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‘Weyl's theorems and continuity of spectra
in the class of p-hyponormal operators

by

S. V. DIORDJEVIC (Nig) and B. P. DUGGAL (Al Ain)

Abstract. We show that p-hyponormal operators obey Weyl’s and a-Weyl's theorem.
Also, we show that the spectrum, Weyl spectrum, Browder spectrumn and approximate
point spectrum are continuous functions in the class of all p-hyponermal cperators.

1. Introduction. Let H be a complex infinite-dimensional separable
Hilbert space and let B(H) (resp. K(H)) denote the Banach algebra of
all bounded operators (resp. the ideal of all compact operators) on H. If
A € B(H), then o{A) denotes the spectrum of A, g(A) denotes the resolvent
set of A and r{A) denotes the spectral radius of A. The following sets are
well-known semigroups of operators on H:

& (H)={A € B(H): R({A) is closed and dim AN (4) < oo},
&_(H)={A e B(H):R[A) is closed and dim H/R(4) < oo}.
The semigroup of semi-Fredholm operators is $(H) = &, (H)US_(H). If A
is semi-Fredholm and a{A4) = dim N (4) and 8(4) = dim H/R(A), then we
may define an indez: i{A) = a(4) — S(A}). We also consider the sets
Bo(H) = {4 € $(H) :i(A) =0} (Weyl operators),
&7(H) = {A € 6.(H) : i(4) < 0},
The following spectra of A € B(H) are familiar:

oo(A) = {M € C: there exists z € H \ {0} such that Az = Az},

oud)={reC: _mt (4~ V| =0}

-— the approzimate point spectrum,
ow(d) = {AeC:A—-A¢gS(H)} — the Weyl spectrum,
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on(A) = {e(A+K): AK = KA, K € K(H)}
~— the Browder spectrum,
oea{ld)={AeC: A- A& P (H)}
— the essential approzimate point spectrum,
oan(A} = [{oa(A+ K): AK = KA, K € K(H)}

— the Browder essential approzimate point spectrum.

Let mpo{A) be the set of all A € C such that ) is an isolated point of o{4)
and 0 < dim N {4~ 2X) < oo, let 75(A) be the set of all normal eigenvalues of
A, that is, of all isolated points of o(A) for which the corresponding spectral
projection has finite-dimensional range and let 7§,(A) be the set of all A € C
such that X is an isolated point of o,(A) and 0 < dimN {4 — ) < oo.

We say that A obeys Weyl’s theorem [2, 5] if
ow(A) = o(A) \ moo(A),
and we say that A obeys a-Weyl’s theorem [12] if
Tea(A) = 0a(A) \ 75 (4).
If (1,) is a sequence of compact subsets of C, then its limit inferior is
liminf 7, = {A € C : there are A, € 7, with A, — A}
and its limit superior is
limsup 7, = {A € C: there are A,, € T, With A,, — A}.

If liminf 7, = limsup,, then limr, is said to exist and is equal to this
common limit. A mapping p, defined on B(H), whose values are compact
subsets of C is sald to be upper (resp. lower) semicontinuous at A provided
that if A, — A in the norm topology then limsupp(4,) C p(A) (resp.
p(A) C liminfp{A4,)). If p is both upper and lower semicontinuous at 4,
then it is said to be continuous at A and in this case lim p(A,) = p(4).
We say that A € B(H) is p-hyponormal provided that (A*A)? — (AA4*)F
2 0. Ifp= 1, then A is called hyponormal, and if p = 1/2, then A4 is
called semi-hyponormal. It is well known that a p-hyponormal operator is
g-hyponormal for ¢ < p. Let H(p) be the class of p-hyponormal operators.

2. Preliminary results. Necessary and sufficient conditions for an
operator A € B(H) to obey a-Weyl's theorem have been discussed by
V. Rakotevié¢ in [12]. Here we employ the conditions % and C2 from Baxley
[2] to give conditions which are sufficient for obeying a-Weyl's theorem.
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We start by defining the sets
75(A) = {X € 0a(A4) : ) is an eigenvalue of A},
moe(A) = {A € 0a(A4) : ) is an eigenvalue of 4 and dmAN (A4 — A) < oo}.
LEMMA 2.1. For every operator A € B(H),
0a(A) \ 7§(A4) C oealA).

Proof. Let A € 04(A) \ 0ea(4). Then 0 < a(4 — A} and 4(A — \) < 0
(see [11]), i.e. 0 < (A — A) € B(A — )\) < co. This, by the definition of the
set m§(A), implies that A € 7§(4). w

LeEMMA 2.2. For every operator A € B(H),
UE(A) \Trgf(A) C gea(A)‘

Proof. In view of Lemma 2.1, it is sufficient to show that

mo{A) \ 7G;(4) C oea(4).

Let A € m§(A) \ 75:(4). Then ) € 0a(4) and a(4 — A) = oo. Let {zn}
be a sequence in N'(A — A} such that (Zn, %) = 0 for n # m. We show that
A€ oa(A+ K) for every K € K(X),ie. A€ (Wou(A+K): K € K(H)} =
TealA).

Let K € K(H) and suppose that y = lim Kz,. Then the sequence
Un = (A+ K — Nay, n € N, satisfies

limy, = im(A4 + K — A\)z, = lim Kz, =y
Now suppose that A & 0,(A + K). Then there exists m > 0 such that
A+ K - XNz| 2 m|z| for every = ¢ H,

ie A+ K — Xis one-one on R(4+ K — )) and
1
A+ K - X"y € E||y|| for every y € R(A+ K —X).

This implies, by [9, p. 190], that the range of A+ K — X is closed. Hence,
given y = lim(4 + K — Nz, € R(A+ K — )), there exists z € H such that
¥ = (A K — Az Denote the restriction of 4 + K — A to R(A+ K — ))
by B. Then B is a regular operator (i.e., the operator B! is well defined),
and
limaz, = im B Bz, =lim B~ Yy, = B~y = z.

This, however, contradicts our assumption that the sequence {z,} is orthog-
onal. Hence, A € g,(A+ K).

DEFINITION 2.3. An operator A € B{H) obeys condition C? if for every
infinite sequence {An} C 7f;(A) of distinct eigenvalues no sequence {z,} of
corresponding normalized eigenvectors converges.
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DEFINITION 2.4. An operator A € B(H) obeys condition C§ if for every
X € 72,(A) the operator A — A has closed range.

THEOREM 2.5. If an operator A € B(H) obeys condition CT, then

ga(A) \ 7o (A) C TealA)-

Proof It is clear from Lemma 2.2 that o,(A4) \ 78 (4) C dea(4). Since
Tea(A) is a closed and compact, it follows that

oa(A) \ m2{A) C oeal(A).

Suppose now that A € (73(A) \ 7&(A4)) \ ca(4) \ 7 (4). Then A is
a nonisolated eigenvalue such that a(A — A) < oo. Hence, there exists a
sequence {An} C w3(A) such that A, — X Let {z,} be a sequence of
corresponding eigenvectors for A, and let z be an eigenvector for A. We will
show that \ € oa(4 + K) for every K € K(H), L.e. A € 0ea(4).

Suppose to the contrary that there exists a K € K (H) such that A ¢
oa(A+K). Since A+ K — X has closed range and is one-one on R{A+K —A),
it follows that it is an invertible operator on R(A + K — A). Let S be its
inverse on R{(A+ K — A). =~

Let lim %, = y and yn = (A + K — A)zp. Then

lim yy, = Im{(A — An)mn + Kzpn + (A= An)zn) =,
and it follows that :
Sy = lim Sy, = im S(A + K — M)z, = limz,,
i.e. condition C% does not hold. This is a contradiction. =
THEOREM 2.6. If A € B(H) obeys condition C3, then
Tea(A) C aa(A) \ 75 (A).

Proof. Let A € 0..(4) and suppose that A € 78, (A4). Since A € 7§, (4)

it follows that A— A has closed range and 0 < a(A—X). Hence A—X € & (H)

and, since A € voa(A4), it follows that i{A—X) > 0. By the continuity of index
it thus follows that ) is an interior point of g,(A). This is a contradiction. w

THEOREM 2.7. If A € B(H) obeys conditions G} and C%, then a-Weyl's
theorem holds for A, i.e.

Tea(A) = oa(A) \ 7o (A).
Proof By Theorems 2.5 and 2.6. =

3. p-hyponormal operators. We start with some elementary results
about p-hyponormal operators. The following lemma is known (Aluthge [1],
Uchiyama [14]).

LEmMA 3.1 ([1]). Let A € H{p). If A1 ewists, then it is p-hyponormal.
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LeMMA 3.2 ([14, Lemma 4]). Let A € H(p) and let Hy be a closed sub-
space of H. If A maps Hy into itself, then the restriction of A to Hy is
p-hyponormal.

Given 4 € H(p), 0 < p < }, decompose A into its normal and pure parts:
A=A DA (= A, DA |HoH, ) Let Ay € H(p) have polar decomposition
Ap = [ |Ap| then |Ap| is a quas1-afﬁn1ty and U, is an isometry. Define

= |4p|Y2U, | 4p 1’/ 2 and, letting A, have the polar decomposition A, =
p[A |, set A, = |A[2Vy| 4, /2. Then A, € H(p+1/2), 4 € H(1),
o(Ap) = cr(Ap) = o(4p), and both 4, and A, are pure [8] Let A= A, @4,
B =1g, @ |A,[V2| 4,2 and C = 1y, @ U,| A, [*/?V,|4,!%/2; then B is a
quasi-affinity, C* has dense range and
AB=BA and CA= AC.
The following lemma is an easy consequence of the above.

Lremma 3.3. Let A € H(p). Then a(A—X) = oA —)), B4 - X) =
B(A—X) and 05(A) = 04(A), where o, = o or o 0T Ta.

LEMMA 3.4. If A is an isolated point of o(4), A € H(p), and either
a(A —X) or B(A — ) is finite, then A — X € $o(H) and X € op(A).

Proof. It is clear from Lemma 3.3 that A is an isclated point of o(A)
such that either a(A —A) or 3(A~— }) is finite. This, by (13, Lemma XL5.5],
implies that A € op(A4) = op(A). The eigenvalues of an H(p) operator being
normal, we have a{A — A} =F(A—)X) <oo,ie. A— A€ By(H). n

THEOREM 3.5. If either A or A* is in H(p), then
A-ded(H) & A—Xedy(H).

Proof Suppose that 4 € H(p) and A — A € $p(H); then R(A — }A) is
closed, either at(A—A) or A(A~ A) is finite and i(A—A) = 0. The eigenvalues
of an H(p) operator being normal, it follows that N(A—X) S N((A—-A)*).
Hence (A — A) = B(A — A} < oo with V(A4 — X) = M((4 — A)¥), for all
k=1,2,... This, by [13, Theorem VI.4. 51 implies that A is an isolated point
of or(A), and hence (by Lemma 3.4), 4 — A € g o(H).

Conversely, if A-Xe $o(H), then A € crp(A) = op(4) and a(A A) =
alA — X) < co. Hence A — A € $o(H).

Since a similar argument works if A* € H(p), the proof is complete. m

4. Weyl’s theorems. It is shown in [5] that Weyl’s theorem holds for
the clags H(p). We show that it also holds if A* is p-hyponormal.
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PROPOSITION 4.1. If either A or A* is a p-hyponormal operator, then A
obeys Weyl's theorem, i.e.

ow(A) = a(A) \ woo(A)-

Proof. If A is p-hyponormal, then by [5, Theorem 0] A obeys Weyl's
theorem:.

Now suppose that A* is p-hyponormal. Then A: is hyponormal, and
since o(A*) = o(A)*, ou(A*) = ow(A)* and mog(A*) = moo(A)*, where
S ={}:x¢ S} for § C C, we see that A obeys Weyl's theorem. Now,

since o(A) = o{A) and mpo(4) = ’nTQO(A) Theorem 3.5 implies that
ow(A) = ow(4) = o(A) \ moo(4) = o(4) \ mo0(4).0

By [12], a-Weyl’s theorem holds in the class H(1); the following theorem
shows that this is also true for H(p) operators.

THEOREM 4.2. (i) If A* is o p-hyponormal operator, then A obeys a-
Weyl’s theorem, i.e.

Tea(A) = 0a(A) \ 7o (A).

(i) If A is a p-hyponormal operator such that the points of mgo(A) are
also isolated in o(A), then A obeys a- Weyl’s theorem.

Proof. (i) If A* is p-hyponormal, then since o{A) = g.(A) [4, Corollary
6], it follows that wpo(A) = =& (A4). Now, since A obeys Weyl's theorem
{(Proposition 4.1) we have

Teal(4) C ow(A) = a(4) \ moo(4) = 0a(A) \ 15y (4).

Let {A,} be an infinite sequence of different points in nf(A) = mor(A)
and let {z,} be a sequence of corresponding normalized eigenvectors. Then
{X.} is a sequence of eigenvalues of 7™ with same sequence of eigenvectors
{z.} (see [4]). By [4, Corollary 5], {z,} has no convergent subsequence, i.e.
A obeys condition C}. Since

ga{A) \ m(4) C ea(4)

by Theorem 2.5, we conclude that a-Weyl’s theorem holds for A.

(ii) Let A be p-hyponormal and let A € m§(A). Then A is an isolated
point of ¢(A) and ee(A— A) < o0, and so, by L.emma 3.4, the operator A — A
has closed range. Consequently, A obeys condition C% , and it follows from
Theorem 2.6 that

ea(A) C oa(A) \ 7o (A)-

Let {\,} be an infinite sequence of distinct point in 78.(A). Then, by
[4, Corollary 5], (%n,Zm) = 0, n # m, for a sequence of normalized eigen-
vectors {z,} corresponding to {A,}. Thus {z,} does not converge, A obeys
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condition CF, and it follows from Theorem 2.5 that

a(A) \ 750 (4) C Teal4).
Hence, A obeys a-Weyl's theorem. m

We remark here that the hypothesis in (ii} that the points of w3y(A)
are also isolated in o(A) is in general not satisfied. (We are grateful to Dr.
Young Min Han for pointing this out.) Consider for example the hyponormal
operator A which is the direct sum of the 1-dimensional zero operator and
the unilateral shift. Then 0 € wf,(4), but 0 is not an isolated point of a(A4).

THEOREM 4.3. If A or A* is in H(p), then dea(A) = ea(A).

Proof. Since A (resp. A*) € H(p) implies that A (resp. A*) € H(1), by
Lemma 3.3 and Theorem 4.2 we have

Oen(4) = 0a(A) \ 15 (A) = 0a(4) \ 7o (A) = 0ea(4).0
Recall that the spectrum is a continuous function in the class of hyponor-

mal operators. Our next result says that the same is true for the class H(p);
the proof depends on the Berberian extension theorem, which we now state.

TreoREM 4.4 ([3]). There exists a Hilbert space H° > H and an iso-
metric order preserving x-isomorphism B(H) > A — A® € B(H?) such
that

o{A) =o(A%) and ca(4) = 0. (A%) = 0, (4%).

THEOREM 4.5. Let A, or A% be p-hyponormel, for all m = 1,2,...,
and let the sequence {An} converge in norm to A. Then limo{A,) = d(4),
i.e. the spectrum is & continuous function in the class of all p-hyponormal
operators.

Proof. We start by proving that the Berberian extension A2, of Am
H(p) is similar to an F(1) operator. Let A%, = Tpn,. Then T}, € H(p) and
either 0 € op(Tin) or 0 ¢ UP(Tm).

If 0 € op(T}n), then 0 is in the joint spectrum of Ty, and there exists
a decomposition Ty, = 0@ Trn1, on H° = Hy @ Hi say, such that 0 &
op(Trm1). We claim that 0 & o{|Tm1})- Suppose to the contrary that 0 €

o(|Trm1!) = x(|Tma!). Then there exists a sequence {z.} of unit vectors
such that |Tmi|z, — 0 as r — oo. But then Tz, — 0as 7 — oo, ie.,
0 € 07 (Tim1) = 0p(Trm1). This contradiction proves our claim.

Let Ty have the polar decomposn:mn T = Um1|Tm1! Define Tml =
|Tm1|1/ U1 | Tom1 272, Then Ty € H(p + 1/2), with O‘(Tml) = ¢(Tm1) and
op(Tim1) = 0p (Trm1) ([8]) In particular, O ¢ o-(ITmlﬁ) Let Tiy have the polar
decomposition Tt = lele1| and define Ty = {Tona |2 Vi |Tin1 [1/2.
Then Ty € H(1) with 0(Tim1) = 0(Tm1) ([8]). Now let X, be the invertible
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operator X =1ig, ® ]Tml|1/2|Tm1!1/2 and let T, € H(1) be the operator
T = 0® Tony. Then Ty = Xon T X1
In the case 0 € 0,(Thm), an a;rgument similar to the one above shows
that 0 ¢ o(|Th)) and 0 & o(|Tn!), where (upon letting T = = Upn|Twl)
Ty is defined by T = |Tn|/2Um| T2, Let T = Vin |T | and A,, =

| Ty |*/2Vn| Tin | */%. Then T, € H(1) and Ty = XmTm X}, where X, =
lT E1/2|T 11/2
We note that [|Am — A]| —+ 0 implies || T — T = ||4%, — A%| — 0 as

m — oo; hence, given £ > 0, there exists a natural number mgp such that
TP € NTll - (1T = TN+ T - (T = T+ NTE S NITRN + e
and R .
1B l?f = || [T ® L™ < T + £

for all m > mg. In particular, {Tp], ifm| and X, are uniformly bounded.
Since the spectrum of an operator is upper semicontinuous [10], we have
to show that o(A4) C liminf o(A4,). Suppose that the contrary holds. Then
o(T) € liminf o(T},), and given & > 0 we can find a natural number m; and
asequence { A, } C Csuch that Ay, € o(T)\o(T) forallm > my. Let A€ C
be a point of accumulation of {\,,}. Then there exists a natural nurxunber My
such that A € o(T) \ ¢(T;s) for all m > mg. Since 0(Tin) = o(Tin), this
implies that T, — A is regular for all m > ms. The operator T, — A being
hyponormal,
(T = N7 = r(Ton — N7 = max{1/1A~ 4l : p € o(Tn)},
le. (fm — A)7? is uniformly bounded for all m > ma. We have .
I1jze — (T = N)HT ~ )|
= zre = X T = )T XTI = M)
= X (T = XX T = X)X —
< NX (T = NTXZH N T = T — 0

as m — oq, L.e. T — A is invertible. Th1s contradiction implies that we must
have

(- M

c(A) = o(T) C liminf 5(Tp) = liminf o (A, ).
_The proof in the case A7, € H(p) is similar. (We note that || (T =N =
(T — X) 71 if T is hyponormal.) =

COROLLARY 4.6. Let A, or A be p-hyponormal, for every n € N, and
let the sequence {An} converge in norm to A. Then

limow(An) = ow(4) and limon{A,) = on(4),

icm

Weyl’s theorems and continuity of spectra 31

i.e. the Weyl spectrum and Browder spectrum are continuous functions in
the class of all p-hyponormal operators.

Proof. Since the spectrum is continuous, the assertion follows from [7,
Theorems 2.2 and 2.3]. =

COROLLARY 4.7. Let A}, be p-hyponormal, for every n € N, and let the
sequence {An} converge in norm to A. Then limo,(4,) = 0a(A).

Proof. Since A} are p-hyponormal operators, [3, Corollary 6] shows
that 0 (Ap) = 0a(An). Theorem 4.5 now implies that limoa(As) = 0a(A). »

THEOREM 4.8. If { A} is a sequence in H(p) such that A, — A € B(H),
then im 0es(An) = 0ea(4).

Proof. Since g, is upper semicontinuous [6, Theorem 2.1], we have to
ghow that cea{A) C liminf oea(Ay). Suppose the contrary; then there exists
e > 0 and, for every n € N, a A, € 0ea(A4) such that Ay & (0ea(dn))e- Also,
we can suppose that A, — A € 0..(A). Then there exists ny € N such that
|A = An| < &/2 for every n > ng. Now, for n > ng we have

d(A: Uea(An)) = d(An;Uea(An)) - |)\n - )\i > 5/2:

i.e. A & oea(An) for every n > ng. The operator A}, being p-hyponormal, Ar
is hyponormal and it follows that

B(An ~ A) = a(An — A)* = a(d, — N)* = B(4, — N),
a{An — ) = B(An — A" = B(An — N)* = a4, — A).
Since A% & H(1), we also have
N{A, - @) SN(A, - a).
Thus
i(An = 3) = &(An = A) = B(An = X) 2 a(An = A) ~ B(An =) 2 0.

Since A € Gea{Ar) implies that i{A, — A) < 0 (with a(4, — A) < oo), we
must have i{ A, ~)) = 0 with a(A4, — ) = B(An—A) < co. By the continuity
of the index we now conclude that (A — A) = 0 and a{4 — X) < o0, Le.
X € 0es(A). This contradiction proves the result. w

COROLLARY 4.9. If {A%} is o sequence in H(p) such that A, — A €
B(H), then limoa,(An) = oab(4).

Proof. By Theorem 4.8, Theorem 4.2 and [6, Corollary 2.7. =
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Banach principle in the space of T-measurable operators
by

MICHAEL GOLDSTEIN (Toronto, ON) and
SEMYON LITVINOV (Fargo, ND)

Abstract. We establish a non-commutative analog of the classical Banach Principle
on the almost everywhere convergence of sequences of measurable functions. The result, is
stated in terms of quasi-uniform (or almost uniform) convergence of sequences of measur-
able (with respect to a trace} operators affiliated with a semifinite von Neumann algebra.
Then we discuss possible applications of this result.

Introduction. The study of measurable operators associated with a von
Neumann algebra (vINA) and different types of the almost everywhere con-
vergence for sequences of measurable operators goes back to the celebrated
paper of I. Segal [Se]. Since then this branch of the theory of operator al-
gebras has been explored in many different directions. One of them is the
so-called non-commutative ergodic theory, which treats the almost every-
where (or norm) convergence of the Cesiro averages along the trajectory
(under some kind of contraction in a non-commutative LP-space) of an op-
erator in LP. This study was initiated by a number of aunthors, among whom
we mention Lance [La] and Yeadon [Ye]. In the classical ergodic theory, one
of the most powerful tools in dealing with the almost everywhere convergence
of ergodic averages is the well-known Banach Principle on the convergence of
sequences of measurable functions generated by a sequence of linear maps in
an LP-gpace. This principle is often applied in proofs concerning the almost
everywhere convergence of weighted averages, averages along subsequences,
moving averages, etc.

In this paper, using the notion of r-measurable operator, we establish a
non-commutative analog of the Banach Principle. Since we do not assume
the finiteness of the trace, the result is stated for the quasi-uniform con-
vergence. The proof of the main result of this paper, Theorem 2, can be
easily modified for different types of the “almost everywhere” convergences
in vNA, in particular, for the bilateral almost uniform (b.a.u.) convergence
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