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Polydisc slicing in C*
by -

KRZYSZTOF OLESZKIEWICZ and
ALEKSANDER PEERCZYNSKI (Warszawa)

Abstract. Let D be the unit disc in the complex plane C. Then for every complex
linear subspace H in C™ of codimension 1,
volan o (Dndl) < volap_o(H ﬁDn) < 2volen.-2 (Dn_l).

The lower bound is attained if and only if H is orthogonal to the versor e; of the jth
coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is
orthogonal to a vector e; + oey, for some 1 < j < k € n and some o € C with |o| = L.

We identify C™ with R*"; by vol;, (-) we denote the usual k-dimensional volume in R*",
The result is a complex counterpart of Ball's [B1] result for cube slicing.

1. Introduction. In 1986 Ball [B1] discovered

THEOREM Bp. Let I = [-1,1]. Let H be a linear subspace of R™
(n=2,3,...) of codimension 1. Then

vol,—1 (™YY < vol,— 1 (H N I™) < V2vol, 1 (I™71).
The lower bound is attained if and only if H is orthogonal to the versor
e = (5§,)3‘,= of the jth coordinate azis for some j = 1,...,n; the upper
bound is attained if and only if H is orthogonal to a vector e; ey, for some
1<j<k<n.

The lower estimate goes back to Hensley [H] who also used a “proba-
bilistic approach” to establish some upper bound. Following closely Ball's
approach we establish the complex counterpart of Theorem Bg; we prove

THEOREM Bg. Let D = {z € C: {z| £ 1}, Let H be a complex linear
subspace in C* (n =2,3,...) of codimension 1. Then

volon—2(D™ 1) < volgn_o{H 1 D™) < 2volgn-g(D™ ).
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282 K. Oleszkiewicz and A. Pelezynski

The lower bound is attained if and only if H is orthogonal to the versor e;
of the jth coordinate azis for some j =1,...,m; the upper bound is aftained
if and only if H is orthogonal to a vector e; + oex fori<j<k<nand
for some o € C with |o| = 1.

Throughout the paper we identify C* with the Euclidean space R via
the map
(z)f=1 — (R, Gz, ... R, Szp)-

By voli(-) we denote the usual k-dimensional volume in a Euclidean space.
In particular volg,_2(D™™ ') = 7"~!. A k-dimensional subspace is a k-
dimensional hyperplane passing through the origin. By {-,-} we denote the
usual complex scalar product in C.

The sharp lower bound for the k-dimensional volume of sections of the
n-cube by k-dimensional subspaces has been obtained by Vaaler [V]. In [MP]
a lower bound of the volumes of central sections of the unit ball of a real I7
space {2 < p < oo) was considered. Similar problems (again for real spaces
only) have been treated by other methods in [S] and [NP].

Our proof of the upper bound in Theorem Bg bases upon the following
analytic inequality which seems to be interesting in itself.

PROPOSITION 1.1. One has

T I 4

(1) | [M] tdt < =  forp>2,
0 g P

and there is equality if and only if p=2.

Here - - .
t
x0=209(3) e

is the Bessel function of order 1.

Assuming the validity of Proposition 1.1 we prove Theorem Bg in Sec-
tion 2. The proof of Proposition 1.1 is given in Section 3. Section 4 contains
some remarks.

2. Proof of Theorem Bg

2.1. Introductory reduction. The general form of an (n — 1)-dimensional
hyperplane in C" is H = {3 € C* : (3,a) = c} for some a = (a;)}-; € C"
with |lajz = 1 and some ¢ € C; if ¢ = O we write H, instead of HJ. If
a is a coordinate versor then volgn-2{HS N D™) = 7™t for |¢| < 1 and
volan,_2(HE N D™) = 0 for [¢| > 1. Note that, in general, there is a uni-
tary transformation of C*, say U, which is a composition of rotations in
each coordinate plane and a permutation, say p(-}, of coordinates such that
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Ula) = (lapyls - - -5 [apmyl) and |apa)| = ... > lapm)|. Clearly U preserves
D™ and U{H; N D") = HE oy D™, Therefore
VOlgn_z(Hg n Dn) == Volgn_g(Hf;r(a) N Dn').

Thus in what follows without loss generality we can assume that a = (a;)7_,
is a vector with real coordinates which satisfies

e
(i) Zaf:l; apZ...z2a, 20 ap>0.
i=1

(The last condition as > 0 just means that a is not the coordinate versor e;.)

2.2. Probobilistic intermezzo. Let X : 2 — R’? be a 2-dimensional r.v.
(= random variable) defined on a probability space (P,f2) with density
g:R? — R Denote by £x the characteristic function of X defined by

Ex(&n) =] 9(z, ) expi(zt + yn) de dy.
R2
Let Z denote the r.v. uniformly distributed on D, i.e. the density of Z is

7~V p where 1p denotes the indicator function of D. Since D is centrally
symmetric,

Ez(&m) =m""
R

1p(z,y) expi(z€ + yn) dz dy

B ey

= 71'—1

ey

cos(z€ + yn) dz dy.
D

Since 1p is rotation invariant, so is £z. Thus
Ez(€,n) = E2(v/E+n2,0) =71 “cos(\/{;“2 +n?) de dy.
D

Passing to polar coordinates, expanding into a power series the “outer”
cosinus of the integrand pcos(/€2 + 7% ocos¢) and integrating term by
term we get (cf. [KK] for details)

(2) SZ(E”?) :.71(\!52"—”2),
where
(3) () =2J ()t fort>0 and 51 (0)=1

Let Z®) ..., Z(™ be independent r.v.’s, each distributed as Z. Fix a =
(a;)7=, satisfying (i) and consider the r.v.

k(]
L= ZajZ(j).
—
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The independence of the Z ()'s and the equality €7y = €z (because & )
has the same distribution as Z for j = 1,...,n) yleld

Ez.(6m) = [[ €z (as€ asm) = 11 £2(a56, a5m)-

a1 j=1

Note that, by the Parseval identity, £z € L?*(R?) because 1p € L?(R2).
Thus if a sat1sﬁes (i) then £z, € L'(R?), being a product of at least two
functions belonging to L2(R?) and bounded. Hence, by the Fourier inversion
formula (cf. [F], Chapt. XV, §7),

(*)  if a satisfies (i) then Z, has o density, saY G, which is o continuous
function gz‘uen by

9a(2,9) = Sﬁsza (&) exp(~i(zt +ym)) dtdn  for (z,y) € R?.
B2
Next consider the function (z,y) — volan_2(HZ N.D™), where z = x +1y.

Note that H2+* = HZ4wa for w € C {here wa denotes the scalar w-multiple
of the vector a € (C”) Thus, by the Cavalieri Principle, for z € C we have

volan, ( U {H? +wa} N D“) volap ( U HEn D“)
[wl<= [w|<e
= || volan_o(HZ" N D") dRw dSw.
[w|<e
On the other hand the definition of density yields

[volpn (D™)] 7" volay ( U #+n D”) = P( U {iajzm = z+w})
|wr|<e lw|<e J=1

= “ ga(z + w) dRw dSw.
jw|<e

Thus at each point z of continuity of the function z — volpn_2(HZ N D™),
remembering that volg,(D™) = ", one has

T gale + w) dRwdSw
jw|<e
= lim (2m) ' v012n( U Hg+wn1>")
ul<e

=g " Volgn_g(H: N Dn).

ga(z) = lim (£°)

It follows from geometric considerations that if o satisfies (i) then 2 —

volan—o{HZ N D™} is a continuous function at each point € C. This is
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obvious if either HZM.D™ contains an interior point of D™, or the hyperplane
H? is disjoint from D", Otherwise the assumption that a satisfies (i) implies
that H? N D™ is contained in a hyperplane of dimension less than 2n — 2,
hence volan-2(HZ N D™) = 0. In the latter case also g,(z) = 0 because
ge is continuous and replacing z by tz with ¢t > 1 we easily conclude that
ngg D™ = 0, hence g,(tz} = 0. Thus volo,_2(HZ N D™) = n™g,(2z) for all
z e .

Concluding, for all a satisfying (i), and therefore satisfying (), we obtain

n—2
volgn-_o(HZ N D™ = “_4-_ 11 £2. (6, m) exp(—i(Rat + S2n)) dg dn.

IRZ
In particular
n—2

(@ volzn—a(Ha N D") = T {| £z, (,m) dé d

]RZ

a2 n
= “ H Ez(ai€, a;m) dE dn.
R? =1

Combining (4) with (2) and (3), and passing to polar coordinates we fi-
nally get

Tl 1en
2 S H f1(a;t)tdt for a satisfying ().
0 j=1

(5) VDIZn-—2(Ha. n Dn) =

2.8. The upper bound. We assume that a satisfies (i) and consider sepa-
rately two cases.

Case (I): a; € 1/v2. Let n{a) denote the last index j such that a; > 0.
Clearly 2 < n(a) < n. It follows from (5) and (3) that

a1 ean{a)

S Hj’l(GJ t)tdt.

0 j=1

(6) VOlgn_z (Ha N Dn) =

Put p; = a; =2 for j = 1,...,n{a). Invoking (i) and remembering that we

consider Case (1), we have
n(a)
Z 1pi=1 p;=2 (G=1,...,n(a)).

g=1

Applying the Hdlder Inequality with respect to the measure tdt and making
appropriate rescalings we get
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oc m{a) n(a)

S IHJI a;t) ‘tdt = H (}Olh(ajt)lpjtdt)l/p"
0

0 g=1 i=

n{a)

=1 q 2/%(5 A@Pat) hd

F=1
Now we apply Proposition 1.1 to get further domination,
n(a) 1/p;
< a‘:‘z/p.}' (i) — 4.
=1 !

In the latter step, equality holds if and only if p; = 2 for j = 1,...,n(a),
which forces n(a) = 2 and a; = ag = /1/2. Invoking (6) we finally get

volgpg(Hy N.D™) € 27771,
and we have equality if and only if a = (1/1/2,/1/2,0,...,0)
CasE (I): @y > 1/4/2. Consider the “cylinder”
Cp={3€C": 35/ <lforj=2,...,n}
Clearly D™ C . Thus H, N D" C H, N C,. Hence
(7 volan—a(H, N D™) < volon—a(H, N Cyp).

Let T : C* — C" be the nonsingular linear map defined by T'(za + h) =
zey +Q(h) for z € C and h € H,,, where () is the orthogonal projection onto
the hyperplane H., = {3 € C* : 33 = 0} and &; = (1,0,...,0). It is easy to
check that in the unit vector basis T is given by the matrix

ai —a1ag —aqid3 ... Q105
2
ga l—a3 —as63 ... —0oga
MT — 2 2 203 2Un
On —OnG2 —OnG3 1—a2

A straightforward calculation gives det My = aq. Let T : R2® — R2" be the
map induced by T under our identification of C* with R*® and let Mz be the

matrix corresponding to T'. Then Mz = My ® I is the Kronecker product
of M by the matrix corresponding to the identity operator Ig: on R2. Thus
det Mz = a} > 1/2 because we are considering Case (II). Hence, by the
Jacobian Formula,

volgn (A) = a7 2 volan(T(A))  for Borel 4 C C".

Fix B ¢ H, with voly,,_» (B) > 0. Let B, = U|z|<s{za+B}‘ Then Volzn_g(B)
= lim,_g(7&%) ! volay, (Be.). Since T(B) is orthogonal to e; = T'(a), we have
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T(B:) = U}y <c{7e1 + T(B)} and
volan—a(T(B)) = ;irr%(wsz)_l volan (T(Be)).
Hence
VOIzn..g(B) = a.‘1"2 VOlzn__g(T(B)) < 2volan.. Q(T(B))
Since T(HNCp) ={3 €C* 131 =0and |3;] < 1forj =2,...,n}, we have
volgn—a(T (H N Cr)) = 1. Thus invoking (7) we see that in Case (11},
VOlzn_g(Ha N Dn) < VDlgn_z(Ha n Cn) < 27" 1 u

2.4. The lower bound. Let A denote the usual Lebesgue measure in R?,
We need

LeMmMaA 2.1. Let
K={g:]R2—>}R:920& { gd}\:l}.
R2
Then, forge K,

lglleo § lzl139(2) Mdz) = (271,

R2
and there is equality if and only if g is the indicator function of a disc
centered at the origin divided by the area of the disc.

Proof. Put A\j(dz) = g(z)A(dz). Then

| lel3g(z) Mdw) = | Ag(R*\ Bz(0, v2)) dt
B2 0
> {{1 - llglloM(B2(0, V1)) 4 dt
0
(mllglles) ™™

= §  (-nlglletydt = 2m) gl
0

Clearly there is equality if and only if g = ||g]lcolB,(0,(r||gllea)—4/2) A-B€- W

Now we complete the proof of the lower bound part of Theorem Bg. Fix
a satisfying (i). Let g, be the density of Zo = 35, 052 (4}, Then g, € K.
Let as usual E|X|? denote the second moment of the 2-dimensional r.v. X.
Since the Z\)'s are mdependent and they have the same distribution as Z,
(remembering that >°7_; af = 1) we have

[ Nolga(e) Mds) = E|Z.P = 3" 2BIZOP = BlaP =3,

k2 i=1
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Thus, by Lemma 2.1, ||gsllco = 7. As shown in 2.2, g, is continuous be-
cause ¢ satisfies (i). Thus, by the second part of Lemma 2.1, |igallec > 772
We have also shown in 2.2 that (i) implies that g,(Rz,S8z) =
T voly,_o(HZN D™ 1), Therefore, by a corollary to the Brunn—Minkowski
Theorem (cf., e.g., [B1], p. 466), g, attains its maximum at the origin. Thus,
if a satisfies (i) then

volap—g(H, N D") = m"g,(0,0) > 7™~
Obviously volg,—g(He, N D™) = 7", w

3. Proof of Proposition 1.1. Note that 0 < [7.(t)] < 1 for ¢ > 0
because (£,7) — j1(1/€2 + n?) is the characteristic function of a density.

We consider two cases: (I) p > 8/3 and (II) 2 < p < 8/3.

We need two lemmas.

LevmMa 3.1. One has

. i"-2 4
7 (2)] < eXP(——§ -3 _27> for 0 <t <4.
LEMMA 3.2. Let
T pt>  ptt
b=} oo -G - 25 ) s
ther I, < 4 ..4_ + i
P —= p 3p2 3p3'

First assuming the validity of the lemmas we give

Proof of Proposition 1.1 in case (I). By Lemma 3.1 and the definition
of I, it is sufficient to show that if p > 8/3 then
=)
Ip+ Ap < 4/p, where A,:= S |72 (2) [Pt dt.
4

Since [J1(t)] < 4/2/7 (t2 —~ 1)" 4 for t > 1 (cf. [W], p. 447), we get

) 2 8¢~3/2
GRS \/: 2 1)t o 2
)] - ( ) WerlE

for t > 4.
Thus

P o

8 32 _
A < | ——— t1—3p/2 - Y% 4 P
o< (752w forsrae 2 (Vo dE) .

The desired conclusion now follows from Lemuma 3.2 and the elementary

inequality 473
(Vird15)" > 9%6p> — L
Bp—4){p-1)
forp > 8/3. m
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We return to the lemmas. Lemma 3.1 is a special case for n = 4 of
Proposition 11 in the unpublished preprint [K]; see also [KK], Remark after
Proposition 12.

Proof of Lemma 3.2. Let
oC
Luw = S texp(~ut® — vt)dt for u,u > 0.
0

Substituting s = ut? we get

I -——losoex —5 = —s? d_1°§° L d
o = 5 ! ) = 8= o J exp| —235 exp(—as) ds.
Since exp(—z) < 1—z+22/2 for z > 0, (remembering that §o s* exp(—s)ds

)
=kl for k=0,1,...) we get with z = %32,

I <~}—°§ 1—£32+0234 (—s)d
w0y H u? 2yt e*p s

1 v v* 1w v
Y R DA, YRR IR IS AN L
Zu( =t 2u4) 2u +6u5

Specifying u = p/8, v =p/(3- 27) we get

4 4 4
Io=Tpspiaan S g =3 T3 "

The argument presented above is due to Professor Hermann Kdnig and
is published here with his permission. The authors’ criginal proof was more
complicated and based on the asymptotic expansion of the Exf function (<f.
[RG]; 6.234).

Proof of Proposition 1.1 in case (II). First consider p = 2. The identity
Sg° J1(t)2tdt = 2 follows by passing from polar to Cartesian coordinates in
the plane and applying the Parseval identity for the Fourier transform:

2 T a()2tdt = {{51(v/€2 +0%)% dédn
0 &2
= @) {7 1p(z, v)]? dody = 4.
R2

Now, let 2 < p < 8/3. It suffices to show that

o0
(8) { 11() P3¢ de < 27172,
5}
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Indeed, by the Hélder Inequality for 2 < p < 8/3 we have

[ La(@fFsa = | 1@l
0 0

< DSOIJl t)|2tdt)( 572 (S ja( )la/gtdt)(3p-6)/z
B!
8—

< 28=8p)/2(9,-1/3)(3p—6)/2

p—2
=2/elP=2/2 < 2/ (1 + T) = 4/p.

The proof of (8) is numerical. One can argue as follows. Invoke the in-
equality |[J1(¢)| € +/2/7 (2 — 1)"Y* for ¢ > 1 (cf. [W], p. 447). Hence t > 5

vields
P
ol <2y 2
Thus

T 8 /25787 T at
{ ()33 dt < [\/: ¢ ﬁ} | 7= ar—4/%(25/3)*/% /50 < 0.08.
5 T 5

On the other hand we have
5

V172(8)[3¢dt < 1.35. -
0
The latter integral is estimated by its Riemann sums (the interval [0, 5] is
divided into 25 intervals of length 1/5 each):
5
§ i1 (8)1¥3¢ dt < < Zmax (17.(k/8)I3%, 131 (k + 1)/5)[*/%);
5o

here we use the fact that the function j; is nonincreasing in the interval
[0, 5] Indeed, observe that for ¢ € [0, 5],

—2/1(8)/t = Z( —t ) s > P(£/4),

k'(k o) =

where
_ v (=1)*a*
P -3 S

Now, as PO = —1/71 < 0, P4)(25/4) > 0, P"(25/4) < 0, P"(25/4) > 0,
P(25/4) < 0 and P(25/4) > 0 we prove that P(Y, —P" P" _P' and P
are nonnegative on [0, 25/4], which proves our assertmn Takmg the values
of J; from tables we compute the values j; (k/ 5) for k=10,1,...,24.
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Thus, we get
oo
| 171(2)/%/%tdt < 1.35+ 0.08 = 1.43 < 2¢~1/3. u
0

4. Remarks

4.1. The upper bound estimate in Theorem Bg is valid for an arbitrary
hyperplane section of a polydisc because if 0 # ¢ € C then

V012n_2(Hac N Dn) < VOlzn_g(Ha N D"’)

for arbitrary 3 € C*. This is an easy consequence of the Brunn—Minkowski
Theorem (cf., e.g., [B1], p. 466).

4.2, Lemma 2.1 generalizes as follows:
LeMMa 2.1 Let 0<p < oo, let n=1,2,..
g >0 and §,. gd), =1. Then

loleo § lalo(z) An(da) < 2

]Rﬂ

. and let g : R® — R satisfy

p(voln (Bn))~P/™

and there is equality if and only if g = (vola(cBp)) " 1(.p,) for some ¢ > 0.

Here B,, denotes the Euclidean unit ball centered at the origin and A,
the usual Lebesgue measure on R™.

The case n = 1 is due to Ball ([B1}, Lemma 1).

Lemima 2.1° for p = 2 can be used to determine the sharp lower bound
for the (IV — 1)nth volume of sections of the Cartesian product (B,}" by
(N — 1)n-dimensional subspaces of BY.

4.3. Ball’s inequality (cf. [B1], Lemma 3}, which is a paradigm of Propo-
gition 1.1, can be stated as follows:

oo . P 1/2
(9) S (le?ﬂ) dt < g—(%) for p > 2.

0
One can prove it in the same way as Proposition 1.1, by considering the
cases p > 3 and 2 < p < 3. The second case follows from the numerical
inequality

gint |

2 oo
b(3) < e~Y/*,  where b(p) = = S dt forp> 2.

0

A common formulation of both inequalities (1) and (9) is the following. Let
a > 1/2. Recall that the Bessel function of order a is defined by

Ju(t) = Z(Ml) (E) mFm+1sa) fort > 0.

me=0
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Define j, : [0,00) — R by

Ja(t) fort > 0; 7,(0)=1

Jalt) =2°T(a+ 1)

Then we ask if it is true that

oo o) 9a
10) | la(ePeeta < ( { G262 dt)b—a for p> 2.
0 0
Nate that for @ = 1/2, (10) is equivalent to (9) because
2\ ?sint
=(=) = R
Jl/g(t) (’n"t) : fort e

{cf. [W], p. 54, formula (1)). For a = 1, (10) is equivalent to Proposition 1.1.
From an old formula due to Weber (cf. [W], §13.42, p. 405, formula (1))
we get

(11 Df[ja @2 dt = 22+ 1))? 050 —[J“it”z dt = 2*"'a[l(a)]?.
0 0

If @ = n/2 for n = 1,2,... then the function & ~ j,/2(|Z]2) for 5 ¢
R™ is the characteristic function of the n-dimensional r.v. with density
(voln(Ba)) *1m, (cf. [KK]). Thus, for a = n/2, (11) can be proved in the
same way as at the beginning of Case (II} of Proposition 1.1. It is plausible
that (10) is true iff 1/2 < ¢ < 1. Professor Hermann Kénig noticed that
(10) is false for a = n/2 for n = 3,4,...

4.4. The upper bound part of Theorem By, is a simple consequence of the
upper bound part of Theorem Bg while the lower estimate in Theorem By
follows from the lower estimate in Theorem Bpy.

This observation is due to Stanistaw Szarek who kindly permitted to
inchude his argument in the paper.

Let E and F be orthogonal subspaces of RY . Let U C Eand V C F be
convex sets symmeiric with respect to the origin. Put

(12) U@V ={zecR :z=suttv; uc UveV, 4+t =1, s,t R}.
It follows easily from Fubini's Theorem that
Voik_l_g(U Bo V) = ¢cvolg (U) -VOII(V),

where the constant ¢ = ¢, depends only on k and ! but not on U, V, E, and
F (k,1=1,2,...). Let N = 2n. Let H, be a complex (n — 1}-dimensional
subspace of C" orthogonal to a versor a € C™ with all coordinates real.
Under our identification of C* with R*" we identify H, with a (2n — 2)-
dimensional subspace of R?". We set E to be the subspace of H, with
even coordinates zero, F the subspace of H, with odd coordinates Zero,
U=1I"NE, V=I"NF. Then the sets U and V are isometric to the
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intersection of I™ with the subspace, say HE, of " orthogonal to the versor
a regarded as element of R™; moreover U @3 V C H, N D", Thus using (12)
fork=101=n—1 we get

(13)  cneipn-1[vola— s (HE NI = (n/4)" Yvol,_1 (HR N IM))2
< volgn_2(Ha N D“hl),

because specifying a = e; we get Ca-1m-1 = (m/4)"L. Clearly (13) yields
the desired conclusion.

Addendum. We are indebted to Franck Barthe and Alexander Kol
dobsky for the following remarks:

1. Ball [B2] using his inequality (9) and the Brascamp-Lieb inequality
has obtained the sharp upper bound of the volume of k-dimensional sections
of the cube I™ for n/2 < k < n — 1. His argument extends almost verbatim
to k-dimensional {complex) sections of the polydisc. We replace (9) by the
inequality (1) and the Brascamp-Lieb inequality by its complex counterpart
which follows from Theorem 6 of [Bar]. One obtains:

THEOREM BE. Let D = {z € C: |2/ < 1}. Let H be a compler linear
subspace in C* (n = 2,3,...) of codimension k. Then

volan—ak (D" F) < volpn—2x{H N D™} < 28 volgy, _op (D™F).

The upper bound is sharp for k < n/2. For the lower bound see Lem-
ma 2.1'. Also Proposition 4 of [B2] can be transferred to the complex case
yielding

n—k
VOlgn_gk(Hﬂ Dn) < (Lk) VOlznh_gk(Dn“k).

2. The integral formula for volumes of sections goes back to Pélya ([P]).
More biblicgraphical details can be found in [KL].
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On isomorphisms of standard operator algebras
by

LAJOS MOLNAR (Debrecen)

Abstract. We show that between standard operator algebras every bijective map with
a certain muitiplicativity property related to Jordan triple isomorphisms of associative
rings is automatically additive,

1. Introduction. It is a surprising result of Martindale [7, Corollary]
that every multiplicative bijective map from a prime ring containing a non-
trivial idempotent onto an arbitrary ring is necessarily additive. Therefore,
one can say that the multiplicative structure of rings of that kind completely
determines their ring structure. This result has been utilized by Sernrl in [11]
to describe the form of the semigroup isomorphisms of standard operator
algebras on Banach spaces. The aim of this paper is to generalize this result
quite significantly. Other results on the additivity of multiplicative maps (in
fact, *-semigroup homomorphisms) between operator algebras can be found
in [3, 8].

Besides additive and multiplicative maps (that is, ring homomorphisms)
between rings, sometimes one has to consider Jordan homomorphisms. The
Jordan structure of associative rings has been studied by many people in
ring theory. Moreover, Jordan operator algebras have serious applications in
the mathematical foundations of quantum mechanics. If R, R are rings and
¢:R — R is a transformation, then it is called a Jordan homomorphism if

$(A+ B) = ¢(A}+ ¢(B)
and
$(AB + BA) = ¢(A)9(B) + ¢(B)d(4)

for every A, B € R. Clearly, every ring homomorphism is a Jordan homo-
morphism and the same is true for ring antihomomorphisms (a transforma-
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