Transcendence measure for η / ω

by
N. Saradha (Mumbai)

Dedicated to my parents

1. Introduction. Let $\wp(z)$ be the Weierstrass elliptic function with invariants g_{2} and g_{3} and fundamental periods ω_{1} and ω_{2} such that $\operatorname{Im}\left(\omega_{2} / \omega_{1}\right)$ >0. Let $\zeta(z)$ be the zeta function associated with $\wp(z)$. For any period ω of $\wp(z)$, let $\eta(\omega)$ be the quasi-period of $\wp(z)$. Thus $\zeta(z+\omega)=\zeta(z)+\eta(\omega)$. Let $||=| | \mathbb{C}$ denote the ordinary absolute value in \mathbb{C}. For any polynomial $B(X) \in \mathbb{Z}[X]$, we denote by $H(B)$ the maximum of the absolute values of the coefficients of B. For any non-zero algebraic number α, we define the degree and height of α as the degree and height of the minimal polynomial of α. In this paper we prove

Theorem. For $i \in\{1,2,3\}$, let α_{i} be an algebraic number of height h_{i} and degree d_{i}. Suppose

$$
\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{Q}\right]=d^{*} \quad \text { and } \quad 1+\sum_{i=1}^{3} \frac{\log h_{i}}{d_{i}}=h^{*}
$$

Then for any period ω of $\wp(z)$, we have

$$
\begin{aligned}
\max \left(\left\lvert\, \frac{\eta(\omega)}{\omega}\right.\right. & -\alpha_{1}\left|,\left|g_{2}-\alpha_{2}\right|,\left|g_{3}-\alpha_{3}\right|\right) \\
& >\exp \left\{-C_{0}\left(\left(h^{*} d^{*} \log \left(h^{*} d^{*}+2\right)\right)^{2}+\left(d^{*}\right)^{2} \log ^{4}\left(d^{*}+2\right)\right)\right\}
\end{aligned}
$$

where C_{0} is an effectively computable number depending only on g_{2}, g_{3} and ω.
Let the invariants g_{2} and g_{3} be algebraic. In 1937, Schneider [11] showed that $\eta(\omega) / \omega$ is transcendental. In 1980, Reyssat [10, p. 90, inequality (3)] gave an approximation measure for $\eta(\omega) / \omega$. Reyssat proved that for any algebraic number α of degree $\leq d$ and height $\leq h$ with $h>e^{e}$,

$$
\begin{equation*}
|\omega-\alpha \eta(\omega)|>\exp \left\{-C_{1}\left(d \log h \log \log h+(d \log d)^{3}\right)\right\} \tag{1}
\end{equation*}
$$

1991 Mathematics Subject Classification: 11J81, 11 J82.
where C_{1} is an effectively computable number depending only on g_{2}, g_{3} and ω. Thus it follows that $\eta(\omega) / \omega$ has transcendence type $\leq 3+\varepsilon$ for any $\varepsilon>0$. As a consequence of the Theorem, we deduce

Corollary 1. Let g_{2}, g_{3} and α be algebraic numbers with α having height $\leq h$ and degree $\leq d$ where $h>e^{e}$ and $d>e$. Then for any period ω of $\wp(z)$ we have

$$
\begin{equation*}
|\omega-\alpha \eta(\omega)|>\exp \left\{-C_{2}\left(\log ^{2} h(\log \log h)^{2}+d^{2} \log ^{4} d\right)\right\} \tag{2}
\end{equation*}
$$

where C_{2} is an effectively computable number depending only on g_{2}, g_{3} and ω.
For the deduction of the above corollary, we take in the Theorem $\alpha_{2}=g_{2}$, $\alpha_{3}=g_{3}$ and observe that $d^{*} \leq c_{1} d$ and $h^{*} d^{*} \leq c_{2}(d+\log h)$ where c_{1}, c_{2} are effectively computable numbers depending only on g_{2}, g_{3} and ω. Thus it follows that $\eta(\omega) / \omega$ has transcendence type $\leq 2+\varepsilon$ for any $\varepsilon>0$. We observe that (2) is better than (1) whenever $\log h \leq d^{3 / 2}(\log d)^{1 / 2}$. By a straightforward comparison, we combine the two bounds in (1) and (2) to get

Corollary 2. Let g_{2}, g_{3} and α be algebraic numbers with α having height $\leq h$ and degree $\leq d$ where $h>e^{e}$ and $d>e$. Then for any period ω of $\wp(z)$ we have

$$
\begin{aligned}
& -\log |\omega-\alpha \eta(\omega)| \\
& \qquad< \begin{cases}d^{2} \log ^{4} d & \text { if } \log h \leq d \log d \\
\log ^{2} h(\log \log h)^{2} & \text { if } d \log d<\log h \leq d^{3 / 2}(\log d)^{1 / 2} \\
d^{3} \log ^{3} d & \text { if } d^{3 / 2}(\log d)^{1 / 2}<\log h \leq(d \log d)^{2} \\
d \log h \log \log h & \text { if } \log h>(d \log d)^{2}\end{cases}
\end{aligned}
$$

where the constant involved in the symbol \ll is effectively computable depending only on g_{2}, g_{3} and ω.

An approximation measure for $\eta(\omega) / \omega$ as in Corollary 1 leads to a transcendence measure for $\eta(\omega) / \omega$. See Lang [5, p. 61] and Waldschmidt [13]. In Section 4 we shall use the result of Diaz and Mignotte [1] to deduce from Corollary 1 the following result.

Corollary 3. Let g_{2} and g_{3} be algebraic and ω any period of $\wp(z)$. Let $B(X) \in \mathbb{Z}[X]$ be any non-zero polynomial with $H(B) \leq H$ and $\operatorname{deg} B \leq d$ where $H>e^{e}$ and $d>e$. Then

$$
|B(\eta(\omega) / \omega)|>\exp \left\{-C_{3}\left(\log ^{2} H(\log \log H)^{2}+d^{2} \log ^{4} d\right)\right\}
$$

where C_{3} is an effectively computable number depending only on g_{2}, g_{3} and ω.

As remarked by Reyssat in [9], if \wp has complex multiplication with fundamental periods ω_{1}, ω_{2}, then for any algebraic number α of height $\leq h$
and degree $\leq d$, the numbers

$$
\left|\eta\left(\omega_{1}\right)-\alpha \eta\left(\omega_{2}\right)\right| \text { with } g_{2} g_{3} \neq 0 \quad \text { and } \quad\left|\omega_{2}-\alpha \eta\left(\omega_{1}\right)\right|
$$

will also have the same estimate as in Corollary 1 . Hence for $i, j \in\{1,2\}$, the numbers

$$
\eta\left(\omega_{i}\right) / \eta\left(\omega_{j}\right) \text { with } i \neq j, g_{2} g_{3} \neq 0 \text { and } \eta\left(\omega_{i}\right) / \omega_{j}
$$

have transcendence type $\leq 2+\varepsilon$ for any $\varepsilon>0$.
I thank Professor Yu. V. Nesterenko for suggesting the problem and helping me with many valuable advice. I also thank Professor P. Philippon for his valuable remarks and the referees for their helpful comments which shaped the paper in its present form.
2. Main Proposition and proof of the Theorem. In this section, we construct an auxiliary function and use it to prove the Theorem. Reyssat uses $\wp(z)$ and the corresponding zeta function $\zeta(z)$ for the construction of the auxiliary function. The main method of his proof is the SchneiderGelfond method together with the knowledge of the number of zeros of certain meromorphic functions involving $\wp(z)$ and $\zeta(z)$. For proving our theorem, we use the Ramanujan functions which are defined for any $z \in \mathbb{C}$ with $|z|<1$ as follows:

$$
\begin{gathered}
P(z)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) z^{n}, \quad Q(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) z^{n}, \\
R(z)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) z^{n}
\end{gathered}
$$

where $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$. Here the sum is taken over positive divisors of n. These functions satisfy the differential equations

$$
\begin{equation*}
\theta P=\frac{1}{12}\left(P^{2}-Q\right), \quad \theta Q=\frac{1}{3}(P Q-R), \quad \theta R=\frac{1}{2}\left(P R-Q^{2}\right) \tag{3}
\end{equation*}
$$

where θ is the differential operator $z d / d z$. The Ramanujan functions are closely connected to the Weierstrass elliptic function as follows. Let $q=$ $e^{2 \pi i \omega_{2} / \omega_{1}}$ where ω_{1} and ω_{2} are fundamental periods with $\operatorname{Im}\left(\omega_{2} / \omega_{1}\right)>0$. Then from Lang [6, Ch. 4] it is known that

$$
\begin{equation*}
P(q)=3 \frac{\omega_{1}}{\pi} \cdot \frac{\eta\left(\omega_{1}\right)}{\pi}, \quad Q(q)=\frac{3}{4}\left(\frac{\omega_{1}}{\pi}\right)^{4} g_{2}, \quad R(q)=\frac{27}{8}\left(\frac{\omega_{1}}{\pi}\right)^{6} g_{3} . \tag{4}
\end{equation*}
$$

We use the properties (3) and (4) of the Ramanujan functions for the construction of a sequence of isobaric polynomials (see Section 3 for the definition).

Proposition. Let ω be any period of $\wp(z)$. Let C_{4}, \ldots, C_{8} be effectively computable numbers depending only on ω. For every integer $N>C_{4}$, there exists an isobaric polynomial $B_{N}\left(X_{1}, X_{2}, X_{3}\right) \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ such that

$$
\operatorname{deg} B_{N} \leq C_{5} N \log N, \quad \log H\left(B_{N}\right) \leq C_{6} N \log ^{2} N
$$

and

$$
\exp \left(-C_{7} N^{2}\right)<\left|B_{N}\left(\eta(\omega) / \omega, g_{2}, g_{3}\right)\right|<\exp \left(-C_{8} N^{2}\right)
$$

Remark 1. Let $0<|q|<1$ and C_{9}, \ldots, C_{13} be effectively computable numbers depending on q. Following the proofs of Lemmas 2.1 to 2.4 of [8] and using Theorem 3 of [8], it is possible to construct, for every integer $N>C_{9}$, a polynomial $B_{N}^{\prime}\left(X_{1}, X_{2}, X_{3}\right) \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ such that

$$
\operatorname{deg} B_{N}^{\prime} \leq C_{10} N \log N, \quad \log H\left(B_{N}^{\prime}\right) \leq C_{11} N \log ^{2} N
$$

and

$$
\exp \left(-C_{12} N^{3}\right)<\left|B_{N}^{\prime}(P(q), Q(q), R(q))\right|<\exp \left(-C_{13} N^{3}\right)
$$

We note here that the above construction of B_{N}^{\prime} depends on the algebraic techniques of Nesterenko [8]. Our method of proving the Proposition is based on his work but does not depend on his algebraic techniques.

Remark 2. Let $\left\{\omega_{1}^{*}, \omega_{2}^{*}\right\}$ be a pair of fundamental periods of $\wp(z)$. Any period ω of $\wp(z)$ is of the form $\omega=m \omega_{1}^{*}+n \omega_{2}^{*}$. Let $r=\operatorname{gcd}(m, n)$. Then $\omega=r \omega_{1}$ where $\omega_{1}=a \omega_{1}^{*}+b \omega_{2}^{*}$ with $a=m / r, b=n / r$ and $\operatorname{gcd}(a, b)=1$. Hence there exist integers a^{*} and b^{*} such that $a a^{*}-b b^{*}=1$. Let $\omega_{2}=$ $b^{*} \omega_{1}^{*}+a^{*} \omega_{2}^{*}$. Then $\left\{\omega_{1}, \omega_{2}\right\}$ forms a pair of fundamental periods of $\wp(z)$ and we may assume that $\operatorname{Im}\left(\omega_{2} / \omega_{1}\right)>0$. Since $\eta\left(r \omega_{1}\right)=r \eta\left(\omega_{1}\right)$, we have $\eta(\omega) / \omega=\eta\left(\omega_{1}\right) / \omega_{1}$ and hence it is enough to prove the Proposition and Corollary 3 for $\omega=\omega_{1}$.

In the sequel, we denote by c_{3}, c_{4}, \ldots effectively computable numbers depending on g_{2}, g_{3}, ω and q. We now deduce the Theorem from the above Proposition.

Proof of the Theorem. Suppose

$$
\eta(\omega) / \omega-\alpha_{1}=\varepsilon_{1}, \quad g_{2}-\alpha_{2}=\varepsilon_{2}, \quad g_{3}-\alpha_{3}=\varepsilon_{3} .
$$

Let $\varepsilon_{0}=\max \left(\left|\varepsilon_{1}\right|,\left|\varepsilon_{2}\right|,\left|\varepsilon_{3}\right|\right)$. We may assume that $\varepsilon_{0}<1$. We set $t=$ $h^{*} d^{*}+d^{*} \log \left(d^{*}+2\right)$. We choose N as the smallest integer such that

$$
\begin{equation*}
t \leq \delta \frac{N+1}{\log (N+1)} \tag{5}
\end{equation*}
$$

where $\delta>0$ satisfies the inequality $3 \delta C_{4} / \log C_{4}<1$. Since $t \geq 1$, we see that $N>C_{4}$. Hence there exists a polynomial $B_{N}\left(X_{1}, X_{2}, X_{3}\right) \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ as in the Proposition. Now

$$
\begin{align*}
B_{N}\left(\eta(\omega) / \omega, g_{2}, g_{3}\right) & =B_{N}\left(\alpha_{1}+\varepsilon_{1}, \alpha_{2}+\varepsilon_{2}, \alpha_{3}+\varepsilon_{3}\right) \tag{6}\\
& =B_{N}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)+B_{N}^{(1)}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)
\end{align*}
$$

for some polynomial $B_{N}^{(1)}$. It is easy to see that

$$
\begin{equation*}
\left|B_{N}^{(1)}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)\right| \leq \varepsilon_{0} \exp \left\{c_{3} N^{2}\right\} \tag{7}
\end{equation*}
$$

If $B_{N}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=0$, then it follows from (6), (7) and the Proposition that

$$
\varepsilon_{0}>\exp \left\{-c_{4} N^{2}\right\}
$$

If $B_{N}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \neq 0$, then we apply Theorem 1 of [5, p. 58] to conclude that
$\left|B_{N}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right|>\exp \left\{-c_{5}\left(d^{*} N \log ^{2} N+h^{*} d^{*} N \log N\right)\right\}>\exp \left\{-c_{6} \delta N^{2}\right\}$.
Now if $\varepsilon_{0}<\exp \left\{-c_{7} N^{2}\right\}$ where $c_{7}>c_{3}$ say, then by (6), (7) and the Proposition, we get

$$
\left|B_{N}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right|<\exp \left\{-c_{8} N^{2}\right\}
$$

Now we choose $\delta<c_{8} / c_{6}$ to get a contradiction. Thus

$$
\varepsilon_{0}>\exp \left\{-c_{9} N^{2}\right\}
$$

Now the result follows by the choice of N in (5).
In Section 3 we prove several lemmas which lead to the proof of the Proposition.
3. Lemmas and proof of the Proposition. Before beginning our series of lemmas we fix some notation. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=$ $\sum_{n=0}^{\infty} b_{n} z^{n}$ be two power series with $a_{n} \in \mathbb{C}$ for $n \geq 0$ and $b_{n} \in \mathbb{R}^{+}$for $n \geq 0$. We say that g dominates f if $\left|a_{n}\right| \leq b_{n}$ for $n \geq 0$ and we write $f \ll g$. As set in the introduction, for any non-zero polynomial $B(X) \in \mathbb{Z}[X], H(B)$ is the maximum of the absolute values of the coefficients of B. Suppose B_{1}, \ldots, B_{s} are in $\mathbb{Z}[X]$ and $B=B_{1} \ldots B_{s}$. Then by Gelfond [3, p. 135], we have

$$
H\left(B_{1}\right) \ldots H\left(B_{s}\right) e^{-\operatorname{deg} B} \leq H(B)
$$

Thus

$$
\begin{equation*}
\log H\left(B_{1}\right)+\ldots+\log H\left(B_{s}\right) \leq \log H(B)+\operatorname{deg} B \tag{8}
\end{equation*}
$$

For any non-zero polynomial $E\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$, we define the weight $w(E)$ as

$$
\begin{equation*}
w(E)=\operatorname{deg}_{t} E\left(t z_{1}, t^{2} z_{2}, \ldots, t^{n} z_{n}\right) \tag{9}
\end{equation*}
$$

Further we say that E is isobaric of weight $w(E)$ if for any monomial
$z_{1}^{i_{1}} \ldots z_{n}^{i_{n}}$ of $E\left(z_{1}, \ldots, z_{n}\right)$, we have

$$
w(E)=\sum_{r=1}^{n} r i_{r} .
$$

In the following lemmas, we take q as any complex number with $0<|q|<1$.
Lemma 1. For all integers $N \geq 4$ there exists a polynomial $A \in$ $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right], A \not \equiv 0$, such that A is isobaric in X_{1}, X_{2} and X_{3} of weight N and

$$
\begin{equation*}
\log H(A) \leq(6 N+2) \log N \tag{10}
\end{equation*}
$$

and if $F(z)=A(P(z), Q(z), R(z))$, then

$$
\begin{equation*}
F^{(k)}(0)=0 \quad \text { for } 0 \leq k<\left[N^{2} / 24\right] \tag{11}
\end{equation*}
$$

Proof. It is known (see [8, p. 1323]) that

$$
\begin{equation*}
P(z) \ll \frac{24 \cdot 2!}{(1-z)^{3}}, \quad Q(z) \ll \frac{240 \cdot 4!}{(1-z)^{5}}, \quad R(z) \ll \frac{504 \cdot 6!}{(1-z)^{7}} . \tag{12}
\end{equation*}
$$

For any triple $\bar{k}=\left(k_{1}, k_{2}, k_{3}\right)$ with $k_{1}+2 k_{2}+3 k_{3}=N$, we write

$$
\begin{equation*}
(P(z))^{k_{1}}(Q(z))^{k_{2}}(R(z))^{k_{3}}=\sum_{n=0}^{\infty} d(\bar{k}, n) z^{n} \tag{13}
\end{equation*}
$$

Here and everywhere in the paper we take k_{1}, k_{2} and k_{3} as non-negative integers. We note that $d(\bar{k}, n) \in \mathbb{Z}$. Using (12) we see that

$$
\begin{aligned}
& (P(z))^{k_{1}}(Q(z))^{k_{2}}(R(z))^{k_{3}} \\
& \ll \frac{(504 \cdot 6!)^{k_{1} /(2 \cdot 9)+k_{2} /(1 \cdot 45)+k_{3}}}{(1-z)^{3 k_{1}+5 k_{2}+7 k_{3}}} \ll \frac{(504 \cdot 6!)^{\left(k_{1}+2 k_{2}+3 k_{3}\right) /(2 \cdot 9)}}{(1-z)^{3 N}} \ll \frac{83^{N}}{(1-z)^{3 N}} .
\end{aligned}
$$

Writing $1 /(1-z)^{3 N}=\sum_{n=0}^{\infty} b_{n} z^{n}$, we find that $b_{0}=1$ and for $n \geq 1$

$$
\begin{align*}
b_{n} & =\frac{3 N(3 N+1) \ldots(3 N+n-1)}{n!}=\frac{(n+1) \ldots(n+3 N-1)}{(3 N-1)!} \tag{14}\\
& \leq n^{3 N-1}\left(1+\frac{1}{n}\right)\left(\frac{1}{2}+\frac{1}{n}\right) \ldots\left(\frac{1}{3 N-1}+\frac{1}{n}\right) \\
& <n^{3 N-1}\left(1+\frac{1}{n}\right)^{3 N-1}=(n+1)^{3 N-1} .
\end{align*}
$$

From the definition of $d(\bar{k}, n)$ and (14) it follows that

$$
\begin{equation*}
|d(\bar{k}, n)| \leq 83^{N} b_{n} \leq\left(83(n+1)^{3}\right)^{N} \quad \text { for } n \geq 0 \tag{15}
\end{equation*}
$$

We solve the system of equations

$$
\begin{equation*}
\sum_{\bar{k}} a_{\bar{k}} d(\bar{k}, n)=0 \quad \text { for } 0 \leq n<\left[N^{2} / 24\right] \tag{16}
\end{equation*}
$$

in the unknowns $a_{\bar{k}}$. The number of equations in (16) is [$\left.N^{2} / 24\right]$. The number of unknowns $a_{\bar{k}}$ is equal to the number of non-negative integral solutions in $\left(k_{1}, k_{2}, k_{3}\right)$ of $k_{1}+2 k_{2}+3 k_{3}=N$, which is equal to the number of ways N can be partitioned into parts equalling 1,2 or 3 , denoted by $p_{3}(N)$, say. This is known to be equal to

$$
\frac{(N+3)^{2}}{12}-\frac{7}{72}+\frac{(-1)^{N}}{8}+\frac{2}{9} \cos \left(\frac{2 N \pi}{3}\right)
$$

(see [2, p. 112 or p. 115]). In fact, this can be easily derived from the generating function $1 /\left((1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)\right)$ of $p_{3}(N)$ using partial fractions. Thus the number of unknowns is $\leq(N+3)^{2} / 12+1$ and exceeds $N^{2} / 12$. We apply Siegel's lemma (see [12]) to the system of equations in (16) to conclude that there exist integers $a_{\bar{k}}$, not all zero, satisfying (16) such that

$$
\left|a_{\bar{k}}\right| \leq\left(\frac{(N+3)^{2}}{12}+1\right) \max (|d(\bar{k}, n)|)
$$

where the maximum is taken over all \bar{k} with $k_{1}+2 k_{2}+3 k_{3}=N$ and $0 \leq n<\left[N^{2} / 24\right]$. Now we use (15), $n<N^{2} / 24$ and $N \geq 4$ to get

$$
\begin{equation*}
\left|a_{\bar{k}}\right| \leq N^{6 N+2} . \tag{17}
\end{equation*}
$$

Now we set

$$
A\left(X_{1}, X_{2}, X_{3}\right)=\sum_{\bar{k}} a_{\bar{k}} X_{1}^{k_{1}} X_{2}^{k_{2}} X_{3}^{k_{3}}
$$

where $a_{\bar{k}}$ satisfies (16) with (17). Thus (10) holds. Since

$$
F(z)=\sum_{n=0}^{\infty}\left(\sum_{\bar{k}} a_{\bar{k}} d(\bar{k}, n)\right) z^{n},
$$

we see that (11) follows from (16).
Since $A\left(X_{1}, X_{2}, X_{3}\right) \not \equiv 0$, we observe that $F(z) \not \equiv 0$. Otherwise we have $A(P(z), Q(z), R(z)) \equiv 0$. But this contradicts the fact that the functions $P(z), Q(z), R(z)$ are algebraically independent over $\mathbb{C}(z)$ and hence over \mathbb{Q} in particular. This fact is a consequence of a result of Mahler [7]. Now let $M=\operatorname{ord}_{z=0} F(z)$. Then by Lemma 1 ,

$$
\begin{equation*}
M \geq N^{2} / 24 \tag{18}
\end{equation*}
$$

Lemma 2. Let $q \in \mathbb{C}$ with $0<|q|<1$. For $N \geq c_{10}$ we have

$$
\begin{equation*}
|F(q)| \leq|q|^{M} M^{3 N} N^{11 N} . \tag{19}
\end{equation*}
$$

Proof. By Lemma 1, we see that

$$
F(z)=\sum_{n=M}^{\infty} f_{n} z^{n} \quad \text { where } \quad f_{n}=\sum_{\bar{k}} a_{\bar{k}} d(\bar{k}, n)
$$

with $k_{1}+2 k_{2}+3 k_{3}=N$. Hence by (17), (15), $n \geq M$ and (18), for N sufficiently large ($N \geq 84$ suffices) we obtain

$$
\left|f_{n}\right| \leq \sum_{\bar{k}}\left|a_{\bar{k}} d(\bar{k}, n)\right| \leq N^{6 N+4}\left(83(n+1)^{3}\right)^{N} \leq n^{3 N} N^{7 N}
$$

Using the above estimate for $\left|f_{n}\right|$ we get

$$
\begin{aligned}
|F(q)| & \leq \sum_{n=0}^{\infty}\left|f_{n+M} q^{n+M}\right| \leq|q|^{M} N^{7 N} \sum_{n=0}^{\infty}(n+M)^{3 N}|q|^{n} \\
& \leq|q|^{M} N^{7 N} M^{3 N} \sum_{n=0}^{\infty}\left(1+\frac{n}{M}\right)^{3 N}|q|^{n} \\
& \leq|q|^{M} N^{7 N} M^{3 N} \sum_{n=0}^{\infty}(n+1)^{3 N}|q|^{n} \\
& \leq|q|^{M} N^{7 N} M^{3 N} \frac{(3 N)!}{(1-|q|)^{3 N+1}} \leq|q|^{M} M^{3 N} N^{10 N} \frac{27^{N}}{(1-|q|)^{3 N+1}}
\end{aligned}
$$

Now (19) follows by taking c_{10} sufficiently large.
In the next lemma we derive an upper bound for M in terms of N. For this, we introduce the differential operator $\mathcal{D}: \mathbb{Q}\left[X_{1}, X_{2}, X_{3}\right] \rightarrow$ $\mathbb{Q}\left[X_{1}, X_{2}, X_{3}\right]$ given by

$$
\mathcal{D}=\frac{1}{12}\left(X_{1}^{2}-X_{2}\right) \frac{\partial}{\partial X_{1}}+\frac{1}{3}\left(X_{1} X_{2}-X_{3}\right) \frac{\partial}{\partial X_{2}}+\frac{1}{2}\left(X_{1} X_{3}-X_{2}^{2}\right) \frac{\partial}{\partial X_{3}} .
$$

We show
Lemma 3. Let E be a non-zero polynomial in $\mathbb{C}\left[X_{1}, X_{2}, X_{3}\right]$ which is isobaric in X_{1}, X_{2} and X_{3} of weight $w(E)=w$. Then

$$
\begin{equation*}
\operatorname{ord}_{z=0} E(P, Q, R) \leq w^{2}+w \tag{20}
\end{equation*}
$$

Proof. Suppose $\operatorname{ord}_{z=0} E(P, Q, R)=0$. Then the assertion is trivially true since $w \geq 0$. Hence we may assume that $\operatorname{ord}_{z=0} E(P, Q, R) \neq 0$. Thus E is a non-constant polynomial and not a monomial in X_{1}, X_{2} and X_{3}. Since E is isobaric, this also means that E is a polynomial in at least two of the variables X_{1}, X_{2} and X_{3}. Suppose E is a polynomial in X_{2} and X_{3} only. Then

$$
\begin{aligned}
E\left(X_{2}, X_{3}\right) & =\sum_{2 k_{2}+3 k_{3}=w} c_{\bar{k}} X_{2}^{k_{2}} X_{3}^{k_{3}} \\
& =\left(\frac{X_{3}}{X_{2}}\right)^{w} \sum_{2 k_{2}+3 k_{3}=w} c_{\bar{k}}\left(\frac{X_{2}^{3}}{X_{3}^{2}}\right)^{k_{2}+k_{3}}=\left(\frac{X_{3}}{X_{2}}\right)^{w} \prod_{i=1}^{l}\left(\frac{X_{2}^{3}}{X_{3}^{2}}-\beta_{i}\right)
\end{aligned}
$$

where $\beta_{1}, \ldots, \beta_{l}$ are complex numbers and $l \leq w / 2$. Since

$$
\operatorname{ord}_{z=0}\left(\frac{Q^{3}}{R^{2}}-\beta_{i}\right)= \begin{cases}1 & \text { if } \beta_{i}=1 \\ 0 & \text { if } \beta_{i} \neq 1\end{cases}
$$

we derive that

$$
\begin{equation*}
\operatorname{ord}_{z=0} E(Q, R) \leq l \leq w / 2 \tag{21}
\end{equation*}
$$

Thus (20) is satisfied whenever E is a polynomial in X_{2} and X_{3} only.
Now we assume that E is irreducible and not a polynomial in X_{2} and X_{3} only. For any polynomial E satisfying the hypothesis of Lemma 3, we have

$$
\begin{equation*}
\mathcal{D} E=\sum b_{\bar{k}} X_{1}^{k_{1}} X_{2}^{k_{2}} X_{3}^{k_{3}}, \quad b_{\bar{k}} \in \mathbb{C} \tag{22}
\end{equation*}
$$

and the summation is over \bar{k} with $k_{1}+2 k_{2}+3 k_{3}=w+1$. Thus $\mathcal{D} E$ is a polynomial isobaric in X_{1}, X_{2} and X_{3} of weight $w+1$. Further we note by virtue of (3) that

$$
\begin{equation*}
\theta(E(P(z), Q(z), R(z)))=(\mathcal{D} E)(P(z), Q(z), R(z)) \tag{23}
\end{equation*}
$$

Suppose $\mathcal{D} E \equiv 0$. Then by (23), we conclude that $E(P(z), Q(z), R(z))=$ $\alpha_{0} \in \mathbb{C}$. But this contradicts the result of Mahler [7]. Thus we obtain

$$
\mathcal{D} E \not \equiv 0
$$

We consider two cases.
Case (i): $E \mid \mathcal{D} E$. Then by Lemma 4.1 of [8] and the Corollary following it, we have $E=X_{2}^{3}-X_{3}^{2}$ and hence $\operatorname{ord}_{z=0} E(P, Q, R)=1$ and (20) follows in this case.

Case (ii): $E \nmid \mathcal{D} E$. Let F be the resultant of E and $\mathcal{D} E$ with respect to X_{1}. Then $F \not \equiv 0$ and

$$
\begin{equation*}
F\left(X_{2}, X_{3}\right)=U E+V \mathcal{D} E \tag{24}
\end{equation*}
$$

for some polynomials U and V in $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$. It follows from the definition of weight function and the representation of the resultant as a determinant that

$$
\begin{equation*}
w(F) \leq\left(\operatorname{deg}_{X_{1}} E\right) w(\mathcal{D} E)+\left(\operatorname{deg}_{X_{1}} \mathcal{D} E\right) w(E) \leq 2 w(w+1) \tag{25}
\end{equation*}
$$

Let F_{0} be the sum of the monomials of F of weight $w(F)$. Then F_{0} is an isobaric polynomial in X_{2} and X_{3} of weight $w(F)$. On comparing terms of weight $w(F)$ in (24), we get

$$
\begin{equation*}
F_{0}\left(X_{2}, X_{3}\right)=U_{0} E+V_{0} \mathcal{D} E \tag{26}
\end{equation*}
$$

where U_{0} and V_{0} are isobaric polynomials. Since

$$
\operatorname{ord}_{z=0} E(P, Q, R) \leq \operatorname{ord}_{z=0} \mathcal{D} E(P, Q, R)
$$

we derive from (26) and (21) with E replaced by F_{0} and w by $w\left(F_{0}\right)$ that

$$
\operatorname{ord}_{z=0} E(P, Q, R) \leq \operatorname{ord}_{z=0} F_{0}(Q, R) \leq \frac{1}{2} w\left(F_{0}\right)=\frac{1}{2} w(F)
$$

which implies (20) by (25).
Thus the lemma is true whenever E is irreducible. Suppose E is reducible. We observe that E can be written as $E=E_{1}^{a_{1}} \ldots E_{s}^{a_{s}}$ where each E_{i} is irreducible, isobaric in X_{1}, X_{2}, X_{3} and a_{1}, \ldots, a_{s} are positive integers. Thus

$$
\operatorname{ord}_{z=0} E(P, Q, R)=\sum_{i=1}^{s} a_{i} \operatorname{ord}_{z=0} E_{i}(P, Q, R) \leq \sum_{i=1}^{s} a_{i} w\left(E_{i}\right)\left(w\left(E_{i}\right)+1\right)
$$

since E_{i} 's are irreducible. Now we use the fact that $w=\sum_{i=1}^{s} a_{i} w\left(E_{i}\right)$ to get

$$
\operatorname{ord}_{z=0} E(P, Q, R) \leq \sum_{i=1}^{s} a_{i}\left(w\left(E_{i}\right)\right)^{2}+w \leq\left(\sum_{i=1}^{s} a_{i} w\left(E_{i}\right)\right)^{2}+w \leq w^{2}+w
$$

This completes the proof of the lemma.
It follows from Lemma 3 that

$$
\begin{equation*}
M \leq 2 N^{2} \tag{27}
\end{equation*}
$$

Following exactly the proof of Lemma 2.3 of [8] and then using (27), we obtain

Lemma 4. Let $q \in \mathbb{C}$ with $0<|q|<1$. Suppose $N \geq c_{10}$. Then there exists an integer T with $0 \leq T<c_{11} N \log N$ for which

$$
\left|F^{(T)}(q)\right|>\exp \left\{-c_{12} N^{2}\right\}
$$

In the above lemma and in the sequel we use without mention the assumption that c_{10} is sufficiently large. Since the Ramanujan functions satisfy differential equations of the type (3), it is convenient to change from the ordinary differentiation on $F(z)$ to using θ on F. The next two lemmas serve this purpose. For $h \geq 1$ we see by induction on h that

$$
\begin{equation*}
\left(z^{-1} \theta\right)^{h}=z^{-h} \prod_{k=0}^{h-1}(\theta-k) \tag{28}
\end{equation*}
$$

Set

$$
\prod_{k=0}^{h-1}(\theta-k)=\sum_{k=1}^{h} s(h, k) \theta^{k}
$$

The numbers $s(h, k)$ are called the Stirling numbers of the first kind (see
Hall [4, p. 29, Ex-2]). They satisfy the recurrence relation

$$
s(h+1, k)=s(h, k-1)-h s(h, k)
$$

from which we derive

$$
\begin{align*}
& |s(h, 1)|=(h-1)!, \quad s(h, h)=1 \\
& |s(h, k)| \leq\binom{ h-1}{k-1} h^{h-k} \quad \text { for } 1<k<h \tag{29}
\end{align*}
$$

Lemma 5. Let $q \in \mathbb{C}$ with $0<|q|<1$. Suppose $N \geq c_{10}$. Then there exists an integer T^{\prime} with $0 \leq T^{\prime} \leq T$ such that

$$
\left|\theta^{T^{\prime}} F(q)\right|>\exp \left\{-c_{13} N^{2}\right\}
$$

Proof. Let $T=0$ or 1 . Then we take $T^{\prime}=T$. Thus $\theta^{T^{\prime}} F(q)=F(q)$ or $q F^{\prime}(q)$. Now we use Lemma 4 to get the inequality in the lemma. Thus we assume that $T \geq 2$. Suppose

$$
\begin{equation*}
\left|\theta^{t} F(q)\right| \leq \frac{|q|^{T}}{(T+1)^{T}} \exp \left\{-c_{12} N^{2}\right\} \quad \text { for } 1 \leq t \leq T \tag{30}
\end{equation*}
$$

By (28),

$$
F^{(T)}(z)=\left(z^{-1} \theta\right)^{T}(F(z))=z^{-T} \sum_{k=1}^{T} s(T, k)\left(\theta^{k} F(z)\right)
$$

Hence by (29) and (30), we have

$$
\begin{aligned}
& \left|F^{(T)}(q)\right| \\
& \leq|q|^{-T}\left\{(T-1)!+\sum_{k=2}^{T-1}\binom{T-1}{k-1} T^{T-k}+1\right\} \frac{|q|^{T}}{(T+1)^{T}} \exp \left\{-c_{12} N^{2}\right\} \\
& \quad<\exp \left\{-c_{12} N^{2}\right\}
\end{aligned}
$$

which contradicts Lemma 4 . Thus there exists an integer T^{\prime} with $1 \leq T^{\prime} \leq T$ such that

$$
\left|\theta^{T^{\prime}} F(q)\right|>\frac{|q|^{T}}{(T+1)^{T}} \exp \left\{-c_{12} N^{2}\right\}
$$

Now the result follows since $T<c_{11} N \log N$ and $N>c_{10}$.
For any integer $t \geq 1$, we write

$$
\begin{equation*}
\theta^{t}=\sum_{k=1}^{t} S(t, k) z^{k} \frac{d^{k}}{d z^{k}} \tag{31}
\end{equation*}
$$

where $S(t, k) \in \mathbb{Z}$. We observe that for any integer $k \geq 1$,

$$
\theta\left(z^{k} \frac{d^{k}}{d z^{k}}\right)=k z^{k} \frac{d^{k}}{d z^{k}}+z^{k+1} \frac{d^{k+1}}{d z^{k+1}}
$$

Hence we note from (31) that $S(t, 1)=S(t, t)=1$ and

$$
\begin{equation*}
S(t, k)=k S(t-1, k)+S(t-1, k-1) \tag{32}
\end{equation*}
$$

where we take $S(h, k)=0$ whenever $k>h$. In fact, $S(t, k)$ are known as Stirling numbers of the second kind (see Hall [4]). From the recurrence relation (32) one can easily derive by induction on t and k that

$$
\begin{equation*}
|S(t, k)| \leq \frac{1}{(k-1)!}(2 k)^{t-1} \quad \text { for } 1 \leq k \leq t \tag{33}
\end{equation*}
$$

Lemma 6. Let $q \in \mathbb{C}$ with $0<|q|<1$. Suppose $N \geq c_{10}$ and T^{\prime} is chosen as in Lemma 5. Then

$$
\left|\theta^{T^{\prime}} F(q)\right|<\exp \left\{-c_{14} N^{2}\right\}
$$

Proof. Suppose $T^{\prime}=0$. Then the lemma is valid by Lemma 2 and (18). Hence we assume that $T^{\prime} \geq 1$. By (31) and (33), we get

$$
\left|\theta^{T^{\prime}} F(q)\right| \leq \sum_{k=1}^{T^{\prime}}\left|S\left(T^{\prime}, k\right) q^{k} F^{(k)}(q)\right| \leq \sum_{k=1}^{T^{\prime}} \frac{\left(2 T^{\prime}\right)^{T^{\prime}-1}}{(k-1)!}|q|^{k}\left|F^{(k)}(q)\right|
$$

We estimate $\left|F^{(k)}(q)\right|$ by the formula

$$
F^{(k)}(q)=\frac{k!}{2 \pi i} \int_{C} \frac{F(z)}{(z-q)^{k+1}} d z
$$

where C is the circle $|z-q|=r-|q|$ with $|q|<r<1$ and r chosen depending only on q. Then on C we have $|z| \leq|z-q|+|q|=r$. Hence by Lemma 2 with q replaced by z, we get

$$
\left|F^{(k)}(q)\right| \leq \frac{k!r^{M} M^{3 N} N^{11 N+4}}{(r-|q|)^{k}}
$$

Thus

$$
\left|\theta^{T^{\prime}} F(q)\right| \leq\left(2 T^{\prime}\right)^{T^{\prime}} r^{M} M^{3 N} N^{11 N+4} \sum_{k=1}^{T^{\prime}}\left(\frac{|q|}{r-|q|}\right)^{k}
$$

We use $T^{\prime} \leq T<c_{11} N \log N,(27)$, (18) and $r<1$ in the above estimate to complete the proof.

By a simple induction, we see that the identity in (23) with $E=A$ can be extended as

$$
\begin{equation*}
\theta^{h}(A(P(z), Q(z), R(z)))=\left(\mathcal{D}^{h} A\right)(P(z), Q(z), R(z)) \quad \text { for } h \geq 1 \tag{34}
\end{equation*}
$$

For T^{\prime} as in Lemma 5, we set

$$
\begin{equation*}
A_{N}\left(X_{1}, X_{2}, X_{3}\right)=12^{T^{\prime}}\left(\mathcal{D}^{T^{\prime}} A\right)\left(X_{1}, X_{2}, X_{3}\right) \tag{35}
\end{equation*}
$$

Then $A_{N}\left(X_{1}, X_{2}, X_{3}\right) \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ and by (34),

$$
A_{N}(P(z), Q(z), R(z))=12^{T^{\prime}} \theta^{T^{\prime}}(F(z))
$$

Hence on using Lemmas 5 and 6 , for $N \geq c_{10}, q \in \mathbb{C}$ with $0<|q|<1$ we get

$$
\begin{equation*}
\exp \left\{-c_{13} N^{2}\right\}<\left|A_{N}(P(q), Q(q), R(q))\right|<\exp \left\{-c_{15} N^{2}\right\} \tag{36}
\end{equation*}
$$

Further we show
Lemma 7. For $N>c_{10}$, we have $\operatorname{deg} A_{N} \leq c_{16} N \log N$, $\log H\left(A_{N}\right) \leq$ $c_{17} N \log ^{2} N$.

Proof. We observe that

$$
\begin{equation*}
\mathcal{D}^{t} A=\sum s_{\bar{k}} X_{1}^{k_{1}} X_{2}^{k_{2}} X_{3}^{k_{3}}, \quad s_{\bar{k}} \in \mathbb{Q}, \tag{37}
\end{equation*}
$$

is isobaric in X_{1}, X_{2} and X_{3} of weight $N+t$. Hence $\operatorname{deg} A_{N} \leq N+T^{\prime}$. Now the estimate for the degree follows since $T^{\prime}<c_{11} N \log N$. To bound $H\left(A_{N}\right)$, we note that

$$
A \ll H(A)\left(X_{1}+X_{2}+X_{3}\right)^{N}
$$

where $H(A)$ satisfies (10). Hence

$$
\mathcal{D}^{T^{\prime}} A \ll H(A)\left(N+T^{\prime}\right)^{T^{\prime}}\left(X_{1}+X_{2}+X_{3}\right)^{N+T^{\prime}} .
$$

Thus $H\left(A_{N}\right) \leq\left(12^{T^{\prime}} H(A)\left(N+T^{\prime}\right)^{T^{\prime}} 3^{N+T^{\prime}}\right)$. Now the estimate follows.
Proof of the Proposition. By Remark 2, it is enough to prove the Proposition when $\omega=\omega_{1}$. We set $\eta\left(\omega_{1}\right)=\eta$ and $q=e^{2 \pi i \omega_{2} / \omega}$. From (35) and (37) we observe that

$$
A_{N}(P(q), Q(q), R(q))=12^{T^{\prime}} \sum s_{\bar{k}} P(q)^{k_{1}} Q(q)^{k_{2}} R(q)^{k_{3}}
$$

where the summation is over \bar{k} with $k_{1}+2 k_{2}+3 k_{3}=N+T^{\prime}$. Further by (36), not all $s_{\bar{k}}$ are zero. From the relations in (4), we get

$$
\begin{aligned}
A_{N}(P(q), & Q(q), R(q)) \\
& =12^{T^{\prime}} \sum s_{\bar{k}}\left(3 \frac{\omega}{\pi} \cdot \frac{\eta}{\pi}\right)^{k_{1}}\left(\frac{3}{4}\left(\frac{\omega}{\pi}\right)^{4} g_{2}\right)^{k_{2}}\left(\frac{27}{8}\left(\frac{\omega}{\pi}\right)^{6} g_{3}\right)^{k_{3}} \\
& =12^{T^{\prime}}\left(\frac{\omega}{\pi}\right)^{2\left(N+T^{\prime}\right)} \sum s_{\bar{k}}\left(3 \frac{\eta}{\omega}\right)^{k_{1}}\left(\frac{3}{4} g_{2}\right)^{k_{2}}\left(\frac{27}{8} g_{3}\right)^{k_{3}} \\
& =12^{T^{\prime}}\left(\frac{\omega}{\pi}\right)^{2\left(N+T^{\prime}\right)} A_{N}\left(3 \frac{\eta}{\omega}, \frac{3}{4} g_{2}, \frac{27}{8} g_{3}\right) .
\end{aligned}
$$

Then we set

$$
B_{N}\left(X_{1}, X_{2}, X_{3}\right)=2^{N+T^{\prime}} A_{N}\left(3 X_{1}, \frac{3}{4} X_{2}, \frac{27}{8} X_{3}\right) .
$$

We observe that $B_{N}\left(X_{1}, X_{2}, X_{3}\right) \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ and $\operatorname{deg} B_{N} \leq N+T^{\prime} \leq$ $c_{18} N \log N$. To calculate $H\left(B_{N}\right)$, we note that

$$
H\left(B_{N}\right) \leq H\left(A_{N}\right) c_{19}^{N+T^{\prime}} .
$$

Now the required bound follows from Lemma 7. We observe that

$$
\left|B_{N}\left(\eta / \omega, g_{2}, g_{3}\right)\right|=\left|2^{N+T^{\prime}} 12^{-T^{\prime}}(\pi / \omega)^{2\left(N+T^{\prime}\right)} A_{N}(P(q), Q(q), R(q))\right|
$$

Now we use (36) to get the required lower and upper bounds for $\left|B_{N}\left(\eta / \omega, g_{2}, g_{3}\right)\right|$. This completes the proof of the Proposition.
4. Proof of Corollary 3. By Remark 2, it is enough to prove the corollary when $\omega=\omega_{1}$. As earlier, we set $\eta\left(\omega_{1}\right)=\eta$ and $q=e^{2 \pi i \omega_{2} / \omega}$. Let $B(X) \in \mathbb{Z}[X]$ be any non-zero polynomial with $H(B) \leq H$ and $\operatorname{deg} B \leq d$.

First we assume that B is irreducible. Let ξ be the root of B which is nearest to $\eta(\omega) / \omega$. Then by a result of Diaz and Mignotte [1, Corollary 2], we have

$$
|\eta(\omega) / \omega-\xi| \leq\left(H^{2} d(d+1)^{3 / 2}\right)^{d-1}|B(\eta(\omega) / \omega)|
$$

and Corollary 1 yields the desired result.
Now let B be reducible over $\mathbb{Q}[X]$. Write

$$
B(X)=B_{1}(X) \ldots B_{s}(X)
$$

where $B_{1}(X), \ldots, B_{s}(X)$ are irreducible polynomials with $B_{i}(X)$ having height $\leq H_{i}$ and degree $\leq d_{i}$ for $1 \leq i \leq s$. Then we have
$\left|B_{i}(\eta(\omega) / \omega)\right|>\exp \left\{-c_{20}\left(\log ^{2} H_{i}\left(\log \log H_{i}\right)^{2}+d_{i}^{2} \log ^{4} d_{i}\right)\right\} \quad$ for $1 \leq i \leq s$.
Thus

$$
\begin{equation*}
|B(\eta(\omega) / \omega)|>\exp \left\{-c_{21}\left(\sum_{i=1}^{s} \log ^{2} H_{i}\left(\log \log H_{i}\right)^{2}+\sum_{i=1}^{s} d_{i}^{2} \log ^{4} d_{i}\right)\right\} \tag{38}
\end{equation*}
$$

Now we observe that

$$
\begin{equation*}
\sum_{i=1}^{s} d_{i}^{2} \log ^{4} d_{i} \leq\left(\sum_{i=1}^{s} d_{i}^{2}\right) \log ^{4} d \leq d^{2} \log ^{4} d \tag{39}
\end{equation*}
$$

since $\sum_{i=1}^{s} d_{i}=d$. Further from (8), we get

$$
\begin{align*}
\sum_{i=1}^{s} \log ^{2} H_{i}\left(\log \log H_{i}\right)^{2} & \leq c_{22}\left(\sum_{i=1}^{s} \log H_{i}\right)^{2}(\log (\log H+d))^{2} \tag{40}\\
& \leq c_{23}(\log H+d)^{2}\left((\log \log H)^{2}+\log ^{2} d\right) \\
& \leq c_{24}\left(\log ^{2} H+d^{2}\right)\left((\log \log H)^{2}+\log ^{2} d\right) \\
& \leq c_{25}\left(\log ^{2} H(\log \log H)^{2}+d^{2} \log ^{2} d\right) .
\end{align*}
$$

Now we use (39) and (40) in (38) to obtain the result of Corollary 3.
REMARK 3. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be algebraic numbers satisfying the hypothesis of the Theorem. By following the proof of the Theorem with B_{N} replaced by A_{N}, it is clear from Lemma 7 and (36) that for any $q \in \mathbb{C}$ with $0<|q|<1$,

$$
\begin{aligned}
\max \left(\left|P(q)-\alpha_{1}\right|, \mid Q(q)\right. & -\alpha_{2}\left|,\left|R(q)-\alpha_{3}\right|\right) \\
& >\exp \left\{-C_{14}\left(\left(h^{*} d^{*}\left(\log h^{*} d^{*}\right)\right)^{2}+\left(d^{*}\right)^{2} \log ^{4} d^{*}\right)\right\}
\end{aligned}
$$

where C_{14} is an effectively computable number depending only on q. The above bound can be improved if we use the results of Nesterenko [8]. We follow the proof of the Theorem with B_{N} replaced by B_{N}^{\prime} mentioned in Remark 1 and the inequality (5) replaced by

$$
t \leq \delta \frac{(N+1)^{2}}{\log (N+1)}
$$

Then we get

$$
\begin{aligned}
\max \left(\left|P(q)-\alpha_{1}\right|\right. & \left.,\left|Q(q)-\alpha_{2}\right|,\left|R(q)-\alpha_{3}\right|\right) \\
> & \exp \left\{-C_{15}\left(\left(h^{*} d^{*}\left(\log h^{*} d^{*}\right)\right)^{3 / 2}+\left(d^{*}\right)^{3 / 2} \log ^{3} d^{*}\right)\right\}
\end{aligned}
$$

References

[1] G. Diaz et M. Mignotte, Passage d'une mesure d'approximation à une de transcendance, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 4, 131-134.
[2] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1952.
[3] A. O. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, 1960.
[4] M. Hall, Jr., Combinatorial Theory, 2nd ed., Wiley, 1986.
[5] S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, MA, 1966.
[6] -, Elliptic Functions, Addison-Wesley, Reading, MA, 1973.
[7] K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Austral. Math. Soc. Ser. A 10 (1969), 445-450.
[8] Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65-96 (in Russian); English transl.: Math. USSR-sb. 187 (1996), 1319-1348.
[9] E. Reyssat, Mesures de transcendance de nombres liés aux fonctions exponentielles et elliptiques, C. R. Acad. Sci. Paris Sér. A 285 (1977), 977-980.
[10] -, Approximation algébrique de nombres liés aux fonctions elliptiques et exponentielles, Bull. Soc. Math. France 108 (1980), 47-79.
[11] T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann. 113 (1937), 1-13.
[12] A. B. Shidlovski, Transcendental Numbers, Nauka, Moscow, 1987 (in Russian); English transl.: de Gruyter, Berlin, 1989.
[13] M. Waldschmidt, Transcendence measures of exponentials and logarithms of algebraic numbers, J. Austral. Math. Soc. Ser. A 25 (1978), 445-465.

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai 400 005, India
E-mail: saradha@math.tifr.res.in

