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The asymptotics of the Perron—Frobenius operator
of a class of interval maps preserving infinite measures

by

MAXIMILIAN THALER (Salzburg)

Abstract. We determine the asymptotic behaviour of the iterates of the Perron—
Frobenius operator for specific interval maps with an indifferent fized point which gives
rise to an infinite invariant measure.

1. Introduction. In [T5} and under more general conditions in {Z2] a
theorem is proved concerning the asymptotic behaviour of (%5 PRy,
where P is the Perron-Frobenius operator associated with interval maps
with indifferent fixed points and infinite invariant measure. This theorem
provides us with an abundance of uniform sets and Darling-Kac sets, which
play a crucial role in deducing probabilistic laws (see [AD, Al, A2, T7]).
A natural, as well as fascinating, further step is to study the asymptotic
behaviour of the sequence {P"}%.q itself. In view of classical local ratio
limit theorems we may expect to find strong results.

The purpose of the present paper is to study this problem for a class of
examples. Both the method employed and part of the examples are taken
from the unpublished papers [T3, TR, T4]. To the author’s knowledge, no
further results of this type have been obtained in the meantime, except for
the piccewise affine linear case, which in fact does not go beyond the Markov
chain setting. The specifying property of the maps considered here is a kind
of concavity (respectively convexity) with regard to the invariant measure. It
is quite possible that the method of proof can be refined so as to be applied
to more general classes. Qur examples may also be helpful in establishing
further results.

The content of the paper is arranged in the following way. In Section 2
we state the main result, in Section 3 we discuss some particular examples.
The proof is carried out in Section 4. Sections 5 and 6 contain applications
and a concluding remark.
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104 M. Thaler

2. The main result. We are dealing with a class of maps T of [0, 1] into
itself with two increasing full branches and an indifferent fixed point at 0,
which gives rise to an infinite invariant measure equivalent to the Lebesgue
measure A. A well known example belonging to our class is the Lasota~Yorke
map

— x/(l_m)7 m€[0,1/2),
T(z) = {250—1, z € [1/2,1],
which has invariant density h(z) = 1/z (see [LY, LM, BG]). For this example
the theorem stated here was obtained in [T3] by further developing the
analysis in [LY]. The conditions below are chosen in such a way that the
method of proof can basically be retained.

Let ¢ denote the inner endpoint of the monoctonicity intervals, and let
Iy = (0,¢), Iy = (¢, 1). Then T is assumed to satisfy the following conditions:

(i) T\, has a C’-extension Tz, to I, (T“j)’ > 0, and T(L;) = [0,1]
{7 =0,1).
(ii) T is convex in a neighbourhood of 0.

(iii) T admits an invariant measure p equivalent to A, such that the
density du/dX has a version of the form

A(z) = h(z)/z®, € (0,1], where p > 1,
and h is positive, continuous and of bounded variation on [0, 1].
(iv) The function
_hoT T

v h

is increasing on Ij.

The number o = 1/p will be called the return index of T. By B we
denote the o-field of Lebesgue measurable subsets of [0, 1].

Before we state the main result, we shall make a few comments on these
conditions beginning with condition (iv).

Let f; denote the inverse of T|;, and define the function w; on (0,1] by

hof;  f! )
wj=—I (=0).

Since h is invariant, Kuzmin's equation
wogtw =1

holds, and wp, w1 extend continuously to [0, 1] with wp(0) = 1,w;(0) = 0.
Correspondingly, % extends continuously to [0, ¢] with 4(0) = 1.
The identity
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and condition (iv) show that wy is decreasing, and hence w; increasing, on
[0,1].
For a direct geometric interpretation consider the conjugated map
1
S=poTop™ onl0,c0), where wo(z)= Sh(t) dt, z € (0,1],
T

and note that 5’ = 9o~ on [ip(c), 00). In terms of S, condition (iv) states
that S is concave on [p(c}, oc) (and hence convex on [0, p(c))).

The conditions (i)-(iii) determine the asymptotic behaviour of T'(z) for
z — 0, as is clarified by the following proposition.

PROPOSITION. Let T' satisfy the conditions (i) and (i), and assume T
admits an invariant measure y equivalent to A, such that du/dX has a version
h which s continuous and positive on (0,1]. Then T has no fized point in
Iy, and, for every p 2 0, the following asymptotic relations are equivalent:

(1) h(z) ~ B/a" (z = 0),

(2) T(z) -z ~ azP*l (z — 0),

where 3,6 are positive constants.

Proof. Let g = ho fi - fi, which is continuous and positive on [0, 1].
Assume T'(£) = £ and £ € Iy. By Kuzmin’s equation,

(1~ fo(€Nh(&) = 9(8),

so f}(£) < 1. Choose y € (0,£) such that ¥ < fo(y). The interval [y, fo(y))
is a wandering set and

[20]

U 77"(ly, Fol))) € w11,

n=0
which contradicts u([y, 1]} < co.
To establish the equivalence of (1) and (2), we make use of the identity

h:Zgof(;‘.(fS‘)',
n={
which is obtained as follows. Let A = [¢, 1], and let p(z) = min{n > 1:
T(z) € A}, 2 € (0,1]. As T has no fixed point in Ip, we have ¢ < 0o on
(0,1]\ {c}. Let Dy, = AN{p >n}, n =z 0. Since u(A) < o0, the formula

u(E) =Y wDnnT-"VE), EeB,
n=0

holds (see e.g. [A0]). Taking into account that
D, =ANT7H[0,fg(1)}), n21
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we see that the formula is equivalent to

h=> gof§ (ff) Mae on(01].
n=0
Arguments as in the first part of the proof of Lemma 4 in [T2] show that
the right hand side is continuous on (0, 1]. Therefore the above a.e. equality
is a pointwise equality. The second part of the cited proof and a modified
argument in case f§(0) < 1 then yield

Mm~ﬂm;ﬁ@5 (z — 0),

which implies the equivalence of (1) and (2). =

In accordance with the notation in [T2] we put

n—1
wn(T) = p,( U T (e, 1])), n> 1.
k=0

As in Theorem 4 of [T2],

E(O) logn, o =1,
iy (T7) ~ ~
nlT) { ﬁh(ﬂ)(pan)l_“, a<l,

where ¢ is as in the Proposition. To verify this assertion note that

L) ~ (pan) P (n— o0)
and _ LI
wa(T) ~B(0) § —
&)
Recall that the Perron—Frobenius operator P : Li(A) — L1(A) is defined
by

(n — o0).

{Pudi= | ud\, weli()), AeB
A T-14
In what follows, Pu always denotes the version given by
Pu=wofy. fj+uofi-fl.

As for the exaraple in [LY], it can be seen that P"u — 0 in measure for all
© € Li(A). Under suitable restrictions on u, however, proper normalization
leads to non-trivial limiting behaviour.

THEOREM. Let T : [0,1] — [0,1] satisfy the conditions (i)-(iv) with
return index c. Then, for all Riemann-integrable functions u on [0, 1],

1 1

wn (T) Py — (
0
uniformly on compact subsets of (0,1].

icm
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In particular, we have the following local ratio limit theorem:
For any two Riemann-integrable functions u, v on 10,1] with v > 0,
Pru(z) _ foud) h(z)
Profy)  fody My)
uniformly on compact subsets of (0,1] x (0, 1].
To stress the basic probabilistic implication of the Theorem, let the initial
value of the iteration process {T"} be given by a random variable Xy with
density u, so that X, := T"(Xp) has density P™u (n > 0), and let u be

Riemann-integrable. Furthermore, let A be a measurable set with positive
measure, bounded away from 0. Integration over A yields

1 - p(4)
(@I(2—a) wa(T)
Thus the Theorem asserts that the conditional density of X, given {X, €A}

converges uniformly to the proper limit, ie. to {1/u{4))h14. Further con-
sequences will be mentioned in Section 5.

(n — oo)

Prob({X,, € A}) ~ T

3. Examples

1. The Lasota-Yorke exemple and related maps. Let first T be the Lasota
~Yorke map mentioned at the beginning of the previous section:
_Je/(l—x), zel0,1/2),
ﬂ@“{h—L z € [1/2,1],
where h(z) = 1/z. The conditions (i}-(iii) are obviously satisfied with o = 1.
Since

1[)(:5)21—};, RS [011/2]:

condition (iv) alsc holds. As a result, for all Riemann-integrable functions
v on [0,1],
1
(log n)P"u — (Sud)\) h  (n— o0)
0
uniformly on compact subsets of (0,1].
The map T is a member of the faroily

1“”3:, & € [0,1/2),
Tq($)= 20— 1

e g € [1/2,1], g> 0.

g+ (1—qz

Up to a smooth conjugation, this is the class of all maps with two increasing,
fractional linear and full branches, such that 7(0) = 1, TV(1) > 1. The
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invariant density is given by
1
hiz) = ————————
@ = 10w
Since ¢¥(z) =1+ z/(1 — (2 — g)z), = € [0,1/2], our conditions are satisfied
for all ¢ > 0.

These examples show that convexity of both branches of T' is not neces-
gary for condition (iv) to hold.

(see [Schl]).

2. P. Manneville’s ezample and o generalizing fomily. Another simple
example in our class is
T(z) = z +z? (mod1),

a map considered in [M]. As shown in [T6], h(z) = 1/z + 1/(1 +%) is
the invariant density of T. Again it is readily verified that T satisfies our
conditions (with o = 1).

In order to obtain a family of maps covering the whole spectrum of return
indices o € (0, 1] we observe that g(z) = = + 2? satisfies

g'(z)
9(z)

= h(z),

which yields the identities

h(fo@)file) =7 and h(AEDAE) = )

and thus Kuzmin’s equation. Generalizing this observation, put

1 1
I >
@)= G+ Agae “€0L P21
define g, as the unique C*-function on [0, 1] satisfying

?.%gy)ﬁ = hy(z), @€(0,1], and gp(1) =2,

and define the map T}, by
Tp(z) = gp(z) {mod1).
Forp > 1,
e \P! 1/(1—p)
gp(m)xm(1+(1+w) __mp—l) , = e [0,1].
By construction, hy is invariant for T3, and limp_,; T, = 7. Note also that

p = 2 yields the analytically appealing map

z(l 4z
o) = s

{mod1).
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The maps T, obviously satisfy conditions (i) and (iii). Condition (ii)
holds since

mp"i-l + (1 -+ :L.)P"l"l -1
LT+ gyt

g, () = (gp(@)® >0, =& (0,1].

To see that condition (iv}) holds, note that for % € I,

(o) = LN
= h{gp()) (gp(2))P = 1 + (%(%0 :

Thus our theorem applies to all Tp, p > 1. The constant a, needed to
determine the normalizing sequence {w,(T)} for p > 1, is equal to 1 since

: H p—1 __
lim g (2) /2" = p(p + 1).

3. One-sided Boole transformations. Let T satisfy our conditions. We
have already mentioned the conjugation

1
S=poTop ! with @)= S r(t)dt, =€ (0,1],
x
yielding a Lebesgue measure preserving map § on [0, 00) such that Sy, ., .,

is concave. Our third class of examples will be constructed taking the reverse
route. We start with the Boole transformation

B(m):m~mia, z e R\ {a},

where ¢ € R, b > 0 are fixed parameters. As is well known, B preserves
Lebesgue measure A (cf. [A0, Sch2]). We denote by d the positive zero of B
and define S by
~ { Bla), z € [d, c0),
S(a) = {B(m ta—d), zelod).
Since a — d is the negative zero of B, S is a two-to-one map from [0, co} into
itself, which is concave on [d, 00). Evidently,

AS™H(A)) = A(B(4)) for all Borel subsets 4 of [0,00).
Therefore S preserves A. We carry over the map S to [0, 1] by means of the

function p(z) = d(1/z—1), & € (0, 1]. Taking into account that d(d—a) =b
we obtain

b
cp“loSoga=Tq, where q=ﬁ (>0)
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and .
z(1+ (g — 2)x)
(i s,
Tola) = 2(1~ 22)
€ [1/2,1].

1— (g4 2)x + g’
Since |¢' is an invariant density for Ty, it is easily seen that T, satisfles the
conditions (i}—(iv) (with p = 2).
Note that Ty is conjugated to T(z) = go(z) (mod 1), where g9 is as in
the preceding class of examples. In fact, Ty = ¢o T o ¢+ with ¢ = go/2.

4. Proof of the Theorem. To begin with, we restate the Theorem
in terms of the Perron—Frobenius operator 1' with respect to the invariant
measure p. Let L;(p) be the set of all u-integrable real functions v on [0,1]
with v(0) = 0, and let the version of Tv be specified by

Tyv=vo fowo+wo frwy, wveLi(u).
We shall use the abbreviation v, = T™v {n > 0). Since

1 ~f1
'}";P’u, = T(ﬁ"ll.)

and h is bounded away from 0 and infinity on compact subsets of (0,1], the
assertion of the Theorem is equivalent to
1

wn(T) U = “ﬁ(m (SJ'U d[,r,

uniformly on compact subsets of {0,1] for all functions v of the form v =
(1/h)u where w is Riemann-integrable on [0, 1].

Let M denote the class of increasing functions v in Li{p) with posi-
tive integral. The elements v of M are non-negative on [0,1] and satisfy
lilnm_,o ’U(:U) =0

The first step of the proof, which we divide into three lemumas, shows the
assertion for v € M. The second step is an approximation procedure.

First of all, we state the crucial implication of condition (iv) (cf. [LY]).

LemMMa 1. We have T(M) C M.

Proof. Choosev € M and z,y € [0,1] with z < y. Taking into account
that wg + wy = 1 we obtain

v (y) —vi(®) = (v(fi(2) ~ v(fo (1)) (wo(z) — wo(y))
+ (@(fo(y)) — v(fo()))wo(z) + (v{f1(¥)) — v(fi(2)))wr (y).

Since fi(z) > fo(y), and v, fo, f1 are increasing and wy is decreasing, all
differences are non-negative. Hence v; € M. n
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As an immediate consequence we see that the sequence {v,(1)} is de-
creasing for all v € M. In fact, for n > 0,
V(1) ~ vn41(1) = va(1) ~ (wn(fo(1))wo(1) + vn(1)wr(1))
= wo(1)(un(1) ~ va(fo(1))),

which is non-negative for ¥ € M. This property allows us to determine

the asymptotics of {v,(1)} by means of the standard version of Karamata’s
Tauberian Theorem.

LeMMA 2. For all ve M,

wn(T) 'U-n(l) —+ 'Ud'l.t

2—0

OL—’A‘—'

Proof. Let v bein M, let A = [¢,1], ¢{z) = min{n > 1: T"(z) € A}
(z € (0,1]), and

mAN{p >n})
#(A)
Define Q{s) and V(s) for s > 0 by

Q) =3 gme™, V()= wva(l)e ™.

n={ n=0

dn = (n>0).

‘We claim that

1
V(s)Q(s) ~ (‘u—(lA—)Swdu)% (s = 0).

0

This could be proved by referring to the asymptotic renewal equation in
[A0, A2]. The monotonicity of the functions v, allows us, however, to take
a more direct route.

Let An, =g T %A (n > 0). We use the decompositions

An=JTMAN{p>n—k})
k=0
to get the identity

S (ivne”m) (i lAn{¢>n}e“m) du = Z ( S 'ud,u) e™™  (3>0).
A n==0 n=0 n=0 Ap
Therefore, for all s > 0,

V(s) Qs) = {5 S ( ] vdu)e™ + R(s)

A 0 N 4,
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with
R) = =35 § (00 =)™ (3 Langeomse™) s
A n=0 n=0

ForxcAand n>0,

0 £ wn(1) — va(z) £ un(1) — val(fo(1))
1

S e @) (20,

which shows that
0<ris) < 2 o) (5> 0).

wo(l)
Noting that
jare) o0 1 oa
w(A) S om0 2 3 fonde=[o( Y 1407 du
n=0 n=0A 0 n=0
and

S et =co o 0,1\ ) 70D,
n=0

n=0
we see that the series ) -, v,(1) diverges. Therefore lim,_,q V(s) = oo,
and the desired relation follows.
Since u(A) Y r oar = wa(T) (n > 1) and {v,(1}} is decreasing, we
now obtain the assertion by applying Karamata’s Tauberian Theorem (see
e.g. [Fe]). m

Lemma 2 contains the important information that for v € M,
vnp1(1) ~vn(1)  (n — o),
which is needed to prove
LEMMA 3. Forv € M and k > (,
un(fg (1)) ~va(l)  (n— o0).
Proof Let v be in M. Since v, < v,(1) and
(1) = Uni1 = (Unll) —un o fo)wo + (un(1) —wp o fr)wy
we have
0 <un(l) ~wvnofo < %(Un(l) —Unt1) (n=0).
0
This shows that
v (fg () 1 ( v +1(f""(1)))
0<1— 1 - ~ATesd n,k > 0),
Wl (D) w ) Y

and the assertion follows by induction. =
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Now let v € M and k > 1 be fixed. For = € [f¥(1), 1,

Un(féc(l)) < Un(fc)
'Un(l) 'Un(l)

<1.

Hence
Un,

'Un(]-)
finishing the proof of the Theorem for v € M.

Proceeding to the second step of the proof, let S denote the set of all
functions v € Ly(u) for which the desired assertion holds. Then & is a
linear subspace of Ly (u) satisfying T‘I(S ) = &. We shall use the following
criterion, which is an easy consequence of the positivity of T:

Ifve Ll(,u) and for each ¢ > 0 there exist wV,w(® € & such that

wil) < v < w? and S (w® —wM)dy < e, then v € 8.

We claim first that

1

€ § for all w € BV{[0,1}),

where BV([0,1]) denotes the set of real functions on [0,1] with bounded
variation. To prove this, note that for u € BV([0, 1]) there exists a constant
K such that

@®

0

This estimate is readily verified by means of the product rule using the

representation
1 u(z)
—u |(Z) = = I z € [0,1],
()@=52-w =con
and taking into account that h is supposed to be _of bounded variation and

bounded away from 0.
Therefore the components in the canonical decomposition

— 1  uniformly on [fE(1),1],

€ [0,1].

;"IP"‘

!

lu =y —v® with vM(z) = \/ —u, z€[0,1],

h MR

are elements of M, and the claim follows from the first step of the proof.
Now let v = (1/h)u where v is Riemann-integrable on [0, 1], and let £ > 0

be given. Choose a partition of [0, 1] consisting of intervals Ji, 1 <k < N,

such that
N

N
3 BAT) — ) erA k) <6,

k=1 k=]
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where
ar = inf u(z) and B = sup u(z)

w&Jy, 2EJy

Letting
1 & vl
wit) = 7 Zcxlik and w® = 5 Zﬁlik

k=1 k=1

we have

1
w® <o<w® and {(@®-w)dp<e
0

Evidently, w(®), w(?) are as considered before, and thus belong to . In view
of the above mentioned criterion the proof is complete. m

5. Two corollaries. To indicate possible applications of the Theorem,
we shall briefly discuss a mixing property considered first by E. Hopf ([H],
§17) and give a simplified proof of a distributional limit theorem.

Before proceeding, we mention that a map T satisfying the conditions
(1)-(iv) is conservative and ergodic with respect to A. Conservativity is an
immediate consequence of Maharam’s recurrence theorem (cf. [AD]). Ergod-
icity can be proved as follows. Let S be defined as in Section 2, let § denote
the map induced by S on [0, p(c)), and let Pz be the Perron-Frobenius op-

erator of § with respect to A. The map s preserves A, and is easily seen
to be uniformly expanding. Exploiting the monotonicity properties of the
derivatives of the branches of S, it is not difficult to verify that S satisfies
the bounded variation condition in [R] (cf. also [BG]). Helly’s theorem and
an approximation argument may then be used to get

1 oot wlc)
Jim =37 § Phudi = ( ! udA)A(B)/tp(c)
k=0 B 0

for all measurable subsets B of [0, ¢(c)) and all functions u in L ([0, »(c)), A).
This proves ergodicity of s , and thus ergodicity of T'.

Qur theorem clearly implies convergence in the sense of [T5]. n partic-
ular, a map T" satisfying (i)-(iv) is also pointwise dual ergodic.

Strong mizing and the spreading rate. Recalling the notion of strong
mixing in infinite measure spaces in the sense of [H, Kr, P, Fy], let T be
a measure preserving transformation on a measure space (M, B, u) with
u(M) = oo, and let R be a ring of sets of finite measure generating B
(mod 0}, such that T-*(R) C R. The transformation T is called mizing
with respect to R (or R-mizing) if there exists a sequence {p,} of positive
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numbers such that
nlwim'nolo ont{(ANT"B) = p(A)u(B) for all A,BeR.

The order of the sequence {g,} is called the spreading rate of 7.
It follows immediately from our theorem that the transformations con-

sidered here are mixing with respect to a ring consisting of continuity sets.
We state this as

CoROLLARY 1. Let T': [0,1] — [0, 1] satisfy the conditions (i)~(iv) with
return index o, let B, u be as in the previous sections, and let
R={AeB:0¢ 4 and AOA) =0}.
Then R has the reguired properties, and T is R-mizing with spreading rate
{en} ={T() (2 - a)un(T)}. w

The defining limiting relation still holds tiue even if B is assumed to be
a set of finite measure.

To prove this, we note that {w,(T) T"u} is uniformly bounded on [0, 1]
if u is a measurable function such that uh is bounded. For, if |uh| < cq, then

lu| < co% < cv, where wu(z)=2*, z€[0,1].

Since v € M, we have T™v < v, (1), and hence
wn(T)\f”u\ < cqun (v (1) (n >0,

which proves the claim in view of Lemma 2.

Now, if A € R and B € B with u(B) < oo, the pointwise convergence

0n T4 — p(A)

is dominated on B, and the relation follows by integration. =

The relation cannot hold for arbitrary sets A and B of finite measure.
In fact, T' admits weakly wandering sets of positive measure (cf. HK]), and
for these sets A obviously Bminf, .o onpt(ANT~™A) is zero. On the other
hand, by means of the following construction we easily get measurable sets

A of finite measure such that limp e on p(ANT™A) is infinite.
Let {G,}2, be a sequence of positive numbers such that the intervals

Jo = [f§(1), FE(1) + Br] satisfy
Je € AW, 5] and T(Jein) Sk B2 L
Let A be the union of these intervals. Then ‘
ANT A2 | Jo, andhence wANT™"A)2 3" u(Je) (n = 0).

k>m k>n
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Consider, for example, the Lasota—Yorke map, choosing 31 =1 /2 and
1
Br = 2 Tte’
(k + 1)2(log(k + 1))
This sequence satisfies the required conditions, and the estimates
kBe < p(Jx) < (b +1)B  (k21)

show that u(A) < co and p(A NT""4) > w/(logn)® (n > 2) for some
constant x > 0. Therefore A has the desired property.

E>2, where0<e<l.

Arc-sine laws: A more direct approach. In [T'7] the Dynkin-Lamperti
arc-sine laws are studied for pointwise dual ergodic transformations. For
maps as considered here, our theorem allows us to give a more direct proof
of the central implication. We refer to [T'7] for the full version of the limit
theorem.

Let T : [0,1] — [0, 1] satisfy the conditions (i)—(iv), and let A be a fixed
measurable set of positive measure which is bounded away from 0. For n = 1
and z € s T*A let Zn{z) denote the time of the last visit of the orbit
of z to the set A during the time interval [0, n], Le.,

Zn(z) = max{k € {0,1,...,n}: T*(z) ¢ A}.

Extend Z, to [0,1] by Zn(z) = 0 for z € [0,1]\ Up_o T~ %A. As recalled in
the following corollary, the sequence {(1/n)Z,} exhibits beautiful limiting
behaviour with respect to distributional convergence.

COROLLARY 2. Let T have return indez o with o < 1, and let {, denote
a random variable with densily

sin e 1
fgox(ﬂ:) - - ) ml_a(l IR :L')a’

z € (0,1).

Then

1
- Zy = Lo in distribution

with respect to any A-absolutely continuous probability on [0,1]. For o =1
the assertion holds with (; = 1.

Proof. Let first v be a probability distribution on [0, 1] with a Riemann-
integrable density u, and let 0 < z < y < 1. Denoting by ¢ the first return
time of A we have

v{z < (/n)Zn <y = Y, vTHAN{p>n~k})
nr<k<Lny
1
= Z: SPkulAn{cp>n—k}d)\~

ne<k<ny 0
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Assume a < 1. If we use the formula I'(a)I'(1 ~ @) = «/sinwe and put

b= h(0)al=*/p®, our thecrem takes the form

sin ey 1
T ni-e

The asymptotic renewal equation technique in [A0], §3.8, yields

S uAn{p > k}) ~wn(T)  (n - o0).
k=0

Py~

h (n— o0) uniformly on [g,1] for each & > 0.

Since
b

11—

nl™®  (n-— o)

wp (1) ~

and the sequence {u(A N {¢ > n})} is decreasing, it follows that
wAN{p >n}t) ~b/n*  (n— o)

Therefore,
. sinTa . 1
Jim v({z < (1/n)Zn L y}) = —— lim > e An{p>n-~ k})
na<k<ny
sin o 1
= lim. ——
T nooo nwf:_zk;;ny kl_a(n — k)"‘
_ sinma li dt
" el — )’

T
As every probability density on [0,1] can be approximated in L;(A) by
Riemann-integrable densities, the assertion of the corollary is proved for
o < 1. The case o = 1 can be treated in a similar way. =

6. Concluding remark. We conclude our considerations presenting a
family of examples which clarify that convexity of both T}y, and T}y, is not
sufficient for condition (iv) to hold.

Define T for ¢ > —2 by

{1+ 2(¢ + L)x) :
Ty(z) = it 7SOV
! 2@z 1) ze[1/2,1].
14¢q(1 —2)’ ’

This family interpolates the Lasota—Yorke map (g = —1) and P. Manneville’s
example T'(z) = z + 2? (mod 1), which is conjugated to Tp via the function

$(z) = (z+2%)/2 (To = goTod™). '
‘We claim that

h(z) = 1/z is invariant for all ¢ > —2.
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Let ¢ > —2, ¢ # —1, be fixed, and let

so that

_z(l4+2(g+ 1))
B 14 gz

t(x) (z € R, gz # -1),

T =4e) ond Tin(e) =t(-—2).

For y € [0, 1] the solutions of the equation #(z) = y are therefore

1
Yo = foly) and 1= _q_l_lfl(y)'
Thus, by Vieta’s theorem,
| Yoy1 = Y ie. foly)fa(y) = ?i:

2g+1) 2

and logarithmic differentiation yields the assertion.

It is readily verified that the conditions (i)—(iv) are satisfied if ¢ < 1. If
q > 1, condition (iv) does not hold, althcugh both branches of T, are convex
for these parameters.

As noted at the beginning, the purpose of this paper is to point out by
means of examples that the question under consideration indeed leads to
the expected results. It may be conjectured that our theorem is true under
conditions as general as those in [Z2].
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