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Extension maps in ultradifferentiable and
ultraholomorphie function spaces

by

JEAN SCHMETS (Litge) and MANUEL VALDIVIA (Valencia)

Abstract. The problem of the existence of extension maps from 0 to IR in the setting of
the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving
a generalization of the Borel and Mityagin theorems for C*-spaces. We get a Ritt type
improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces
of ultraholomorphic functions, by first establishing a generalization to some nonclassical
ultradifferentiable function spaces.

1. Introduction. A result of Borel [1] states that, for every sequence
(en)nen, of complex mimbers, there is f € C®°(R) such that f(™(0) = ¢,
for every n € Ny. This result has been quite sharpened by Ritt [10] who
proved as a corollary to his main result that the function f may moreover
be supposed real-analytic outside the origin. In fact the main result of Ritt
states that for every open sector S of angle < 27 and every sequence (Cn)nen,
of complex numbers, there is a holomorphic function on § having 370 cn 2™
as asymptotic behaviour at 0. In [8], Mityagin has given another information
about the Borel theorem: there is no extension map from w into C*°(R); in
this paper, the word map stands for a continuous linear operator.

Petzsche [9] has considered the results of Borel and Mityagin in the set-
ting of the classical ultradifferentiable function spaces of Beurling and of
Roumieu types. The situation here is quite interesting: he has got charac-
terizations of those spaces for which there is an extension map.

In this paper we investigate how the Ritt result can be adapted to
this setting. We begin by studying some properties of the sequences M =
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(Mp)nen, of positive numbers which are normalized and logarithmically
convex, especially the ones related to the new condition (.} with r € Ny
generalizing the condition {y1) of Petzsche. Given r € N, we then intro-
duce some nonclassical ultradifferentiable function spaces. Their elements
are C-functions f on different intervals of the real line having 0 as left end
point or interior point and such that frr+0(0) = 0 for every n € Ny and
i € {1,...,r — 1}. They lead to results comparable to those of Petzsche:
cf. Theorems 4.4 and 5.4. We then introduce spaces of what we call ultra-
holomorphic functions on a sector of the Riemann surface of the function
log(z). Using the results obtained in the nonclassical ultradifferentiable case
as well as some holomorphic arguments, we get the main Theorems 4.7 and
5.6 which are of Ritt's type: they provide necessary and sufficient conditions
under which there are extension maps with values in these ultraholomorphic
function spaces. Finally we get some surjectivity results in the case of the
ultraholomorphic function spaces of the Roumieu type.

2. The sequences M and m

DEFINITIONS. Let M = (Myp)nen, be a sequence of positive numbers.
The corresponding sequence m = (My)nen, 1S then defined by mg = 1 and
My = My /M, for every n e N.

The sequence M itself is

(a) normalized if My =1 and M, > 1 for every n € N;

(b) logarithmically convex if M2 < M,_y My, for every n € N,

If M and P = (P,)new, are two sequences of positive numbers, we say
that M and P, or equivalently the corresponding sequences 1 and p, are
equivalent if

0< inf —%Ssup%<w.
neMy P neNg Pn

Let us recall some of the conditions studied by H.-J. Petzsche in [9] and
concerning sequences (M, )nen, of positive numbers:
(@) mg=1and m, t oo,

(v1) (a) and mp/n T oo,

(B1) there is p € N such that liminf >1,
n—oo Py,

(B2) for every & > 0 there is k € N such that

1/{n(k-1))
lim sup (ﬂ;;”) 1 < g,

Tpn

n Mgy,

™m 1
(1) sup—) — <oo.
22
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In a private communication to one of the authors, H.-J. Petzsche:

(a) reported that the proof of Proposition 1.6.c of [9] has a bug;

(b) mentioned that a correct result is: if the sequence (mn)nen, of positive
numbers satisfies (o) and (B2), then it also satisfies (B1): as it satisfies the
condition (83) of [9], there are k,np € N such that k > 2 and

M,: 1/(n(k—1)) 1 1
LR < = .
(5%) o 2 o

" — ?
my, ~ 2
hence the conclusion since, by condition (a),

(%) 1/ (n(k—1)} 1 S m; -
M; M © M

(c) observed that therefore the hypothesis of Theorem 2.1(b) of [9] should
read “(v1) and {B2)” instead of “(7y2)”;

(d) wrote that in the same way in the statement of Theorem 3.1(a) of
(9] one should read “(v;) and (f2)” instead of “(82)" and mentioned that
“consequently Theorem 3.4(c) must be used for the proof of 3.1(a)”.

For r € N, let us now introduce the condition

U e 1
. su < oo
(%) sup :Z; e

that will play an important role later on.

LEMMA 2.1, Let (mn)nen, be o sequence of positive numbers satisfying
the condition (). For everyr € N, the following assertions are equivalent:

(1) the sequence (i )nen, satisfies the condition (vr41),
(2) there is p € N such that iminf,, mp, /(p™*'my) > 1,
(3) the sequence (mn/N)nen, satisfies the condition (vr).

Proof. (1)¢(2) is an immediate consequence of Propoesition 1.1(a)
of [9]: as the sequence (R}, )nen satisfies (a), it satisfies {y1) if and only
if it satisfies (£1).

(1)=>(3). As (~+/Pin)nen, satisfies () and (71), Proposition 1.1(a) of [9]
provides a sequence (sn)new, equivalent to it and satisfying (aa). As
(gn = 80"1)nen, is then equivalent to (Mr)neng, it satisfies (vr41) and
the equivalence (1)<>(2) leads to the existence of some p € N such that

~fGpn 7
s pr P pn
=1 f {/ >1
11mn1nf p {/g,—?_ im in g

Finally as the sequence {tn)nen, defined by 2o =1 and £, = {/qn/n for
every n € N satisfies (o) and (B1), it also satisfies (1), which proves the
conclusion since (M )ner, and (@n)nen, are equivalent.
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(3)=>(2). As we clearly have

oc ==
om 1 1 [m Ak
sup L - < sup — {{ — E —,
no M=y n mV ono Y my

the sequence ({/Min)ncn, satisfies (@) and (v1). So up to substituting it by
an equivalent sequence, we may very well suppose that it also satisfies (o).
Therefore the sequence (8,)nen, defined by sp = 1 and s, = {/my,/n for
every n € N satisfies (a). As by hypothesis it satisfies (1), we see that it
also satisfies (B1), i.e. there is p € N'such that

Ve I T
. pn “ . » mpn
hn}lmfg . {/_WZ_ = 11Iz:1111f 7 Fim, >1l.m

IMPORTANT NOTE. From now on, M designates a sequence (M, )nen, of
positive numbers which is normalized and logarithmically convex. In partic-
ular, the sequences M and m are increasing.

We will need the following information about some sequences associated
with M.

LEMMA 2.2. Let M* = (M})nen, be the sequence defined by Mg =1
ond M} = M, /n! for everyn & N.

(a) If the sequence m satisfies the condition (o), then M™ is normalized
and logarithmically convex. If moreover m satisfies the condition (yr41) for
some r € N, then the corresponding sequence m* satisfies the condition (y,).

(b) The sequence m* satisfies the condition () if and only if the se-
quence m does.

Proof. (a) Everything is trivial if one notes for the last assertion that
mh = my/n for every n € N and applies the previous lemma.
{(b) Just note that, for every k,n € N with k > 2, we have

Mkn n! 1/(n(k—1)) kn Mkn 1/(n{k—1)) 1 n! 1/{n{k—1))
((kn)tfvr:) Men ( M, ) Mkn (‘“—)

(kn)!
and, by the Stirling formula,

nl \ /(1))
ﬂ]l_»ﬂg»o (W) kn = eknl‘/(k_l). m

LemMA 2.3. Forr €N, let P = (P,)nen, be the r-interpolating sequence

defined by
Pertj = {{M; "M}, VkeNo, Vie{0,...,r}.

kn
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Then the sequence P is normalized and logarithmically convez. Moreover
Py = M, for every n € Ny as well as ppryj = {/mny1 for everyn € No
and 7 € {1,...,r}.

(a) The sequence m satisfies the condition () if and only if the corre-
sponding sequence p satisfies the condition (vy1).

(b) The sequence m satisfies the condition (B2) if and only if the corre-
sponding sequence p does.

Proof. Everything is trivial except (a) and (b).
(a) The condition is necessary since

oQ oo

1 : 1
wEEL- m Sl
ST R

oa
/m 1
< sup—-»—H-—IE

The condition is sufficient since for every n € N,

VT §3 L ey Lo o g5 1
T e VT (L [

(b) We first prove the necessity. By Petzsche’s Lemma 1.5 of [9], the
sequence m satisfies the condition (jii): for every & > 0, there are ng € N
and A2 € 0, 1] such that, for every integer n 2 ng, we have

max -Z\_A-_‘ni . _L < E!"'ﬂ.'

isen My mp™? T
To conclude by the same Lemma 1.5, we are going to prove that for every
g > 0, if we set nf = rmax{ng + 1,1+ 4/8} and B’ = /2, then for every
integer n > ng, we have

0

! - L g™

o’

Indeed, for every integer n > ng, there are unique integers k € Ny and
le{l,...,r} such that n = kr +1, hence k-+1 = k> ng as.well as k > 4/6
since kr +1 > njy > 4r/f + r. Moreover for every positive integer j < A n,
there are unique integers h € Np and @ € {1,... .7} such that j = hr + 1,

Nax = -
$<h'm Pj

L%
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hence
h<h+l< 1+1s§-k‘r:’l —|—15§k+2 < Bk < B(k+1)
r {*}

(the inequality (x) comes from the fact that k > 4/8). Now we check the
quotient P, /{PypR~9).
(1) If j = 0, it is equal to

(Mr-tMl 1 )m < (M’“ 1 )(T—I)/r (Mkﬂ 1 )W <eg
k1 TTETT O O A A\ R TR Se.
* " mk’jjl My mj Mo m’,:ﬂ

B

(2) If 5 > 1, it is equal to

(MZ—IMJiH 1 )”T

r—iagi . rREl—Th—1
M, Mh+1 11

and one checks directly that it is < &™ in each of the following cases: i =,
i<landi>1.

The condition is sufficient since

(Mkn)]./(n(k—l)) 1 _((Pkrn)lf(rn(k—-l)) 1 )’F‘ g
M, Min P’rn DPirn .

DEFINITION. Let us say that a sequence (bn)nen, of positive numbers
is quasi-increasing if there is ng € N such that the sequence (b,)5%,,, is
increasing.

LEMMA 2.4, For every r € Ny, if the sequence m satisfies the condi-
tion (f2) and (mn/N" )nen is quasi-increasing, then m satisfies the condi-
tion (4.). ‘

Proof. The sequence Q = ((Qy := /Mp)ney, is clearly normalized and
logarithmically convex. It is also straightforward to check that the corre-
sponding sequence g satisfies (82} and hence the equivalent condition (£3)
of [9]; so there are k,n¢ € N such that k > 2 and

x N\ L(n(k-1))

1 1
(%*ﬂ-) — <5, Yn2Znoe

Qn Qkn 2

If ng is such that the sequence (mn/n")32,, increases, we get
ﬂ.;_, < (%)1/@(’“*1)) 1
%G~ \ @7 Bin
In particular q satisfies (51). To conclude, one has to proceed as in the proof
of (ii)=>(i) of Proposition 1.1(a) of [9]. w

1
<35 Vn 2> ng.
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3. Some Fréchet and (L.B)-spaces

(a) Let us first introduce for reference all the Fréchet spaces used through-
out the Beurling type case.

DEeFINITIONS. The classical Fréchet space A(pry. Its elements are the
sequences @ = (@ )nen, of complex numbers such that, for every m € N,

m"|an |
a = 8up ———o < 0.
llal|m neNe Mn

It is clearly a vector subspace of w and we endow it with the countable
fundamental family of norms {||-|,, : m € N}.

The Fréchet space Dy (ar) (resp. Loy Erany; Noyan)) forr € N Its
elements are the complex-valued functions f € C*(R) with compact support
contained in [-1, 1] (resp. f € C*([0,co[) with support contained in [0, 1];
f e C>([0,1]); f € C*®([0, oc[)) and such that

(1) f»r+3)(0) = 0 for every n € Ny and j € {1,...,7 — 1}

(2) for every m € N,

m™| £ (z)

| Flm = sup sup | < 0o

nENp €A M,
with A = R (resp. {0, c0[; [0,1]; [0,00[). It is clearly a vector space and we
endow it with the countable fundamental system of norms {|- |m : m € N}.

The Fréchet space Ko ny for o > 0. Let us designate by X the Riemann
surface of definition of the function log(z) and set

Sa:={2€ T :—an/2 < arg(z) < ar/2} U{0}.
Its elements are the holomorphic functions £ on int(S,) such that:

(1) for every n € N, f™) has a continuous extension to S,, which we
continue to denote by f(™;
(2) for every m € N,

n{p{n)
|f|m = gup sup E_if_(_z.ﬂ < 00,

neENy 2E€854 M'n.
Of course it is a vector space and we endow it with the countable funda-
mental system of norms {| - |m : m € N}.

If M and P are two equivalent sequences of real numbers which are
normalized and logarithmically convex, we clearly have Aary = Apy and
Do iat) = Doy (pys Loaty = Ln(P) Eniar) = En(pys Noyany = Noy(p) for every
r € N as well as Ko, (ag) = Ko, (p) for every o > 0.

(b) Let us now introduce all the Banach and Hausdorff (LB)-spaces used
throughout the Roumieu type case.
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DEFINITIONS. The classical (LB)-space Ay, Tts elements are the se-
quences a == {an)ner, Of complex numbers for which there is m € N such
that

|@]m = sup 2| < 0.
nelNy m* M,
For every m € N, we designate by A?M} the subset of A (M} of elements
a such that |a|m < co. It is immediate that AT}, is a vector subspace of
A (ar} O1 which |+ | is a norm. The corresponding normed space is indeed
a Banach space, also denoted by A’{"”M}. Of course we have A?M} C A?M"';,
the canonical injection being continuous, and A o = Unoes A’{’"”M}. So we
can define the locally convex space A (M} 38 the inductive limit of the spaces
AE”M}; it turns out to be a Hausdorff (LB)-space.

We proceed in the same way to define the following spaces.

The (LB)-space D, rpsy (resp. L, apy3 N, oy} for € N Its elements
are the complex-valued functions f € C°°(R) such that supp(f) C [-1,1]
(resp. f € C*([0, oo[) such that supp(f) C [0,1]; f € C*([0, oo[)) such that

(1) £ +(0) = 0 for every n € Np and 5 € {1,...,r — 1},

(2) there is m € N such that

£ (a)]
m = SUp SUp - < 00,
Ifl nel\lijo meg mrM,
Fo.r every m € N3 Dl (resp. Ll nrys N,ﬁ M}) is the Banach space oh-
tained by endowing the vector subspace of elements f of D, (M} (resp.
L, inyi NT,{M}) such that | f|,, < co with the norm |- |,,. The space D,

(resp. L, (M} .N;’ {M}) then is of course the Hausdorff inductive limit of

these Banach spaces.

The (LB)-space M aay for o> 0. Let £ and S, be as in the definition
of the space Xy (ar). The efements of H o, (M} BT€ the holomorphic functions
f on int(S,) such that

(1) for every n € Ny, f™ has a continuous extension to S,, which we
still denote by F{™),

(2) there is m € N such that

F(2)
flm = sup su I————-—- < 00.
HE sup sup S

For every m & N, ’HZ" {a} 18 the Banach space obtained by endowing the
vector subspace of elements f of Hax M} such that |f|,, < oo with the norm
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| lm- The space H,, sy is of course the Hausdorff inductive limit of the
Banach spaces ’H;”, (M)

If M and P are two equivalent sequences of real numbers which are
normalized and logarithmically convex, we clearly have 4 () = A py and

Driary = Dr,{Jl{’}’ ﬁr,{M} =L, Py N,-,{M} =N, (py for every r € N as well
as "y ary = Hogpy for every a > 0.

4. The Beurling case

4.1. Case of the spaces D, L, £ and . The proof of the next propo-
sition follows an idea of H.-J. Petzsche (cf. [9], Theorem 3.4, (c)=-(a)). We
use the Lemma 1.3.6 of [6] in the following setting: let (pr)xen be o non-
decreasing sequence of positive numbers and choose an infinite subset N of
N containing {k € N : pr < pry1}. Then for every real-valued f € C(R)
vanishing identically on ]—co, 0] and every z € |0, 5 5 | 1/pk], one has

4k
HOEDY P 4 IF* ().
<y<z

keN
ProPOSITION 4.1. For every r € N, if the restriction map

R:Lean = Apny, T (FO(0)nene s
i surjective, then the sequence m satisfies the condition (7,.).

Proof As R is a continuous linear surjection between Fréchet spaces,
it is open. Therefore there are C > 0 and m € N such that, for every
a € Ay, there is f € L, (ar) satisfying Rf = a and |f|; < C|a||m. So, for
every p € N, there is a real-valued function ¢, € L, (a7) such that

9019?1‘)(0) =1,
P80y =0, YieN,, jp,
epls < CllES™ (0)nero llm = CmP/ M.

For every p € N, we have (p,(,p ")(0) = 1 and " (1) = 0, hence

ap = inf{z € [0,1] : (,og,‘”)(x) < 1/2}

satisfies 0 < op < 1. In particular, cpgip "Nz} > 1/2 for every z € [0, azp]. So
integrating pr times leads fo

P () > T Yo e [0, o)
S 2(pr)l” T

hence proo 1k} <9 pr 1 M
Cigpy = 2(pr)lesy (coap) < 2(pr)"" |ip2pia My
2p

M m
PrOm2P R < 9 Pr o,
< 2{pr)¥"Cm My = C(pr) -
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Let us next check that if

(1) Opg €Nand h > 0: Vp 2 po,

%-Z i
k=4p V Ttk

then we can conclude at once. Indeed, in such a case, for every integer p 2 po,
we get

L F L. F Lo,
k=p v k—p h=4p

k 1"
< (3 + E 20V mz)

Q
%3
"d

?
-r'/fnr‘,g,:D
Finally we prove that the condition (1) holds. In fact it is enough to
establish that if we take A € ]0,1/(4m?)[, then the set

— k
P={p€N:Qf2p< > {/nTk}

k=dp

is finite. For this purpose, for every p € P, we set

h
if keN satisfles k < pr,
1_) v =7
P h i .
————— ifkeN and [ € Ny satis +hr<k<{p+I+1)r,
T o satisfy (p+1)r (p )r

and clearly we get asp < ¥ .pey 1/Dk. So, for every p € P, an application of
Lemma 1.3.6 of [6] to the function g, € C*°(IR) defined by

_ 0 <0,
op(z) = (pgipr)(w) —1 ifz>0,

leads to
ad glotk)r p(p-+k)r

— = |@plQg .<_ "
2 | P( P)l g} mipm4p+1 v - Mdptk
) (4h)(p+k)1'

< [2p|1 M4,
> 7 2p|1M3p+&
=0 m4pm4p+1 o Maptk ¥ P

sup{| st (2] 1 2 > 0}

(dmPh)Pr

< 2 (nFHrom® < 01—

k=0

As we chose h € ]0,1/(4m?)], this last inequality is only valid for a finite
number of integers pE N. »
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In the next proof we use the following inequality of Gorny and Cartan
(cf. [3], [4] or statement 6.4.IV of [7]): if f € C"([-1,1]) and

Qo= sup |f(z)| and Q,:= sup |f("’)(n:)|

ze[—1,1] z€[-1
then

sup 19(a)] < (Ber/ 7 max{ @™/ QU", (/29 Qo)

foreveryje {1,...,7— 1}
PRrOPOSITION 4.2. For every r € N, if the restriction map
52 Engary = A{M}’ fe (f(nr) (0))nemo,

is surjective and if £, (ary contains a nonzero element f such that f ®)(0) =0
for every n € Ny, then the restriction map R of Proposition 4.1 is also
surjective and hence the sequence m satisfies the condition (v.).

Proof. We use the r-interpolating sequence P of Lemma 2.3.
We first prove that &, (ar is a vector subspace of &) (p). Let g € & (ar)-
For every m € N, we of course have

I @) < lglmm "M, Vz €[0,1], ¥n € Ng.

Now we apply the Gorny—Cartan inequality to h(t) := g("™((t + 1)/2} €
C®([~1,1]). For every t € [-1,1], as

(2) A()] = g7 (4 1)/2)] £ glmem ™" Me =1 Qo
and ,

RO (@) = 277 [g (¢ 4 1)/2))] £ 277 |glmem” T Mgy =i Q@
for every j € {1,
273 |gtvr i) (2.4 1)/2)] = (g™ (8 + 1)/2)9] = RO B)]

< (geﬁ)jm {(lglmrMn)i"”’(immrMnH)”’“ (f)jiﬂmrMn}
he J mnr arm(ntl)r '\ 9 mnr
< (43""2) lgwm”Pnrﬂ < A|9|m"Pnr+2
- j mﬂ-’l" mﬂ
for A 1= max{(der?/5) :i=1,...,
for every z € [0, 1], we get
(3) g+ (z)] < 27m" Alglmrrn T Py
It is then straightforward to check that the inequalities (2) and (3) lead to
|9ley oy < 277 Alglme

oo, 7 — 1} we get

r — 1}, a constant indeed. Consequently,

hence the conclusion.
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In particular as f € &, (ar satisfies f(™(0) = 0 for every n € Np and
is not identically 0, the Denjoy—Carleman-Mandelbrojt theorem provides
3% | Py_1/P, < 00, yielding an element  of Dy (p) taking the value 1 on
a neighbourhood of 0.

To conclude we just have to check that

T: &) = Loy, R oh,

is well defined, continuous, linear and such that (ph)™(0) = h{™(0) for
every n € Ny, which clearly implies that the map R of Proposition 4.1 is
surjective. m

PROPOSITION 4.3. For every r € N, if the restriction map

f e (f(nr) (0))nEN()7
is surjective, then the sequence m satisfies the condition (7).

T M NT',(M) —% A‘{M}ﬁ

Proof. Asthe map S of Proposition 4.2 is obviously surjective, we just
have to prove the existence of some nonzero element f of & () such that
F(0) = 0 for every n € Ny.

As the sequence € = (81 n)nen, clearly belongs to A(ar), there is ¢ €
N, (1) such that ¢™)(0) = &, for every n € Np. Since  is bounded on
[0, cof, W (x) := p{z) — z"/r! defines a nonzero C*-function on [0, col. If %
is not identically 0 on [0,1], we denote by k its restriction to [0,1]. If ¢ is
identically 0 on [0,1}, we set zg = sup{z > 0 : ¢(t) =0, Vi € {0, z]} and
denote by k the restriction of ¥/(z + z¢) to [0,1]. In both cases, k is an
element of £, (ary such that k™ (0) =0 for everyn € Np. » '

DEFINITION. For r € N, an eztension map T from Aary into D, (ary [resp.

Lray; Ney(any] is a map such that (Ta)"™)(0) = a, for every a € Ay
and n € Np.

THEOREM 4.4. For each r € N, the following assertions are equivalent:

(1) the sequence m satisfies the condition (v},

(2) there is an extension map from A(ag) into Dy (ar),
(3) there is an estension map from Acngy into L, (ar),
(4) there is an extension map from Apg) into Ny (ary-

Proof. (1)=>(2). Let P be the r-interpolating sequence of Lemma 2.3.
As the corresponding sequence p satisfies the conditions (@) and (1), The-
orem 2.1(a) of [9] gives the existence of an extension map § from A¢py into
Epy([-1,1]). Moreover the Denjoy-Carleman-Mandelbrojt theorem pro-
vides a function ¢ € D; (py which is identically 1 on a neighbourhood of
0. It is then straightforward to check that

U:Awp) =Dy, ar¢Saon|-11]
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is well defined, continuous, linear and such that (Ua)}™(0) = a, for every
a € A¢py and n € No. Moreover

VA(M)ﬁA(pJ, a,r»-->b,

with bpy = an and bnry; = 0 for every n € Ng and j € {1,...,r — 1} is of
course well defined, continuous and linear.

Now on the one hand the image of the map UV is contained in the
topological vector subspace E of Dy (py, whose elements satisfy f (nr43)(0) =
0 for every n € Ny and j € {1,...,7 — 1}. On the other hand, it is clear
that E is a vector subspace of D, (ar) such that the canonical injection
W : E — Dy (ar) is continuous. This implies that WUV is an extension map
from A(M) into Dr,(M)-

(2)=(8) and (3)=>(4) are trivial.

(4)=>(1) is known by Proposition 4.3. =

4.2. Case of the spaces K, ()

THEOREM 4.5. For every r € N, if there is an extension map S from
A(ary 0 Dy (ary, then for every o € 10, r[ there is also an extension map

from A(ngy into Kea, )

Proof We first establish the existence of an extension map U from
Aar+y into D, pr-) where M™ is the sequence of Lemma 2.2. By Theo-
rem 4.4, the sequence ("}, )ney, satisfies (v1). As it also satisfies (a),
Proposition 1.1{a) of [9] tells that up to substituting it by an equivalent
sequence, we may suppose that it also satisfies (@;). Hence we may assume
that (Mn/N)neN, increases to co. By Lemma 2.2, {{/m})nen, then satisfies
(v1) and we get the existence of the desired map U by Theorem 4.4.

The link with the space A is provided by the isomorphism
VA = Agaeyy @ (0n/nh)neny.

Now for elements of D, ) we use a method appearing in [2], {11]
and [12). With any f € D, (m+), We associate the function ¢ defined on
{ze C: Rz >0} by
1
et/ (t)at. .

0

For any z € C such that Rz > 0, integrating by parts leads directly to

ISR

p(z) =

1

(4) ol(z) — f FR0)2 = 2"t e M () dt,
j=0

0
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hence
1

- £90) = e 25+ )
o]

o(z) — iz FD(0)2

zn.

for every n € N. So if we choose 8 € Ja, 7| and set

r 2
a direct application of the dominated convergence theorem gives

— 5L e(0)(0) 2
- (P(Z) EJ:D J (0)2-7 - f(n)(o), Yn e N,

L:z{zGC:z%O, —g-%Sarg(z)sﬁ I},

o %%B 2"

Now we fix an integer s > 1 such that for every z € 8, \ {0}, the circle
~ of centre z and radius |z|/s is contained in Sz \ {0}. Then (4) and an
easy calculation provide the existence of a constant A [for instance A :=
l/cos(g - 2)] such that, for every m € N,

(P(Z) - Z?‘;E‘l .f(J) (O)ZJ 1 ! t/z ( )
S = sup |- \e” Tt} dt
sup up | Ve
M 17
< | f|zsm 2 sup = | e7RO/2) gy
< Pl Gy 22 77
M
< Al flzam———.
< Alfla (2sm)"

Now let us define the function g on
{z€X:2#0, —rr/2 < arg(z) < rn/2}.

by g(2) = @({/z). For every z € S, \ {0} and n € N, the Cauchy represen-
tation formula gives

n—1 n
™) = (o) = X £ )"
7=0
_ b e - S FOOAY
= — .
27 (u— z)nt!
Therefore on the one hand, for every n € Ny, we get
oy 0 ¢ (9T =TS DO, ur
) =) (P 0

nl u"
ey — 2
+ 2 g‘f (0) (u— z)rtt du
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and this leads directly to
lim g™ (2) = nlf 7 (0).
2684 \{0}
On the other hand, for every n € Ny, we obtain
nlst |2 Yits fO0) (3
|2|™ uey (Fu)nr
< AllesmMnm_n;

hence |glm < Alf|2em.
So if we set g{™)(0) := n!f{"")(0) for every n € Ny, then

9" (=)] <

f?

f g |Su:
is well defined, linear (by construction) and continuous.

To conclude, we just have to check that WUV is an extension map,
which is straightforward. m

W Dy aer) = Koy

DEFINITION. Let us say that the sequence m sotisfies the condition (&)
if the space £ (R) is stable by derivation, i.e. if there are constants a,
A > 0 such that M, .1 < Aa"M, for every n € Ny.

THEOREM 4.6, For every r € N, if the sequence m satisfies the condition
(6) and if there is an extension map S from A(agy into Ky (ar), then there is
also an extension map from Aagy indo Drya,(ag)-

Proof We first prove that we may suppose that the sequence m satisfies
the condition (a1 ). Indeed, as § is an extension map from Ay into Ky (ar),
it is clear that the restriction map

f = (F™(0)nene,

is surjective. By Proposition 4.3, this implies that m satisfies {v1); as it
also satisfies (@), we may, up to a substitution by an equivalent sequence,
suppose that it also satisfies (oq).

By Lemma 2.2, M* is normalized and logarithmically convex. It is then
a trivial matter to check that the map

R : Ny, — Ay,

Vo A(Mu) — A(M), a— (n!an)nENo)

is an isomorphism.

The next step is to construct a map U from Ky () into £ (e such that
U/SV is an extension map from Ap+) into Er (ag=)- Let 1 be any element of
Ky (). We then have |1(2)] < |¢lmMo and, by the Taylor formula,

n-1 (k) n M, n
(6) \W) -2 "’———,fglﬂ < '—-',— o ™ (t2)] < [l l;i
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for every z € int($,) and m,n € N. Consider the function ¢ defined on
{z€C:Rz> 0} by

w(z) :=P(z7") — ¢(0) = ¢(1)(0)z—r

Using (6) for m = 1 and n = 2, we get the existence of a constant C > 0
such that |¢(z)| < Calz|~*". Therefore

is a well defined function on R belonging to C*~%(R). In fact a lot more
can be said. For every integer n > 3, by a classical formula, we have

n—1 ; e 1+ooi n—1 i
P (0 ri-1 1 ; A0y 1
1) - Z j!( ). (rj =101 2mi | ¢ (""(z) -2 I zrf) dz
j=2

1-coi =12

Moreover by (6) again, there is a constant C,, > 0 such that the absclute
value of the integrand is < Cye?|z|~"". Therefore

) i w|(0)
= 7

is a C™"~2(R)-function whose derivatives vanish at 0 (to check this last fact,
just evaluate the integral Si”"ﬁ: = Sc at t = 0, where C,, is the arc of
circurnference of centre 1, going from 1 — mi to L+ mi and passing through

1 -+ m). Altogether this means that f belongs to C°(R) and satisfies
FO0) =...= f2-2(0) =0,
ForD(0) =

tr‘j-—l
" (rj - 1)!

v,b(”)(())/n' Yn > 2,
fOr=14+0(0) =0, Yn>2 Vie{l,...,r—1}
Therefore the function g defined on [0, 1] by

t

g(t) = § f(u} du + 9(0) + 411 (0)

o
belongs to C°°([0, 1]) and satisfies

{ 9"(0) = %M (O)/nl, ¥n €N,
gt 0) =0, VneNy, Vi€ {l,...,r—1}.

tr
rl

Let us now prove that g € &, (M2 Let n € Ng. Then for every m € N
and t € {0,1], we have:
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(a) for n =0,
0 1 1 14003
Fg()(t)ls|¢(0)l+|¢(”(0)l+§;§| { e“ztp(z)dzldu
1—ocoi
M eM, T dy
< [l M,
< ol (o + 20 4 2o T i)
(b) for n =1,
() o Ly
Y < [t el ST 1gte
SOOI OO+ 5| | e

eMa dy
<
|¢|'”‘( 47rm2 S (1+y2)(r+1)/2)’

(c) forn > 2,

(n) ") ri— (nr-1)

= rj—1)!
hence
1+o0ai n i
1 - @) 1 ¥™(0)
(n ) Pl 1tz A St
g (2) = — S .znr e (cp(z)——zz 7 ;;3.) dz + p
1ot Jj=
and therefore
M e Aa» T d
(nr) ()| < Ma £ Y
g O < Wl s (1 T 2t Om _Sw 1+ yﬂ’)(‘"“)“)

for some constants A4, a > 0, as the sequence m satisfies the condition {4).
Since the construction of g depends linearly on 4, these inequalities lead
to the fact that
U: Kooy = E ey, g,
is a map such that USV : Aprey = &, (ar+) 15 an extension map.
In particular, the unit vector e = (d1,n)nen, certainly belongs to A¢asy-
S0 if we successively set

n=Se (n corresponds to 1),
14o0d
S e*(n(z”") — 2" ")dz  (h corresponds to f),
L—ooi
then the function
t

Aft) = Sh(u) du (corresponding to g(t) — ¥(0) —
3 ‘

I =

h(t) =

b

e

YOO}/
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belongs to £ (ar+), i not identically 0 and satisfies Alr)(0) = 0 for every

n &N,
Therefore by Proposition 4.2, the sequence m* satisfies the condition
(v,). This proves the conclusion by using Lemma 2.1 and Theorem 4.4. =

In particular we have the following result.
THEOREM 4.7. If the sequence m satisfies the condition (&), then the
following conditions are equivelent:

(1) for every & > 0, there is an extension map from Anry into Kooy
(2) for every r € N, there is an extension map from Aiary into Dyyy s
(8) for every r € N, the sequence m satisfies the condition (Yrt1). m

5. The Roumieu case

5.1. Case of the spaces D, L, N
PROPOSITION 5.1. For every r € N, if the restriction map

R: Loy — Apep o FO7(0))nexss
is surjective, then the sequence m satisfies the condition (v,).
Proof. By Theorem A of Grothendieck ([5], p. 16), there are m € N

and €' > 0 such that RLT O A};M} and, for every a € A%M}, there is
ge L’;’f{M} such that
Rg=a and |glm <Cla|i=C sup |—ai°3—'.
nENp M,
In particular, for every p € N, there is a real-valued function ¢, € LZ{ M}

such that ()
{ ‘Pppr (0) =1,

P80y =0, VjeN, j#p,
lpplm < C/M,.

Now we proceed as in the proof of Proposition 4.1 with |¢p|, instead of
|op|1. This leads to
y r
ogp < v V20
2 ST m— =

oo
1 ( - p

mm53+~vﬁw@
A;,p oMk h o/ Mp
if the condition (1) (of that proof) holds. To prove that (1) holds, we consider
the set P for h €]0,1/{4m®/")[ and obtain
1 ((4h)y"m®)?
o/
3 SO T @ym "

hence
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PROPOSITION 5.2. For every r € N, if the restriction map

f= (D (0))ner

is surjective, then the restriction map R of Proposition 5.1 is also surjective
and hence the sequence m sotisfies the condition (7, ).

5 :Nr,{M} - A{M},

Proof We use the r-interpolating sequence P of Lemma 2.3,

We first prove that for every g € .N'r, (M} the restriction g|(g 1) belongs to
the space £¢p}([0, 1]) introduced and studied in {9]. Let g be such a function;
there are then m € N and A4 > 0 such that

]g(m)(fﬁ)l <Am™M,, VYnel,, ¥z €(0,00[.
We now proceed as in the proof of Proposition 4.2: from Qg = Am™ M,
and @, =2~ " AmH AL we deduce

277 |gm (24 1)/2)] < (der®/5) Am™™H Py
for every t € [-1,1] and j € {1,...,7 — 1}, which suffices. ‘

Next we prove the existence of an element of D, {p} Which is identically
1 on a neighbourhood of 0. Of course the sequence € = (e, )nen, defined by
e1 = 1 and e, = 0 otherwise belongs to 4, M} Therefore there is ¢ € N'r’ {M}
such that (™ (0) = 1 and ¥} {0) = 0 for every j € Ny distinct from r. As ¢
is bounded on [0, cof, the function ¢ defined on [0, oof by ¥(x) = p(z)—=" /r!
is not identically 0 but U }(0) =0 for every j € Np. Two cases are possible:
either

(1) the restriction % of 9 to [0,1] is not identically 0, or

(2) the restriction of 4 to [0, 1] is identically 0. We then set

zg = sup{z € [0,00[: ¥(t) =0, Vt € [0,z]}
and use ¥(z - zo) instead of 1(z) to define k.

In both cases, k belongs to £;p}{[0,1]), is not identically 0 and satisfies
kU )(0) = 0 for every j € Ny. Therefore the Denjoy-Carleman-Mandelbrojt
theorem shows that Yo ; Po—1/Pn < 0o and there is an element ¢ of D, (5
which is identically 1 on a neighbourhood of 0.

Now we can complete the proof. For every a € A {M} the hypothesis
provides an element g of .N'n 1) such that ¢"(0) = a, for every n € No.
As the function f defined on [0, 00[ by f(z) := ¢(x)g(z) if z € [0,1] and
f(z) 1= 0 otherwise clearly belongs to C*([0, oo[) and satisfies f™7(0) = ax,
for every n € Ny, we just have to check that it belongs to £, (5. This is
straightforward since ¢ € D) 1py and glp,1y € Epy([0,1]). w

DEFINITION. For every r € N, an extension map T from A, into
is a map such that (Ta)™")(0) = a, for

D, (ary e8P Lo agyi Mopan)
every a € A{M} and n € Np.
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PROPOSITION 5.3. For every r € N, if there is an extension map from
Agpgy into N, (M) then the sequence m satisfies the condition (B2)-

Proof. Let T be an extension map from A,y into Nr'{M}. By the
localization theorem, there is an integer m € N such that T' is also an
extension map from A}M} into Ay So there is C > 0 such that

|an ] 1
Tal, < Clali = C sup —2!,  VYa € Abpy.
| a" lall 'nelg] M, {M}

Therefore for every p € Ny, there is a real function ¢, € N;’f{ M} such that
{ wF(0) =1,

QO;JT)(O) = 05 VJ € NO: J ?é b,
lep|m < CfMy.

The Taylor formula gives for every y > 0 a number § € 10, 1] such that

6 () — 1] < @) 89)] < L iyl M
(pr)! {pr)!
yp'r 2p yp'r‘ 2D pn P
_<_ C(pv_)‘m My - - - T2p 5 Cmm mgp.

Fix A € J0,m~%7[. Then for every y € I := [0, A ®/(pr)!/ {/Map), we have
¥ () — 1] < C(A™m?)P, hence o) () > 1/2 for all p larger than some
integer po. So for every integer p > pg and j € {0,...,p}, integrating (p—j)r
times provides

1 y(IJ_J)f'

s oy Wel

2 [

and hence by inserting the end point of I,

1 Ale=Dr ((pr))P—i)/e

1 . G (g
2((p—5r)  (mgp)Pd s w:[%i’m[l@pj ().

e (W)l =

As clearly ((pr))®=9" > (((p — j)r)!)P", this leads finally to

1 A {p—)r
™ ( ) < |
2\ {Map 2€[0,00]

Given £ > 0, fix s € N such that 85~ < £A4”. If we proceed as at the
beginning of the proof, we get a positive integer ¢ and a constant B > 1
such that TA3p, CN] () and

¢ (@), Yp2po, Vi €{0,...,p}

|Taly < B sup (@,

et SnMn’ Va. e A{M}’
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hence in particular |@,|q < B/(sPM,) for every p € Ny. On the other hand,
as

(3r) j My
sup z)| < M, < B
wE[O,oo["Pp ()] < lppled® M; < By M,

the use of (7) leads to

(p~)r ,
he)
2\ Moy sPM,
and hence
M\ 1 1/(p-3) {(p=5) 5=/ (p—3)
8 —L£ e i) AT qd/ (P—F) g—2/ (P—]
® () posempeagies

for every p > pg and j € {0,...,p}.

Now fix 3 € ]0,1/2[ such that ¢*¢ < 2 and s~1/11=#) < 2571 as well as
an integer p; > sup{4,po} such that (2B)%/"* < 2 and ¢*#*+¥/P+ < 2. For
every integer p > pi1, set j, := [Op] + 1 where [8p] designates the largest
integer < Bp. Then of course 8p < j, < 1+p/2 < p. On the one hand, from
jp > Bp, we get p — jp < p(1 — B), hence p/(p — jp) > 1/(1 — B); on the
other hand, from j, < Bp—+1, we get p— Jp = p(1 — 8) — 1 2 p/4, hence
9o/ (0~ Fp) < 4dp/p < 48 + 4/p. The inequality (8) then leads to

( M, )1/(p—ip) 1 (apyipa—rgttaleg1/0-8) < 8
M; Map A

i.e. the sequence m satisfies the condition (ii) of Lemma 1.5(b) of [9] with
I = 2, a condition equivalent to (f2). =

THEOREM 5.4, For r .E N, the following conditions are equivalent:

(1) the sequence m satisfies the conditions (B2) and (v»),

(2) there is an extension map from Agpgy into D, 1y,

(3) there is an extension map from Agppy into Lo ary,

(4) there is an extension map from Agyey into N -

Proof. (1)=+(2). Let P be the r-interpolating sequence of Lemma 2.3.
As mn satisfies (8z2) and (,), the corresponding sequence p satisfies {(71) and
(B2). .

So Theorem 2.1(b) of [9] provides the existence of an extension map 5
from A;py into £py([—1,1]). Now we choose ¢ € £py([—1,1]) which is
identically 1 on a neighbourhood of 0 and o) (~1) = p(®)(1) = 0 for every
n € Np, and introduce the extension map

o {g(ﬂ;)Sa(m) ifze[—1,1],

U: A{P} = Dy gpys otherwise.
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In order to get a link with the sequence M, we first remark that
V‘A{M}_"’A{P}’ GHb,
defined by
b'n'r = An,; Vn € NU)
bm~+j =0, ¥n € NQ, Vj S {1,-..,?"‘“ 1},
is well defined, linear and continuous. Next we check that the image of the
map UV : A oy D, P} is contained in the topological vector subspace

E of D, (py of elements f such that f™+9){0) = 0 for every n € Ny and

j e{1,...,r—1}. Finally we remark that a direct application of the Gorny-
Cartan inequality proves that

W:Dr,{M}_)E? fo,

is well defined, injective, linear and continuous. As W is also surjective, the
linear operator
e— -1 .

has a closed graph between (LF)-spaces and hence it is continuous, an ex-
tension map indeed.

(2)=(3) and (3)=(4) are obvious.

(4)=+(1) is an immediate consequence of Propositions 5.2 and 5.3. =

5.2. Link with the spaces M

REMARK. Let o belong to ]0, 0ol If there is an extension map T from
Appgyy into H, rary, then {T")|j0,00 is an extension map from A, into
1,{p}- By Proposition 5.3, this implies that the sequence m satisfies the
condition (H2). If moreover (mn/n" Jnen is quasi-increasing, Lemma 2.4 im-
plies that we are in a position to apply Theorem 5.4.
Let us consider a converse of this result.

THECREM 5.5. For every r € N, if there is an extension map S from
A{M} into D {M): then, for every o € 10,7[, there is also an extension
map from A{M} mio H, (ary-

Proof Let M™* be the sequence of Lemma 2.2 and m™ be its corre-
sponding sequence,

We first prove that, up to substituting M by an equivalent sequence, we
may suppose that m satisfies (@), which is equivalent to saying that m*
satisfies (o). Indeed, by Theorem 5.4, m satisfies (v,4.1), i.e. the sequence
("tY/my inew, satisfies (v1). As the latter sequence also satisfies (o), Proposi-
tion 1.1(a) of [9] tells us that there is an equivalent sequence satisfying (o)
and (379), hence (a3), (11) and (By). So up to substituting (~/Mn)nem, by
an equivalent sequence, we may suppose that ("%/M,/n)nen I8 increasing to
oo and finally that m* is increasing to oo.
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It is then straightforward to check that M™* is normalized and logarith-
mically convex. Moreover by Theorem 5.4, m satisfies (5z) and hence so does
m* by Lemma 2.2. Finally, as m satisfies (v,41), Lemma 2.1 shows that m*
satisfies (). Therefore Theorem 5.4 gives the existence of an extension map
U from A{M.} into D-,,’{M.‘}. .

Now we go on as in the proof of Theorem 4.5: we introduce the isomor-
phism

VA = Drarsy 8+ (an/nnens
and with every f € Dr’ (M WE associate the very same function ¢ and

proceed as before up to formula (5). Now we fix m € N such that f € ‘D:,’f{ Mo}
and get
_ 5=l () ()9
2 il z
o [PELZEES 10O | e
zelL 2

for some constant A > 0, A = 1/cos (£ - Z) for instance. Then in order to
study the function g, we fix an integer s >> 0 such that for every z € S\ {0},
the circle 4 of centre z and radius |2|/s is contained in Sp\ {0}. For every
z € 84\ {0}, the Cauchy representation formula leads to

6" (2)] < Alflm(2ms)" My
and
g™ (0) = nlf*(0), VneN,
Therefore if we set W f = g|g,., we obtain W f € Hiﬂﬁf , and

W o — sup sup AL
B e 25, (2M8) My T

So we have constructed a map W from Dr, (M-} into ‘H a{M}*
Finally it is straightforward to check that T := WUV : A vy Ha (a1}
is an extension map. =
THEOREM 5.6. If, for every v € N, the sequence (ma/n"Jnen 15 quasi-
increasing, then the following assertions are equivalent:
(1) for every o > 0, there is an extension map from Apppy ?nto He (ays
(2) for some o > 0, there is an extension map from Appy into Mo, iy
(3) for every r € N, there is an extension maep from Acppy ?nto D, (ary>
(4) for some r € N, there is an extension map from A {ary Pnto D, (my>
(5) the sequence m sotisfies the condition (B2)-
Proof (1)=>(2) and (3)=>(4) are trivial. .
(2)=>(3) has been developed in the remark at the beginning of this sub-
section.
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(4)=(5) is an immediate consequence of Theorem 5.4.

(5)=(1). Let r € N belong to ]a, co[. The sequence m satisfies (32} and
the sequence (mn/n™+ ) en is quasi-increasing, hence Lemma 2.4 says that
m satisfies (7p..1). So Theorem 5.4 provides the existence of an extension
map from A, into D, 11,1} and we conclude by Theorem 5.5. =

5.3. Surjectivity of the restriction R : D — A. Let us first state the
following result as a starting point.

PROPOSITION 5.7. The following conditions are equivalent:

(1) the restriction map R : Dy 3y — A{M} is surjective,

(2) the sequence m satisfies the condition (m),

(3) there is a positive integer d such that, for every m € N, there is an
extension map from AT[“M} nto Df:’f'M}.

Proof (1)=(2) and (2)=>(3) are known (cf. [9], Theorems 3.5 and 3.6).
(3)=(1) is trivial. m

THEOREM 5.8. Let r € N and a € |0, »[. If the restriction map
f - (f(n(H-l)) (O))HENm

is surjective, then there is o positive integer d such that, for every m € N,
there is an extension map from Afyp, into 'ng,?M}'

5 Dr+1,{M} - A{M}:

Proof We are going to establish the existence of a positive integer
d such that, for every m € N, there is an extension map from A’E}\}} into

Hi’fM . If we had introduced the spaces A‘E‘M} and H’;, oy for every h >0
to define the spaces A (a1} and H o, (M} the same proof would apply with m
replaced by /m to give the stated result.

We first claim that we may suppose that mn satisfies (ay). Indeed, as S'is
surjective, Proposition 5.1 implies that the sequence (m/my)nen, satisfies
(v1). As it also satisfies (e}, Lemma 1.1(a) of [9] provides an equivalent
sequence satisfying (o), proving our claim.

Now as m satisfies (@), the sequence M™* of Lemma 2.2 is normalized
and logarithmically convex. So by Lemma 2.3 the r-interpolating sequence
P* of M* is normalized and logarithmically convex. Moreover the corre-
sponding sequence p* satisfies ('y1): one has to proceed just as in the proof
of Theorem 5.4 and use Lemma 2.1.

Proposition 5.1 then affords a positive integer dy such that, for every
m € N, there is an extension map U, from A?’“P*} into Dfﬂ,*y

Of course, on the one hand, the mapping

Vi ATagey = ATpey, @ b,
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defined by
{ bor = an, ¥n € Ng,
brr+j =0, YneNy, Vje {13 SRR e 1})
is well defined, continuous and linear. On the other hand,

Lo ATy > Aoy @ (an/nnet

is an isomorphism. 80 UnVinLm is a map from Ay, into Dfﬂ,.}.

The image of this map is contained in the topological vector subspace
By, of 'Df’l{”?,,,} of elerents f such that f("™+5(0) = 0 for every n € Ny and
§e{1,...,r —1}. It is then straightforward to check that

Wi : By — D.E.?{IIEZE: fef
is well defined, linear and continuous.
To go on further, we choose 8 € Ja,r[ and fix s € N such that, for
every z € Su \ {0}, the circle v of centre » and radius |z|/s is contained in

Sg\ {0}. With every f € Did{lﬂ)r}, we then associate the function ¢ defined

onL:={z€C:Re>0}byp(z) =1 S; e~t/% f(t) dt and proceed as in the
proof of Theorem 5.5. We end up with a continuous linear map Ny, from
DI imto HarGn”” such that, for d = 2sdj,

NeaWonUnVin L = ATagy = HEHony
is an extension map. =

From now on we work in the setting of Gevrey classes of order v > 1. So
the sequence M we are considering is (n!")nen, . which we abbreviate to nl7.
In this case, the sequence m satisfies the condition {cx1), so as in the previous
proof the r-interpolating sequence P* is normalized and logarithmically
convex. Moreover if v > r + 1 with r € N, the corresponding sequence p™
clearly satisfies (o) and it is straightforward to check that it also satisfies (1)
for p = 2r, and hence (7y;). Under those circumstances, for every & € 10,7[,
we may reproduce the previous proof to get the following result.

PROPOSITION 5.9. Ifr € N, a €]0,7[ and vy € Jr 4 1,00], then there is
a positive integer d such that, for everym € N, there is an ezlension map
from AT, .y into Hiﬁnh}. n

The following theorem improves this last result. Its proof relies on asymp-
totic expansions as developed in [2] and [11], as well as on ideas of Borel
and Mittag-Lefler about analytic extension (cf. [12], p. 500).

THEOREM 5.10. For all @,y € R such that0 < e <7y-1, there is d e N
such that, for every m € N, there is an extension map T from A’f,jm} into

Hdatr{l'n!‘f} ‘
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Proof Let us first set up some notation. In order to get a better ap- So if we set s := (2m(2k)*"1)~%, we obtain
pearance of some formulas, we set k := 1/(y— 1)}. We also fix € |, v ~ 1, ]
then choose r > 0 such that, for every z € S, \ {0}, the circle y(z) of centre T(l—n_k—sn < 2a|mB, VneN,
z and radius r|z| is contained in int(.Sy), and finally set n!I'(1+n/k)
¢ = n_ which implies that the function
. i 12 oo a
Next, we need a comparison of I'(1+n(y— 1)} with n!7=1; this can easily p(z) = Z —|--~—--ﬂ———zﬂ
L et — plI'(1+ n/k)
be derived from the Stirling formula: n=0
(a) on the one hand, there is B > 0 such that is holomorphic on {z € C : |z] < s} and continuous on [—3, s]. So
(9) TL!’Y"]- < B(zk)n(q—l) Vn c N‘ . k —tk/z k-1
T+n{y—1)) - | > $6) = e el
since defines a holomorphic functi int(Sy—1). I ticular fi €
Cam 41 (=1)/2 (y—1)/2 unction on int{S,..1). In particular for every z
(e~ "n"v/2mwn) < {27) n Sy \ {0} and n € Ny, the equality (11) leads directly to
e (n(y - D)0V 2m(y =1) = Vv¥-1  ((y-177h)" 1
b 5
; ;o k & : ]
with /n < 2™ for every n € N; Flz) ~ Yyi = B[ttty o d
(b) on the other hand, there is b > 0 such that J-X___f: gt z* (S] Z 'F(l + J/k)
— a1 _1
(10) 'l +n(y—-1) <t V¥ne N, o ﬁ"f’e_tk/z . lfi
since 2k 'I‘(l + g/k)

1D (n(y - 1)1\ Zmn(y - 1)

- vn - -
=2r(y - )({(y - 1)""H)" "n"v2mn)Y nl o
Varty=if Wy ) 1) - X %
with /n/(v2mn)""1 < /n < 2" for every n € N. We will also use the =
. s & o0
identity - < % Se_tk cos(g)/;zjktn+k 181n Z 1P(lai|3/k)sj dt
(11) 2I(L+n/k)= = S et/ gtk gy on int(Sy—1) 0 7=
k i o L |a, | :
for every n € Ny. To see this, we first note that, for v > 0 fixed, the change + T;FS S gt coslO Il gtk Z I -Jk-J/k) A+ e &
of variable u = t*/v* in I'(1+n/k) = {3° e~u njk du leads to :
., B by So if we set
1+ n/k)=— { et/ mth—1gy, sl
"o M= Z AT+ 3/R)
Since the last integral is a holomorphic function on int(Sy_1), (11) follows
at once from the analytic extension theorem. we obtain
Now we start with the construction of the map 7},. n-1 oM k% .k "
For every a € Af:m}, the inequality (9) provides ‘f(z Erz’ — T S gt cos(Q)/ [ gnt k=1 gy
|an| n 7l (-1) | =0 o
_—n < —_— < TOVATICE
(1 +n/k) ~ laimm (1+n/k) — @l Bm (2K) y Vn & No. Now we note that the change of variable u? = t* cos(() leads to
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E 2
N S e—t" cos(C)/|z!’°tn+k—1 dt
0

]*

- L .k Te—uk/rzwunw—l du
cos(¢) cosm(1(¢)  [zf* 2
< 1
= cos{() cos™( =1 (()
the last inequality being obtained by use of (11) and (10). So we finally get
n
< 2 L
cos{¢} \ scos?1{(()
Let us derive from this last inequality that, for some positive integer d
independent of m, the function f belongs to Hi‘,’in”}.
On the one hand, for every z € 5, \ {0} and n € Ny, the equality

n-1 n _ nel ar x
Fm) () = (f(z)— Eﬁzﬂ')( )__ n! S Flu) = 550 S du

FlR

n—1

(12) ‘f(z) -y

1l
=0 J*

4

27

:1 — 9. o eyl
= 2mi ) (u—2)
leads to
t aM b " 2mr)z|
(n) < n n -1
1001 5 i (i)
2M [/ b(1+1/r)\" 'y
= eos(¢) \scos7"1(¢)/
On the other hand, for every 2 € 5, \ {0} and n € Np, the inequality {12)
leads to
flz) - E;—Zg %-’,’-zf G

zn nl

oM b i —
Scos(o(scosv—l(o) (4 D7

and hence, uniformly in Sy,
y TOTEE
— n )
&0} ? !
So if we proceed as in the proof of Theorem 5.5, we obtain
lim () = o,
=
z€8,\{0}
It is now straightforward to check that the map T,, can be defined by
Tha = f|g, for every a € ATy m
THEOREM 5.11. Let o,«y > 0. If there is a function f € H
that f"(0) = 81, for every n € Ny, then a < v — 1.

a,{ni7} such

Extension maps 249

Proof Fixm &€ N such that f He tnivy As f is a bounded function

on Sq, the function ¢(z) := f(z) — z is not identically 0 on S,. Moreover
the Tayler formula provides a constant A > 0 such that, for every z € S,
satisfying 0 < |z| < 1 and n € Ny, we have

p(2)

m=n!Y
<A o = Am™plv 1L,

So if we introduce u* = z, we get |p(u®)| < Am™n!7"|yu|*" for every
% € C such that ®u > 0 and |u| < 1, and every n € Ny. Finally we set
v = 1/u and get a non-identically 0 function ¢ (v) = ¢(1/v®) holomerphic
on {z € C: Rz > 0} such that

Amtnl11
vl s~

As (n)1/™ — 0o, Theorem 2.4.111 of [7] implies

o AmPnti—1 e J— 1
E : 1 - = Z <00 ®
Amntl(n 4 1)v-1 ml/e (n+ 1)r-1/a

n=1 =1

if Rv > 1.
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The Heisenberg group and the group Fourier transform
of regular homogeneous distributions

by

SUSAN ELIZABETH SLOME (New York, NY)

Abstract. We calculate the group Fourler transform of regular homogeneous distri-
butions defined on the Heisenberg group, H™. All such diséributions can be written as
an infinite sum of terms of the form F(8)@T ¥ P(2), where (z,£) € C* x R, w = |z|® — i,
¢ = arg(w/w) and P{z) is an element of an orthonormal basis for the spherical harmonics.
The formulas derived give the Fourier transform of the distribution in terms of a smooth
kernel of the variable & and the Weyl correspondent of P.

1. Introduction. In this paper we derive formulas for the group Fourier
transform of regular homogeneous distributions on the Heisenberg group,
H"™. (We use coordinates (2z,1) € C" xR on H™). It can be shown that all such
distributions can be expressed as an infinite sum Y f;(§)w " P;(z). Here,
w = |2|2 — it, § = arg(W/w) and the P;(z) are elements of an orthonormal
bagis for the spherical harmonics.

The group Fourier transform is a map from L!(H") into the space of
families of bounded operators defined on a Hilbert space. In many applica-
tions the Hilbert space is taken to be LZ(R™). The domain of definition of the
transform can be extended to include tempered distributions on H". The
group Fourier transform is of interest because it extends to a unitary map
from L?(H") to the space of families of Hilbert—Schmidt operators. Also, the
group Fourier transform (which we will denote by %) behaves nicely with
respect to convolution defined by the group multiplication on H™. That is,
(f*xg)fy = Fu - Gu, where the multiplication on. the right is composition of
operators.

The group Fourier transform is closely related to the Weyl correspon-
dence. In fact, the formula we present gives the group Fourier transform of a
regular homogeneous distribution in terms of the Weyl correspondent of P;.

This correspondent will be denoted by W(F;). The set
{W(P) | P is a homogeneous harmonic polynomial}
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