 2 |lv] — &, and thus p(A4) > ||p|| — £/2. Define Z = Z(8) = ZoN A
and notice that u(Z) > |jp|| — £&. We see from the above that

[ a(Ble,r) 0 2) du(z) < M | a(Blz,) N Z) du(z)
z z
< M? S v(Blz,r)) dv(z) < M*rP
z
for all r small enough. This gives 8(u|z) > 8 and, since u(Z) = ||l - &,
property {a) follows.

The proofs of statements (b), {(c} and (e) for the modified correlation
dimensions 3, and Byt follow from Lemma 2.8 along with the equivalent
statements for plain correlation dimensions, proved in Theorem 2.6.

(d) Suppose that g <« £™. Since p|z is absolutely continuous with re-
spect to Lebesgue measure L™ whenever Z has positive g-measure, property
(d) for B, follows from property (a) above and Lemma 2.8.

(f) The inequality 8, (37;cr ) < infiez B, (n) is easily proved (even
for I countable)} as in Theorem 2.6, (f).

We next prove the reverse inequality for [ finite. To this end, let
min{8, (u1), By (#2)} > B. Decompose up = p + pj where uf <y and
ps L py, and write p = pg + pa = H1 -+ L2 where fy = py + 45 and fip = pi.
We have i L [ig.

Notice first that min{g, (fi1), 8,,(f2)} > 5. This is because of part (a):
fiz < pip and thus 8, (f2) 2 B, (ke2), and also iy < p1 so that By (1) 2
gwt(ul). Let £ > 0 and let Z1 and %y be such that i1 (Z2) = #2(Z1) = 0 and

1

#1(Z1) > |Eall—€/2, Ba(Z2) = ||Bel|~£/2, and min{B(fi1|z, ), B{Hz|z,)} > 5.
For Z = Z1 \J Zy, we have

w(Z) = [ (21) + Fa(Z) = ([l + [1B2]| - € = [lull - &,

and also, using stability of the lower correlation dimension (Theorem 2.6,
(f)), we have

E(HIZ) = Q(Eﬂzl + ﬁ2lzz) = min{é(ﬁllzﬂiﬁ(ﬁﬂZ:)} > ﬁ
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(g) Let u =Y 1o p4i- We only need to prove that g (1} 2 infien By (a)-
Define head and tail measures by a; = E‘znl piand vy =3, psforj N

Suppose that v; < a; for some j. It follows from properties (a) and ()
proved above that

Br(u) = min{By (as), By (4)} = Byy(0y) = min, By(ps) = inf By (a)-

Otherwise, for every j there is a decomposition v; = v+, where 1} < a;
and v7 is a non-trivial measure which is singular with respect to o;. This
implies that the sum measure 4 can be split as p = n;+v§, where n; = o +v7
is clearly singular with respect to vj. Let § > 0, and choose an integer N
such that ||v§| < 6. Since ||u|| < |Inwli + vkl < llnwvl + 8, there exists &
set Zy such that ny (Zx) = ||u|| ~ & and v%(Zx) = 0. Using properties (a)
and (f) again, we have

gM(#‘Zn) = EM("?N1ZN) = EM(QNIZN) 2 1%1£NEM(H’) > zlggéM(Hz):

which in turn means g, () = (By)m(p) = infien By (p:) via Lemma 2.9. m

Notice that the proof of Theorem 2.10 can be easily adapted to the
following general case.

THEOREM 2.11. Let dim be a measure-dimension mapping in BM(R™)
with properties (a*), (b, (c), (d*), (e) and (£). Then the modified dimension
dimy; defined by

dimy 4 = lim sup{dim 4|7 : Z € BIX), u(Z) 2 llsll — 8}

has properties (a)—(g).

REMARK 2.12. Below we shall show that (f) fails for B and By Of course,
(f) and (g) hold for By for absolutely continuous measures u; in R™, since

Bar(143) = m for them. However, we shall also show that () fails for 3 even
for absolutely continuous measures.

REMARK 2.13. An inspection of the proof of Theorem 2.6 reveals that
we always have

By + ) > max{min{B(u1), Bue)}, min{B(ua), Bluz) 1}

EXAMPLE 2.14. We now show that (f) fails for the upper and modified
upper correlation dimensions. We shall construct Borel measures p1 and po
on R with compact support such that

(6) Blug) = Pulps) =1 for j=1,2,
and
(7) Blps + p2) = Brlps + p2) = 0.
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Let I be a closed interval in R of length d < 1 and let 0 < &; < 1/2 be a
non-increasing sequence. We shall construct measures y; and gz on I guch
that there are sequences (75, (85} and (¢;.), § = 1,2, such that for j = 1,2
and for all 4,

(8) ] = d,

(9) 0« tj,i_{_l <y <851 < tj,is il—i.rglotj’i =0,
(10) 81,4 2 82,0 2 TLi 2 81kl 2 T24 2 82,41 = TLitl,
(11) pi(Bl@,t;)) S 2575 forzeR,

(12) ui(B(z,r)y = r¥ /4 forrs; <r < s, and 2 € sphyy.

Choosing the sequence (g;) such that lim; 0o &; = 0, from (11) we obtain
B(us) = Buy(ps) = 1 for j = 1,2, If 0 < r < 51,1, there are, by (10), j and
i such that r;; < r < s;, and then (12) gives, for any Borel set Z with
| (Bl, ) diag () 2 s (2) /4,
z
which implies B{u1 + p2) = Bae(p1 + p2) = 0.
To construct g we first take ¢; 3 = d and define s1; by

(13) 51 = d.

Anticipating the notation used below we put I, = I and let I7; be the
closed interval with the same centre as I and of length s1;. We perform
m times the “ci-dimensional symmetric Cantor operation” on I7 ;, that is,
we first delete a middle interval of I{ ;, so that the remaining two intervals
each have length d; satisfying 2d]* = s7%. Then we continue as in the
standard Cantor constructions having after m steps the closed subintervals
{1,y I{gm of I{ 1, each of length d,,, = 71,1 which satisfies
2"rih = ST

Af this first stage we can take, for example, m = I, but later the construc-
tions of yy and pe will depend on each other in the following way: at stage
1, we first choose £, then s1; < t;;, then %2, and s5; < t2; < 83,4, then
rii < Sp4, then 1509 and 83501 < 1541 < 714, 'and finally ro; < 81441
How this works in practice should be clear from the first steps which we
explain below.

Before continuing ths construction, observe that if 4y is any Borel mea-
sure with sptpy C U2=1 e and pa(f7 ) = rip for all k, then (12) is
satisfied for j =< =1 (see [7, p. 62]). '

Next, let n be an integer such that

£2 g1+ea—~1
n > 'r‘l,l "
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Set t; 2 = r1,1/n and divide each IT ;, into 2 subintervals of length ¢ 2. We
denote all these intervals by I ;. Let s1,2 be defined by

nsih =rin-
Then
(14) 557 < 1757
Now continue as before. We define I3 to be the closed interval with the
same centre as I3 ; and of length sy,2. Then we perform on each I3, several
times the “c,-dimensional symmetric Cantor operation” to get the intervals
If, of length r1o. But, as explained above, before this we proceed in the
construction of us up to the level where we have defined s22. Then we
require that ;2 < 52,2

If 4y is a Borel measure with sptps C U, 15, and pa (X5} = i’ for
all k, we also have uy(I] ;) = ri’; for all &, which implies (12)for j =1 and
i = 1,2. Moreover, (14) implies (i1) for j = 1 and i =2 (fori =1, (11) is
trivial).

Continuing this process indefinitely we obtain a Cantor measure (i3 which
satisfies (8), (11) and (12) for j = 1. Also (9) holds true.

We construct up by a similar process denoting the corresponding intervals
by Ji, Jf) and J7y. We start by taking 23 = 21,3, 82,1 = s1,1, Jii =14
and J{; = I7 ;. Then we take rz; < 1,2, s we may. This will also give us
t2,2 and 82,2, and we now require that, in the construction of py, r12 £ 82,2
We may continue this indefinitely choosing always 7 sufficiently small so
that (10) will hold for all j and . This gives us the desired measures 1
and po as the natural limit (Cantor) measures on the sets Nieq Uk I7, and
Miza Us Jis-

EXAMPLE 2.15. The measures u; and p» in Example 2.14 are of course
singular with respect to the Lebesgue measure. In the case of Gy, they also
must be singular because of Remark 2.12. We now show that in the case of 8
they can be chosen to be absolutely continuous. Thus we next construct ab-
solutely continuous measures iy and gz on [0, 1} such that (1) = Blue) =1
but A{p + p2) = 0.

Let 0 < & < 1/2 tend to zero. We claim that there are closed subintervals
I, of [0,1], sequences of positive numbers (dg), (px), (&), (sx) and (usk),
4 = 1,2, and absolutely continuous measures tj,k, 4 = 1,2, such that setting

(15) Vg o= kb Mok, M Zﬂj,k, p=pntpe = ZVR::
k k

we have, for all k,1=1,2,... and j = 1,2,
(16) 2, N2L =0 fork#l (with 2(z — r,z +7) = (z — 2r,@ + 2r)),
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(17) Ujktl <Pk < T < Skl < Ujp < S = d,];/e’c,

(18) iy < dyp = L(Ig) < (79)%  for k> 1,

(19) il = de <174, sptpjx C I,

(20)  pik(B(mr) <rt™  forr=u;pand 0<r <pand z € R,
(21) ve(B(z,r}) 2 r®  forre < r < s, and x € sptyg.

Let us first verify that these properties imply that F{u;) = 1 for j = 1,2
and A(p) = 0. Let r = u; ) for some 7 and k. By (18) and (17}, d; > dj > r
for I < k, whence by (16), B{z,r) can meet at most one I; for | < k for any
given z € R. By (17), r = ujr < p for { < k, and so by (20), for [ < k and
z R,

w3 (Blz,r)) < ri7o,

whence .
ZP’J'J(B({‘Ear)) <rl=®  forzeR
=1

since at most one term can be non-zero by (16) and (19).
For | > k, we have || || < (r'=%)! by {19) and (18), whence

i b (Blz,r)) < i (ri=eR) < gplmen,

I=k+1 I=k+1
Combining these inequalities we get, for all k,

V15 (B, wsw)) dpa () < 2u) 35 flg]| < 2u; 7%,

which gives A(u;) =1
To prove that B(u) = 0, let 0 < r < s;. Then by (17) there is k such
that 7 < r < s, and by (21) we get
v(B(z,r)) > r*  for x € sptuy.
Thus by (15), (19), (17) and r < sy,

Sr/k(B(z, r)) dvy(m) > o {|vg|| = rRdy = rohglh > 2ok,
Hence by (15), given & > 0, we have for all sufficiently small T,
S,u(B(:z,r)) du(z) > r’*

for all vy, < r < 8, and for all k. This gives B{p) = 0 as required.

It remains to construct the intervals, positive numbers and measures
such that (15)—(21) hold. We use the construction of the measures y; and
#2 in Example 2.14. Let I = [0,1/4], d; = 1/4, and let s; and u;, j =
1,2, be the numbers s; ; and tj,2 from Example 2.14 corresponding to the
constant sequence {g1). We choose vy to be somie r3,; from Example 2.14
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for a sufficiently large ¢; how large will depend on the beginning of the
construction on I and will be explained soon. Instead of going to the limit
as in Example 2.14, we stop the construction at this level ¢ defining 41,1 to
be the constant multiple of £'| ), ;», such that uy1(I7,) = 7%, and pa,
the constant multiple of L)) sr such that pz,1{J7;) =5} Then (19) and
(21) follow from (8), (10) and (12) for k = 1. Also (20) holds for r = u; | by
(11). Finally, we choose p; < r; so small that (20) alsc holds for 0 < r < p;.

Next we choose Iy € (1/2,1) of length dy < 1/4 = d; such that dy <

(ui'isl)z for 4 = 1,2. Let sy = dé/ga. We are still free to choose r1 < ss.
Now we again apply the construction from Example 2.14 on Iy, with the
constant sequence (ez), to obtain pa < 12 < u;p < 83 With ujs < p; and
the measures (i; 2. Then (15)—(21) hold for 7 = 1,2 and k = 1,2 except the
term involving & + 1 = 3. Continuing this process we obtain the required

sequences.
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