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Selfsimilar profiles in large time asymptotics
of solutions to damped wave equations

by

GRZEGORZ KARCH (Wroclaw)

Abstract. Large time behavior of solutions to the generalized damped wave equation
ug + Aug + vBu + F(z, t,u,1, Vu) = 0 for (z,t) € R* x [0,00) is studied. First, we
consider the linear nonhomogeneous equation, i.e. with F' = F(z, t) independent of u. We
impose conditions on the operators A and B, on F, as well as on the initial data which lead
to the selfsimilar large time asymptotics of solutions. Next, this abstract result is applied
to the equation where Aw; = g, Bu = —Au, and the nonlinear term is either Juea |97 gy
or |u|°"'1u. In this case, the asymptotic profile of solutions is given by a multiple of the
Clauss-Weierstrass kernel, Our method of proof does not require the smallness assumption
on the initial conditions.

1. Introduction. The goal of this paper is to study the large time be-
havior of solutions to the initial value problem for the generalized semilinear
wave equation with a dissipative term

(1.1} wg + Aug + vBu+ F(z,t,u,u;, Vu) =0, xe€R", >0,
(1.2) w(z,0) = ug(z), welx,0) = uz(z).

In the equation above, the pseudodifferential operators A and B are defined
via the Fourier transform by the formulae

(1.3) Au(g) = le1"0(¢) and Bu(€) = |¢15(8)

for some real constants a and b satisfying 0 < 2a < b. Moreover, » > 0
is a fixed constant, and assumptions on the nonlinear term are specified in
Section 2 below.

Our main purpose is to find conditions on the operators A and B, on
the nonlinearity F, as well as on the initial data up and wuy, which lead
to the selfsimilar large time behavior of solutions. In the first step of our
considerations, using the Fourier transform we solve the linear equation

2000 Mathematics Subject Classification: 356B40, 351,15, 35L30.
Key words and phrases: the Cauchy problem, generalized wave equation with damping,
large time behavior of solutions, selfsimilar solutions.
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176 G. Karch

ust + Aug + »Bu = 0 supplemented with the initial data (1.2). A careful
analysis of the solution formula to this linear equation leads to the conclusion
that they behave, as ¢ — oo, like solutions of the diffusion equation v; +
vA~1Bv = 0 supplemented with the initial condition v{x,0) = wup(z) +
A~ uy(z) (assumptions, statement of results, and their proofs are given in
Section 4, ¢f. Propositions 4.1 and 4.2).

Next, we assume that a = 0 (i.e. Au; = w;) and F = —f(z,¢) is inde-
pendent of u, which reduces (1.1) to the linear nonhomogeneous equation.
In this case, we prove that the large time asymptotics in L?(R™), p > 2, of
solutions is described by a multiple MGy of the fundamental solution Gy
of the equation u; + vBu = 0. Note that such a fundamental solution has
the selfsimilar form t="/2Gy (x/t'/?). Moreover, the constant M depends on
f(z,t) and on the initial data (1.2) only (cf. Theorem 2.1 below).

Finally, we apply our results concerning the linear nonhomogenecus
equation to the nonlinear problem (1.1)-(1.2) with @ = 0 and b = 2 (i.e.

B = —A) obtaining the selfsimilar asymptotics of solutions in three differ-
ent cases:
1.z € R, F(z,t,u,us, Vu) = |ug|7" 1y and no smallness assumptions

imposed on the initial data (cf. Theorem 2.2);

2. n-dimensional case, F{z,t,u,u:, Vu) behaves like (u/*~'u, and again,
we do not assume the initial data to be small (cf. Theorem 2.3);

3. general F(z,t,u, us, Vu) and small initial data (1.2) (cf. Remark 2.3).

Fine estimates of oscillatory integrals which appear in the variation-
of-constants formula for solutions to the linear nonhomogeneous equation
e + Auy + vBu = f are the core of this paper. We systematically use
tools from the harmonic analysis on R gathered in the monographs by
Stein [28, 29]. In our considerations, we also need a certain variant of the
Marcinlkiewicz—-Hormander multiplier criteria for symbols having singulari-
ties away from the origin (cf. Remark 2.1). Let us also emphasize that more
general operators A and B than those defined in (1.3) can be treated by
methods from the paper. The only requirement is that their symbols are
sufficiently smooth for £ # 0 and behave asymptotically like |£]* and |¢[?,
respectively, as |£] — 0. Section 2 contains a detailed presentation and dis-
cussion of our results.

The proof of local and global existence of solutions to a large class of
partial differential equations of the second order, similar to (1.1), can be
found e.g. in [27]. We also refer the reader to [19] for a deeper discussion
of the nonlinear wave equations. Let us remark that basic questions on the
existence and uniqueness of sclutions to (1.1)—(1.2) can also be studied via
the semigroup method—an example of such a reasoning for a particular
equation can be found in {10, Section 2.1].
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There are several papers where asymptotic properties of solutions to
some versions of equation (1.1) are considered.

The decay, in various norms, of solutions to the Cauchy problem for the
semilinear wave equation with the first order dissipation uy — Au + ue +
f(u,u, Vu) = 0 was studied by Matsumura [20] and by Kawashima et al.
[18]. In [20] it is proved that, in some cases and for small initial data, de-
cay rates of solutions agree with the analogous estimates to the linearized
equation. This research was continued in [18] and similar results were ob-
tained for f{u,u, Vu) = |u|*u, however, without smallness assumptions on
the initial conditions.

Racke [26] discussed estimates of solutions to the damped system of the
following type: uy -+ cuy + Bu = 0 in an exterior domain and for B being
the power of an elliptic operator in divergence form.

Partition of energy as time tends to infinity in a strongly damped gener-
alized linear wave equation was proved by Biler {1]. Next, in the subsequent
paper [2], Biler studied nonlinear wave-type equations with strong damp-
ing. An introduction of (pseudo)conformal invariants of the linear part of the
equation allowed him to obtain optimal decay rates for solutions to the lin-
earized problems. Then decay estimates for nonlinear problems were proved
using scattering theory tools.

The idea that large time behavior of solutions to hyperbolic equations
with damping is described by a selfsimilar diffusive profile is not new. Some
results in this direction have already been obtained by Hsiao and Liu [11, 12],
Nishihara [21-23)], Nishihara and Yang [24], Yang and Milani [30]. Analyzing
the long time behavior of a damped hyperbolic system, these authors showed
that solutions of a conservative quasilinear wave equation converge, as £ —
co, to solutions of the corresponding quasilinear heat equation.

Recently, Gallay and Raugel [10] studied large time behavior of small
solutions to the nonlinear damped wave equation ety + ur = (a(z)uy)s -+
N(u,ug,ut), ¢ € R, under the assumption that the diffusion coefficient a(z)
converges to positive limits a4 as £ — Zoo. Introducing scaling variables
and using various energy estimates, they found an asymptotic expansion of
solutions as ¢ — cc. They showed that this expansion is determined, up to
the second order, by a linear parabolic equation whose form depends only
on the limiting values a... On the other hand, in a successive paper [9], for
a =1 and N (4, Uz, ws} = u—u?, they studied properties of travelling fronts,
and they proved various stability results which are similar to those for the
corresponding parabolic equation.

Let us finally mention that there are a lot of papers containing similar
results on large time behavior of solutions to conservation laws with dissipa-
tion and dispersion (cf. e.g. [3-5, 8, 14-17] and the references given there). In
all those publications, the asymptotics of solutions is given by a selfsimilar
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diffusive profile. Qur list of such papers is by no means exhaustive—we only
cite the publications which had a direct influence on this paper; moreover,
they used methods similar to ours.

Assumptions and statement of our main results can be found in Section 2.
Section 3 contains technical lemmata concerning the asymptotic properties
of the semigroup of linear operators e*Z. Those facts will be useful in the
proof of the first theorem in Section 2. We study the large time behavior of
solutions to the linear nonhomogencous equation uy + Aus + vBu = f(z,t)
in Section 4. The proofs of Theorems 2.2-2.3 can be found in Section 5.

Notation. Throughout this paper we use the notation |ul|, for the
Lebesgue LP(R™)-norms of functions. As usual, for p = oo, 1/p is under-
stood as 0, and 2p/(2 + p) as 2. The Fourier transform of v is given by
Fo(£) = 5(¢) = {gn e7*Cu(x) da. Given I > 0 the operator D' is defined in
the Fourier variables as F[D'0](¢) = |¢|'Fv](z). The constants independent
of the solutions considered and of ¢ (but perhaps depending on the initial
values) will be denoted by the same letter C, even if they may vary from line
to line. Occasionally, we write e.g. C' = C'{,l) when we want to emphasize
the dependence of ' on parameters « and [.

2. Results and comments. Our considerations begin by the study of
the asymptotic behavior of solutions to the problem

(2.1) ty + Aus + vBu = f(z,t), zeR",t>0,
(2‘2) H(E, 0) = UO(E): ut(ma 0) = ul(m)ﬂ

where the pseudodifferential operators A and B are defined via the Fourier
transform in (1.3), and the external force f(z,1) satisfies assumptions speci-
fied below (cf. (2.11) and (2.12)). This linear nonhomogeneous equation can
be solved following the standard procedure. Indeed, for sufficiently regular
initial data and external forces, computing the Fourier transform of {2.1)
with respect to z, solving the resulting ordinary differential equation with
respect to ¢ and inverting the Fourier transform, we obtain the variation-of-
constants formula for solutions

¢
(2.3) u(z, t) = St)uo(z) -+ T(t)us () + S T(t — 1) f(z, ) dr.

0
In the expression above, the linear operators S(¢) and T'(¢) are defined as
the Fourier multiplier operators

(24)  FIS(Huo](§) = ms(§,t)uo(€) and FIT(B)u](§) = mr(§, 1)1 (£)
with the symbols
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(25)  ms(f,t) = e~ W/2E Q- IR

11 WEE e (t \/_‘27—*"“5)
+ o= e sinh 5 1€ wiE ),
= sinh((t/2)/[€]** — 4v[¢]°)

€= — avle?

We refer the reader to Section 4 which contains the detailed analysis of
the asymptotic properties of u(z,t) defined by (2.3) under the assumption
0 £ 2a < b (this is the so-called non-overdamped case). The results from
that section lead to the conclusion that, for ¢ = 0, the solutions to (2.1)-
(2.2) behave, for large t, like a multiple of a selfsimilar function. Before we
formulate our first theorem let us recall some auxiliary facts.

Each solution v = v(z,t), x € R", t > 0, of the Cauchy problem

(2.7 ve+vBv =0, v(z,0)=uwvo(z),
with sufficiently regular vy, can be expressed via the Fourler transform as
(2.8) v(z, t) = Gp(vt) * vp(z) = e "By (2),
where the kernel G), is defined by
(2.9) Col(z, 8) = (2m)~™/2 | e7tlél"+int g,
11y

It is easy to check {by a change of variables in (2.9)) that G4 has the self-
similarity property
(2.10) ' Gz, ) =+ /PGy (zt1/5, 1).
Detailed analysis of asymptotic properties of solutions to (2.7) is contained
in Section 3.

Now, we are in a position to present our first result stating that the large

time asymptotics of solutions to (2.1)—(2.2) for @ = 0 is given by a multiple
of the selfsimilar kernel Gy(z,1).

THEOREM 2.1. Let a = 0 and p € [2,00]. Assume that u is the solution
to (2.1)-(2.2) corresponding to the initial data ug,uy € L1(R®), satisfying
moreover D 2ug,uy € LP(R™). If 2 < p < 2n/(n — 1) suppose that there
exists € > 0 such that
IFC s € Ca(L+8)175,
£ Bl < Cal 1 )-(0-1/R1=
for all t > 0 and positive constants Cy, Cy independent of t. If 2n/(n — 1)
< p < 00 we require, besides (2.11), a faster decay rate of the L?*/?+% .norm
of f(z,t), namely,

(212) 1+ Olapsimeay < Ca(L 48~ /DO=1/p=1-¢

(26) mT(g,t) = 2o~ (t/2)1¢

(2.11)
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for all t > 0 and a positive constant C3. Then

(2.13) lu(-t) — MGe(-, vt)lp = o(t~(MDA-YP))  gst — oo,
where
o0
M= S uglx) dz + S us(z) de + S S flz,t) dz dt.
R® R™ 0 R

This theorem is an immediate consequence of Corollaries 4.1-4.2 and
Proposition 4.3 from Section 4 which analyze, in detail, the behavior as
t — oo of each term on the right hand side of (2.3).

REMARK 2.1. Combining the Hélder inequality with (2.11) we obtain
I 7Ct)ll2p) oy < C(1+ t)“(n/b)(l/2—1/p)-1-g

for all ¢ > 0 and a constant C. The stronger decay estimate (2.12) is required
in the proof of Proposition 4.3, when the inequality

(2.14) 1T (O)F G D) lle < CONSC 7

fails to hold for p > 2n/(n—1). Here, T}, (t) is the Fourier multiplier operator
defined by F[T'(t)v](£) = ma(€,£)x2(E)F[w](E) for mp(€,t) given in (2.6)
with a = 0 and y2(&) being a smooth radial compactly supported function;
cf. the beginning of Section 4. On the other hand, to get (2.14) for 2 <p <
2n/{n — 1), we apply a variant of the Marcinkiewicz-Hérmander multiplier
criteria formulated and proved by Igari and Kuratsubo in [13], and the
restrictions on p in Theorem 2.1 are required by their result.

Now, we present the way of using Theorern 2.1 in the study of the large
time behavior of solutions to the nonlinear wave equation with the first order
dissipation

(2.15) Uy + U — vAuU+ Flu,u,, Vu) =0, zeR*,
supplemented with the initial conditions
(2.16) u(z,0) = ug(xz), ulz,0)=1wuy(z}.

We are going to apply known estimates of solutions to (2.15)-(2.16) in order
to prove that the function f(z,t) = ~F(u(z,1),us(z, t), Vu(z, 1)) satisfies
the estimates (2.11) and (2.12). Next, Theorem 2.1 will conclude the proof.

Let us first apply the decay estimates obtained by Matsumura [20] to
get the selfsimilar large time behavior of solutions to (2.15)-(2.16) for a
particular form of F.

THEOREM 2.2. Let n = 1 and F(u,uy, Vu) = |ug| 71wy, in (2.15) for some
g > 2. Suppose that up, w1 € C°(R). Then the Cauchy problem (2.15)—(2.16)
has a unique O2-solution. This solution satisfies

lu(-,8) — MG (-, v8) [ = o(t™ /DO g5t — 00
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for every p € [2,00] and
- )
M = {ug(z) dz + w1 (z) dz — H (]9 Y) (, t) daz dt.

R R
The next theorem improves results by Kawashima et al. [18].

THEOREM 2.3. Let n < 3 and Flu,u, Vu) = g(u) in (2.15), where g(u)
is o continuous function on R satisfying
gl > kg) 20 for Gu)=2{g()dz and |g(u)] < Kolu**"
0
for some positive constants k, ko and o, Assume that

dn<a<2/n—2) fn=3, and 4/n<a<cc ifn=12.

Suppose that up € HY(R™) N LY (R™) and uy € L2(R™) N L (R™). Then the
Cauchy problem (2.15)—(2.16) has a unique solution, and v satisfies

lu(,t) — MG, v)|lp = ot~ "DA=1/PY) a5 ¢ — o,
for

M = | uo(z)dz+ g u(z)de— | | g(u(z,t)) dzdt,
R Rn 0 Bn
and for every p satisfying 2 < p < 2n/(n —2) forn =3, 2 < p < oo for
n=2,ond 2<p< oo forn=1.

REMARK 2.2. First of all, we would like to emphasize that the selfsimilar
asymptotics of solutions from Theorems 2.2 and 2.3 is obtained for initial
data which are of arbitrary size. Previous papers {cf. [11, 12, 21-24, 30])
always required some smallness assumptions on the initial conditions.

REMARK 2.3. Using results from [20, Theorems 3 and 4] and following
the proofs of Theorems 2.2 and 2.3, we can handle arbitrary nonlinearities
F(u,us, Vu) in (2.15) with F(0,0,0) == 0 obtaining selfsimilar asymptotics
of solutions, however, for small initial conditions only.

REMARK 2.4. We do not need to limit ourselves to the one-dimensional
case in Theorem 2.2. In order to extend that result to higher dimensions, it
suffices to apply decay estimates of solutions cbtained recently by Ono [25],

3. Preliminary estimates. Recall that for [ > 0 the operator Dlis
defined by the Fourier transform as F[D'w|(¢) = |£{'@(¢). Note that, ac-
cording to this definition, D* = —A, D* = 4, and D? = B. Using again
the Fourier transform we immediately deduce that for sufficiently regular v
each solution of the Cauchy problem vy + Div = 0, v(z,0) = vo(x) can be
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written as

(8.1) v(z,t) = Gi(t) xvo(x) = e"tDlyO(;,;),
with the kernel

(3.2) Gz, t) = (2m) /2 | e7HEl 0t g,

R
Moreover, (G; has the selfsimilar form
(3.3) Gylz,t) =t~ Gy (w11 1).

REMARK 3.1. Obviously, the kernel G(z,1) is a C*™-function as the
Fourier transform of a function exponentially decaying at infinity, Moreover,

for every multiindex & = (o1,...,&n), @ = 0, there exists a constant
C = C(a), independent of z, such that the inequality
e

!
ZaGi(a)] <O+l
is valid for all z € B™. (For a proof of a more general result we refer the reader
to Dziubanski [7, Theorem 2.6].) Hence G,(:,1) € L*(R™) N L*°(R"). Note,
moreover, that for [=2, the heat kernel Gz (z, ) = (4mt)~"/? exp(—|z(|?/(4t))
decays exponentially in z. Furthermore, by (3.3) and by a change of variables
we have

(3.4) Gty = PG Dl
for every p € [1,00] and all ¢ > 0.

REMARK 3.2. If 0 <! <2, G} is the density of the so-called symmetric
stable semigroup of probabilistic measures, so is a nonnegative function. We
refer the reader to 3, 4] for a fuller treatment of asymptotic properties of
solutions to conservation laws with anomalous diffusion modelled by D!,
0 <1 <2, and its generalizations.

Our first Jemma determines the decay rate of the L*-norms of (3.1).

LeMmMa 3.1. For every g € [1,00] and p € [g,00] there emists a positive
constant C independent of t such thot

(3:5) le™* uoll, < G CE LR My
for every t > 0 provided vy € LI(R").
Proof The proof is based on the Young inequality

(3-6) : [ih* glls < Rllellglis

valid for every p,q,7 € [1,c0] satisfying 1 + 1/p = 1/qg+ 1/r, and all h €
LIR"), g € L"(R™). We apply (3.6) to (3.1) and use (3.4). =
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The asymptotics of e~*2 vy with vy & L1 (R™) in the inequality (3.5) is
improved in the following lemma.

LEMMA 3.2. Assume that vy € L*(R™). For every p € 1, o],

(3.7) He‘wlvo — (RSn vg(z) dm)Gz(‘,t)”p = o(t—(ﬂ/l)(lpllp))
as t— oo.

Proof. This result is obtained from the inequality
38)  [hrot) - (] he)da)a()] < CUValplblzr e iam)
]R‘ﬂ.

valid for each p € [1, 00], all h € L} (B, |z| dz), g € CH{R*)NWHL(R"), and
a constant C' = Cp independent of g and h. This inequality is a particular
case of a more general result proved in [6].

For the proof of the lemma, we apply (3.8) with h(z) = wvp(z) and
g(z) = Gi(z,t), assuming first that vg € L}(R", |z|dz). Here, one should
use the equalities || VGy(-,t)]|, = t~™=VR/ -1/ 7Gy (-, 1)|l, for all t > O,
which are a direct consequence of (3.3) and Remark 3.1. The general case
of vy € L(IR™) can be handled by an approximation argument. Details of
such a reasoning can be found in [3, Cor. 2.1 and 2.2]. =

4. Asymptotics of solutions to the linear equation. First, note
that 1 — 4v|¢[°=22 = 0 for |¢] = (4v)~Y/(~29), For fixed real constants
R}_, Rz, Rg, Rg, satisfying

0< Ry < Ry < (4) Y =28) « By < Ry,
we choose nonnegative radial functions xj, X2, xs € C*(R™) such that

_ |1 for ¢ < Ry, _ [0 for|¢l <R3,
xulg) = {0 for |¢] > R;, xa(€) = {1 for |¢| > RZ,

xz2(8) =1~ x1(&) — x3(£).

Using the cut-off functions x; we decompose 5(t)ug and T'(¢)u; into

3 3
(4.1) S(thuo =D Sy;(huo and T(thur =Y Ty, (Bhus
i=1 =]
where, analogously to (2.4), we define F[S,, (t)uol({) = xi(€)ms(£, t)up(§)
and f[TXi (t)ul](f) = Xi(f)mT(‘Si t)ﬁl(f)
4.1. Asymptotics of S({t)up. Now, we are in a position to prove our

preliminary results concerning the large time behavior of the first term on
the right hand side of (2.3).
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PROPOSITION 4.1. Let p € [2,00] and ug € L*(R™).
(1) Assume 0 < 2e < b. There exist positive constants C, x such that
b—a
(42) IS0 ~ e " uglly
<Cluoll1 ((1 + t)—(n/(b—a))(l—1/p)~"(b—2a)/(b—a)
+(1+ t)—(ﬂ/a)(l“‘l/P)'—(b—2“)/‘1
+ (e =a)1=1/p) | p=(r/a)(1-1/B) 4 1))

forallt > 0.
(i) Assume 0 = a < b. Let, moreover, D*?uy € LP(R™). There exist
positive constants C, k such that

(43)  [S(t)wo — e uolly
< Cllupll1{(1 + )~ /BC=L/R=1 4 (4= (n/B(A-3/p) 4 1)e5t)
+ O||D* ug|pe™™
forall t > 0.

COROLLARY 4.1. Assume ug € L'(R™) and let My = {;. uo(z) dz. Under
the assumptions of Proposition 4.1, for 0 < 2a < b and p € {2, 00},

(4.4) NS uo(-) — MoGo_al-, vt)|lp = ot~ (W E=aDO-L/PYy  gst — o0,

Proof This corollary, asserting the selfsimilar large time behavior of
S(t)uo, is an immediate consequence of Proposition 4.1 combined with Lem-
ma3.2. u

Proof of Proposition 4.1(1). The proof consists in finding appropriate
estimates of Sy, ({)ug in the decomposition (4.1).

Estimates of Sy, (t)uo. First recall the elementary inequality
(4.5) 051—3—\/1—35%3 forall0< s < 1.
Moreover, ii is easy to see that
{4.6) le™® — e~ < |k — lle” ™R for all k,1> 0.

To estimate x1(£)mg (€, t), note that for |£] < Ry (i.e. on the support of
x1) straightforward calculations show

(4.7) v|gpe < %(1 — /1 — 4u|£b—29) < aplg|b-e,
Next, using (4.5) for s = 4v|£[>2° we get

ws) [P0 VIR - v < oriepe
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Hence, combining (4.8) with (4.6} and (4.7) we obtain
(49) |G O—VIBEF) _ ~usiepme

for [£] < Ra.

Now, let us estimate the second term in the definition of mg(£,t) (cf.
(2.5)). According to the inequalities

sinh (%\/m?a - 4u|§|5) ‘ < C(Ro)t)E|*

< C‘E\Eb-—3at8-—ut]£|""°

and
=1+ VI~ WfEP| < 4ofgft2e

(the latter follows from (4.7)), which are valid for |£| € R, we have
e~ (&% ¢inh (%,/lﬂza _ 4y|§1b)

S 4y0t|£]b—a’e—(t/2)léia .

—1 — b—2a
(4.10) F + /1T — dv[g]

V11— dvjef-2a

Next, we will use the Hausdorff-Young inequality
(4.11) [@llp < Cllvllg;

valid for every 1 < ¢ £ 2 £ p £ oo such that 1/p+ 1/g = 1. In view of

the definitions of S, () and e""tDbM, for every p € [2, 00}, it follows from
(4.11), (4.9) and (4.10) that

(412) ||y, (E)uo — €2 " ug||2

< C | I (€)(ms(€, 1) — e ") 9y (¢)|7
]R’FL

+C {101 — xa(€))e " |1]G ()2 de
R

SOlolide (| (ePutem el ™) 4 tlg e /AN ) ag

[£[<Rg

+ S e—vqflélb”“dg)
[£]> B4

< Clfuoll3((1 + 1)/ C==C=2e1a/0-2)
+ (1 + t)——n/a—(b—%}q/a +t—~n/(b—-a)e—nt)

for all ¢ > 0, and some positive constants C' and « independent of ¢. Here,
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to get the last term on the right hand side of (4.12), we use the inequalities
S e valEl’ e d¢ < g—vatRy /2 S e vatlel® /2 de = ¢/ (balgmrt
1€i>Rq R~
for C' = ;. e=*2w"™*/2 gy and k = vgRE4/2.
Estimates of Sy, (t)up. Since, in this case Ry < [£] £ Ry, there exists
a positive constant & such that
le—(fﬂ)lﬁi“(l— Lodufg[Pm2e)) o gnt,

Moreover, the function (sinh z)/z is locally bounded for complex z, hence
we immmediately obtain

~1+ VI P22 e ( %4 b)
NisrT = sinh |£] V€]

< C(By, Ry)tl€|ce W/HIE" < Cent

for Ry < |¢] € R4 and some constants C' > 0 and & € (0, R}/2). Hence,
by (4.11}, we have

(413)  [[Sxa(Buolld < C § ixa(€)ms (€, )| ()i ¢

RN

< Cllug| e |

Ri<|€i< R

d¢ < Cllug|fe "9

Estimates of Sy, (t)uo. Here the assumption |£| > Rj gives the inequality
[£]22 — 4v|€]® < 0, which implies immediately that

smh( M} <1

Hence, we bound the symbol of 5., (t) directly as follows:

Ixa(€)ms (€, 8| < C(R3)xa(€)e C/ANE°

with a positive constant C(R3) independent of £ and t. This leads, by
(4.11), to

(4.14)  [|Sys (BuollE < Clifiofs, |
[&§lZ2 Ry

e~ ge < Olju)| 9t~/ 2e~H

for all ¢ > 0, and positive constants C and k independent, of £.
Combining (4.12)-(4.14) we obtain (4.2), which completes the proof of
the first part of Proposition 4.1.

Proof of Proposition 4.1(ii). Here, the reasoning is analogous to that in
the proof of part (i). It follows from (4.9) and (4.10) that for a = 0 we have
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(418) (€ (ms(e,t) — )|
< O(Rz)xl(g)(|E|2bte—vtﬁfib + t|£|be_t/2)
< Cxa(E)(IgP e et

forall |£| € Re, t > 0, and positive constants C and &. In the same manner,
straightforward calculations give

(4.16) Ix2(Eyms(€,t)] < C(Ry, Ra)e ™ x2(8)
for a positive constant .

Let us study x3(€)ms(£,t) more carefully. Recall that the symbol
mg(€,t) for a = 0 can be written as

ms (é, t) = e—tfzeit/z\/m&—‘b?l'
b Nng :
T ey

9(6,1) = e™ €] Pms (€, xa(6)
for some positive & < 1/2. Obviously, g(¢,t) is a C™-function with respect
to £, because x3(£) = 0 for [£| < Rj. An easy computation shows that for
every roultiindex o = (@, . .., an ), @ = 0, there exists a constant C' = C(a),
independent of £ and £, such that
a CI:
66“9(5 1)

Define

(4.17) <01+ Lgt)—wwal

for all £ € R and ¢t > 0. Hence, by [29, Prop. 1, Ch. VI, Sec. 4], the Fourier
transform of g(¢,t) with respect to £ agrees with a function which is' C*°
away from the origin. Moreover,

al= "
=7 g 1))

for all multiindices & and all N = 0 so that n — b/2 + |a| + N > 0, and
constants C(a, N'} independent of = and .

In particular, it follows from (4.18) that F~[g(-,t)] € L'(R") with the
L*-norm uniformly bounded with respect to £. Hence, by the Young inequal-
ity (3.6), we obtain
419)  [1F Y ms(, xs(Violls = eI F g, )€ o]l

= ™| F g (-, )] » D" 2uoll,
< Ce™|| D" Pugp

for all ¢ > 0 and positive constants C' and « < 1/2, independent of £.

(4.18) < c(a,N)|m|—n+b/2—la!—N
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The proof is now completed by considerations similar to those in the
proof of the first part, hence we skip the details. =

4.2, Asymptotics of T(t)us. In the case of T(t)u;, for @ > 0, we need
the notion of the Riesz potential 7, defined in the Fourier variables as

FlIv)(€) = |€7°%(§) foreveryO<a<n.
The properties of the operator I, can be found in Stein’s monograph [28].
PROPOSITION 4.2. Let p € [2, co].

(i) Assume that 0 < 2a < b, 0 < a < n, and I,u; € L' (R™). There exist
posittve constants C and k such that

(4.20) | T()ur — e Ly |,
< Ol L |1 (T + t)_(”/(b“l))(l"l/lﬂ)—'(5—2&)/(11—@)
+ (14 )-(/aa-1/p)
+ (r(n/(b—a))(l—l/p) 4 ¢~ (n/a)(1-1/p) | 1)e~

forall t > 0.
(i) Assume that 0 = a < b and w3 € LYB™) N LP(R™). There exist
positive constants C and x such that

(421)  |IT(t)us — e 2wy
< Cllug 1 ({1 + 1)~ (w/00-L/p)-2 (¢~ /D0-1/p) e
+ Cllug|lpe™"*
for ali t > 0.

COROLLARY 4.2. Let @ = 0, uy € L'(R™), and My = (. u1(z) dz. Under
the assumptions of Proposition 4.2(ii), for every p € [2, c0],
(422)  T@u() — MiGo(-,vt)|lp = ot~V g5t oo
Proof. Asin the case of Corollary 4.1, we apply Lemma 3.2 to (4.21). w

Proof of Proposition. 4.2(i). First, rewrite the definition of T(t) (cf.

(2.4)) as
FIT#)ua](€) = €]*mr (€, 1) FLaui] (£)
with
e~ CDE* (L~ 1-du[gP=30) | —(t/2)|€]% (14/1—4u|£[t—32)
€| mr(§,1) =

I mjip

From now on, the reasoning is similar to that in the proof of Proposition 4.1,
hence we shall be brief in details.
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As in (4.7) and (4.9), for |¢] < R; we have

o~ (42617 (1~ AT g
(4.23) e
1 — 4u|g[t—2a
< O(Rz)(|§|2b-3at + |§|b_2“)e—vt|£|b_“;
moregver,
~(£/2)[€]® (14++/ T4 ]¢[P-7a)
(4-24) € '\/1 4 |§|b . SO(R2)6““/2)|E‘Q_
— &L —Zn

Next, the argument used in the proof of Proposition 4.1 (cf. the cases
Ry <|¢| < Ry and ¢ = R3) gives again
|(x2(8) + x3(EDIE[*ma (&, 1) < Cle™*x2(€) + 4" x5(€))

for all £ > 0, and nonnegative constants C and & independent of ¢ and ¢.
The remainder of the proof follows the analogous part of the proof of
Proposition 4.1(1), hence we skip the details. m

Proof of Proposition 4.2(ii). Although the reasoning here is similar to
our previous considerations, let us write down the estimates which lead to
(4.21), because they will be useful in the proof of Proposition 4.3 below.

Recall that for a = 0,
9g=t/2 sinh((t/2)4/1 — 4V|§|b).
V1= avigp

We use the decomposition of T'(f)u; given in (4.1).

By (4.23) and (4.24) with ¢ = 0, and by the Hausdorff-Young inequality
(4.11), following the calculations in (4.12), we have
(4.95) || T (tur — €™

< Olua |l ({1 + t)~(n/b)(1—1/p)w1 + (£~ (/OA-1P) L q)emty
for every p € [2,00], all ¢ > 0, and some positive constants C' and x.

Since the function (sinh 2)/z is locally bounded for complex z, we imme-
diately obtain |xz(&)mmp (€, )| < Cte™?x(£). This leads by (4.11) (cf. also
(4.13)) to
(4.26) |1 Ta (Buallp < Ce™*[fu |2

for some positive s < 1/2.
A reasoning completely analogous to that in (4.19) with g({,t) =
e®tx3(&)mp(€,t) applies here to Ty, (t)uy and gives

(4.27) | Ts (Buallp < Ce™ unllp

for every p € [1,00] and all ¢ > 0, and positive constants C' and «.

mT(gi t) =
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By the decomposition (4.1), combining (4.25)}-(4.27), we complete the
proof of the inequality (4.21). =

4.3. Asymptotics of S T(t—+)f(-,7) dr. Next, we discuss the asymptotic
properties of the third term on the right hand side of (2.3}. In the proposition
below, we show that appropriate decay estimates on the forcing term f(w, t)

guarantee the selfsimilar large time behavior of S; Tt —7)f(,r)dr.

PROPOSITION 4.3. Let a = 0 and b > n/2. Fiz p € [2,0]. Under the
assumptz‘ons of Theorem 2.1 imposed on f(z,t) we have

(4.28) ” Tt - 7)f(, d’r—(s S f(y,T)dydT)Gb(-,vt)Hp
0 Re

= o(t~(W/DA-LPN 45t oo

Proof. Asinthe proofs of Propositions 4.1 and 4.2, we use the decom-
position T(t — 7)f(r) = i, T, (t — 7)(7) where F [ (t — ) F(T)}(E) =
Xi(f)m’l"(fg t— T)f(&) T)'

First, we prove that

(4.29) ||§Txl(t—fr) S T)dr — (OSO | fu,m) dydT)Gb(-,t)”p
4] 0 Rn

= o(t ™ IVE/YY a5t oo

Note that the integral Sg" {gn fy,7) dydr is finite, which is guaranteed by
the first inequality in {2.11}.
Straightforward calculations show that for every multiindex o there is a

constant C{a) independent of ¢ such that

2]
5= 0 ©mn(6,1)] < Clalel ™
Hence, it follows from the Marcinkiewicz multiplier theorem [28] that for
every t > 0, Ty, (t) is the bounded Fourier multiplier operator on LP(R™} for
every p € (1,00), i.e. [Ty, (t)2], < C(p}||lv||p. Moreover, the constant C'(p)
can be assumed to be independent of £. Therefore, by the assumption (2.11)
we obtain

£

t
| | Batt=nftnyar| <o | f6lodr
t/2 /2
t
<C S T—n(l—l/p)/b—lved,r
/2
= o(t~"-UR/Y a5ty o0

for every p € (1, c0).
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We use (2.12) to find an analogous estimate of the L°-norm. Indeed,
since x1(§)m(€,t) is a bounded function and compactly supported with
respect to &, we have [|x1(-)mr(-,t)||2 < C with C independent of ¢. Hence,
combining the Hblder inequality with the Plancherel equality and (2.12), we
obtain

| | Batt=nsener|_<e§ batmett =)l fe ) ldr
t/2 /2

i
<C | i,
t/2

= ot ™"  ast-— oo

A similar reasoning, based on (3.5), gives

¢
H S e==mvD £, 1 d'r“ = o(t " PIEY a5t 0o
£72 P
for every p € 1, o).
Next, it follows from (4.25) that for p € [2, oo] we have

(430) [Ty, (¢ — TFC,7) — e~ EP° £ )|
< O(t — 7)~"B=R/3) £ 1)y

forallt > 0,0 < 7 < t, and a constant C independent of ¢ and 7. The
inequality (4.30) implies that St 2T {t = 7)F(-,7) dr is well approximated
by i/% e=(t=7wD" £(., v} dr. Tndeed, by (4.30) and (2.11) we have

/2 t/2
| § Balt—ms(mydr— | e P 50 7y ar|
0 0 P
t)2
<O S (t . ,T)—n(l—l/p)/b——l(l + ,T)—l-—s dr
0 .

C(t/2)""(1"1/p)/5'1 S (1+7)"1¢dr
0

= a(t""‘(l—l/p)/b) as t — oc.

~ But, by (2.11) and (3.4), we obtain
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||(o§o | 7w m)dydr)Gulvt)| < OO T 1 dr
t/2RP t/2

= o(t“”(l_”p)/b) as t — 00,

therefore the proof of (4.29) will be completed by showing that the quantity

t/2

(4.31) t"‘(l_l/”)/b” | e =P f(,r)dr
0

t/2

—( S S f(y,T)dydT)Gb(-,vt)”p
0 R™

/2
= @A [ (G- = g w(t 7)) — Gal, 1)y ) dydr |
0 Rr

tends to 0 as ¢ — oo. To prove this assertion, we fix § € (0,1/2) and
decompose the integration range [0,%/2] x R™ in (4.31) into two parts {2
and {22, where

& o=0,8t) x {yeR™ : ly| <Y, 22 ={([0,£/2] xR")\ 4.

We estimate the LP-norm of the integral in (4.31) over [2; in a straight-
forward manner by the following quantity:

(4.82) VUG — yow(t =)z + G, vt) ) f (u, 7)| dy dr
$22

< 0([§ 6~ my 05 g, dy ar
11

+ 473D {5y, 7)] dy dr)
12,

< oD | f(y, 7)) dydr.
{2z
Now, it follows easily from the first assumption on f in (2.11) that

“ fly,m)|dydr —0  ast— oo,
2

Next, we estimate the integral in (4.31) over £2y. The selfsimilar form
of Gy(y, ), the continuity of translations in Z?(R*), and the continuity of
Gs(y, 7) with respect to 7 imply that for n > 0 there is § € (0,1/2) such
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that
rOP sup ||Gy( — g, u(t — 7)) = Go( )
ly|<et/?
0<T<at
= lSl{l{I; 1Gy(- — 2,v(1 — 8)) = Go(,w}llp <
0<a<s

for each p € [2,00], 6 € (0,1/2), and t > 0. Applying this estimate to (4.31)
with 2; as the integration domain we see that the integral is bounded by

(4.33) nC{{ | Fly,7)| dydr.
81

Since n was an arbitrary number, in view of (4.33) and (4.32), we conclude
that, for every p € [2, 00}, the quantity in (4.31) tends to 0 as ¢ ~+ co. This
completes the proof of (4.29).

To deal with SB T, (t — 7)f{:,7)d7, note that the function p(r,t) =
mr(r, t)x2(r) (here r = |£|) satisfies the inequality
2R
R
for some positive constants C' and & < 1/2. By [13], this condition is suffi-
cient for Ty, (t) to be a Fourier multiplier operator bounded on L?(R™) for
2 <p < 2n/(n—1). Hence, in this range of p, by (2.11), we have

P 2 1/2
— < Kt
5 w(r,t) dr) < Ce

sup lio(r, 8)| + (sup
r>0 R>0

t t
T3t = 7)F (o m)lpdr < O§ e ED) £( ) |pdr
0 0

t

Xemn(tm‘r)(l_l_,r) —n(1-1/p)/b—1—€ 4.

If 2n/(n — 1) < p, we define Kg(é,t —7) = F  x2()molé,t — 7)](2)-
By the Plancherel formula and estimates of mq-(£,+) on the support of ya
we have |Ka(-,t — 7)||2 < Ce™t~7) for all £ > 0, 7 € (0,¢), and positive
constants C' and &, independent of £ and 7. Hence, it follows from the Young
inequality (3.6) that

i

NI T (8 = 7)F (o m)llpdr < ©
0

”KQ('?t - T)|‘2Hf(‘s7—)||2p/(p+2) dr

<C e—n(tm'r)(l + T)—n(l—l/p)/b—l—-e dr

(=R W eyl

by the assumption (2.12). Finally, straightforward calculations based on the
splitting [5... dr = §5/...dr +{,,... dr show that the last displayed
integral tends to 0 like o(t"(~2/P)/t) ag ¢ ~ co.
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The reasoning in the case of Ty,(t) is much shorter. By (4.27), Ty, (¢)
is a bounded operator on LP(R") for every p € [1,00] with the LP-norm
decaying exponentially in ¢. Consequently, we have

¢ t
” Ssz {t—7)f(,7) d1'|| < C’S e~ R (] 4 7)) /b1 e gy
0 P 0

= o(t'”(lml/f’)/l’) as t — oc.

Now, the proof of Proposition 4.3 is complete. »

5. Nonlinear wave equation

Proof of Theorem 2.8. We use [20, Theorem 5] which, in particular, en-
sures the existence of the unique classical solution satisfying

sy OISO a0 < CA+O7,

e (B2 £ CAHE, Hue(1 D)o € C(L+8)72

for all ¢ > 0 and constants C' independent of t. Therefore, the interpolation
inequality gives

(5.2} JulBllp < luels )5 Pl t
for every p € [2, 00].

Now, let us check the assumptions (2.11) for p € [2,00) and f(z,t) =
—(Jus|9 ) (2, t). By (5.2), we have

1FCs Ol = (- 88 < C(1 4 1y ~2 81072

Wi2e < o1 +t)—(1—1/p)/2~1

and
(5.3) (Bl = lm(, B)l|%, < C(1 + ¢)~ (- 1/P/2=1=30=1)/2,

The assumption on ¢ guarantees that the inequalities (2.11) hold true for
e = 3(g—1)/2 > 0, and an application of Theorem 2.1 completes the proof
forpe {2 00).

For the proof of the remaining case p = co, we should also check the
assumption (2.12) which here has the form ||f(:,t)|z < C(1 + t)~3/2~¢,
However, this follows immediately from (5.3) with p = 2 for e = (6g — 7)/2.
Obviously, € is positive because g > 2. =

Proof of Theorem 2.8. Here we apply [18, Theorem 1] where, under the
assumptions gathered in Theorem 2.3, it was proved that

(-, 8l € C(L 427/
and the energy functional F decays like

B(®) = [lu:(- D)3 + vIIVu(, D13 + § Fulz,8) de < CQ+)~/21
Rn
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for all ¢t = 0 and C independent of ¢. Hence, the well known Gagliardo—
Nirenberg-Sobolev inequalities lead, for 1 < a < (n+2}/(n—2) if n =3
andforl <a<ocifn=12, to

g, )l < kollu(-,1)]121 < CliVu(., t)H“‘“ V(. g+l
SCA+8)™ 2 =01 +8)7

for all t > 0, C independent of £, and positive £ provided o > 2/n.
A similar reasoning gives

lg(u(-, £z < Kollu(, DISEL 1y < CIVuC, )™, O
< C(14)™4me/2 = O(1 4 ) ~n/e1e

for ¢ = (no — 2)/2 > 0 by the assumptions on «. Hence, the inequalities
(2.11) with p = 2 for f(z,t) = —g(u{z,t)) hold true, and Theorem 2.1
concludes the proof for p = 2.

Let us complete the proof for other p > 2. First, by the Gagliardo—
Nirenberg—Sobolev inequalities and the decay estimates of the energy E(t),
we have

(54) [, 8)llg < CUVul, I 2 uC, 077
< C(L+ t)—n(l—lfq)/2
for a constant C > 0, all £ > 0, and every exponent ¢ satisfying 2 < ¢ <

mf(n—2)forn=382<g<ooforn=2and2<g<ooforn=1
Next, by the Holder inequality, we obtain

(6.5) Jul,t) = MG (1)l
< Cllu(t) = MG 1)~ (lul, O)F + MG, D7)

for2 <p<g<2m/in—-2)ifn=32<p<g<ooifn<2 and
a = (1/2 - 1/p)/(1/2 — 1/g). Using the inequality (5.4) and the relation
(-, t) — MGa(-, )2 = o(t™"/*) as t — oo (examined in the first part of
this proof), we deduce that the right hand side of (5.5) is bounded by
o(t_(n/4)(1”°‘))(l + t)—(ﬂfz)(l-"l/'z)& = O(t—('f’»/z}(l“l/P)) a8 £ = 0O.

The case p = oo if n = 1 is proved by an argument similar to that given
at the end of the proof of Theorem 2.2, hence we skip the details. w
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