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1. Introduction. Let ℘(z) be the Weierstrass elliptic function with
invariants g2 and g3 and fundamental periods ω1 and ω2 such that Im(ω2/ω1)
> 0. Let ζ(z) be the zeta function associated with ℘(z). For any period ω
of ℘(z), let η(ω) be the quasi-period of ℘(z). Thus ζ(z + ω) = ζ(z) + η(ω).
Let | | = | |C denote the ordinary absolute value in C. For any polynomial
B(X) ∈ Z[X], we denote by H(B) the maximum of the absolute values of
the coefficients of B. For any non-zero algebraic number α, we define the
degree and height of α as the degree and height of the minimal polynomial
of α. In this paper we prove

Theorem. For i ∈ {1, 2, 3}, let αi be an algebraic number of height hi
and degree di. Suppose

[Q(α1, α2, α3) : Q] = d∗ and 1 +
3∑

i=1

log hi
di

= h∗.

Then for any period ω of ℘(z), we have

max
(∣∣∣∣
η(ω)
ω
− α1

∣∣∣∣, |g2 − α2|, |g3 − α3|
)

> exp{−C0((h∗d∗ log(h∗d∗ + 2))2 + (d∗)2 log4(d∗ + 2))}
where C0 is an effectively computable number depending only on g2, g3 and ω.

Let the invariants g2 and g3 be algebraic. In 1937, Schneider [11] showed
that η(ω)/ω is transcendental. In 1980, Reyssat [10, p. 90, inequality (3)]
gave an approximation measure for η(ω)/ω. Reyssat proved that for any
algebraic number α of degree ≤ d and height ≤ h with h > ee,

(1) |ω − αη(ω)| > exp{−C1(d log h log log h+ (d log d)3)}
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where C1 is an effectively computable number depending only on g2, g3 and
ω. Thus it follows that η(ω)/ω has transcendence type ≤ 3+ε for any ε > 0.
As a consequence of the Theorem, we deduce

Corollary 1. Let g2, g3 and α be algebraic numbers with α having height
≤ h and degree ≤ d where h > ee and d > e. Then for any period ω of ℘(z)
we have

(2) |ω − αη(ω)| > exp{−C2(log2 h(log log h)2 + d2 log4 d)}
where C2 is an effectively computable number depending only on g2, g3 and ω.

For the deduction of the above corollary, we take in the Theorem α2 = g2,
α3 = g3 and observe that d∗ ≤ c1d and h∗d∗ ≤ c2(d + log h) where c1, c2
are effectively computable numbers depending only on g2, g3 and ω. Thus
it follows that η(ω)/ω has transcendence type ≤ 2 + ε for any ε > 0. We
observe that (2) is better than (1) whenever log h ≤ d3/2(log d)1/2. By a
straightforward comparison, we combine the two bounds in (1) and (2) to get

Corollary 2. Let g2, g3 and α be algebraic numbers with α having height
≤ h and degree ≤ d where h > ee and d > e. Then for any period ω of ℘(z)
we have

− log |ω − αη(ω)|

�





d2 log4 d if log h ≤ d log d,
log2 h(log log h)2 if d log d < log h ≤ d3/2(log d)1/2,
d3 log3 d if d3/2(log d)1/2 < log h ≤ (d log d)2,
d log h log log h if log h > (d log d)2,

where the constant involved in the symbol � is effectively computable de-
pending only on g2, g3 and ω.

An approximation measure for η(ω)/ω as in Corollary 1 leads to a tran-
scendence measure for η(ω)/ω. See Lang [5, p. 61] and Waldschmidt [13]. In
Section 4 we shall use the result of Diaz and Mignotte [1] to deduce from
Corollary 1 the following result.

Corollary 3. Let g2 and g3 be algebraic and ω any period of ℘(z). Let
B(X) ∈ Z[X] be any non-zero polynomial with H(B) ≤ H and degB ≤ d
where H > ee and d > e. Then

|B(η(ω)/ω)| > exp{−C3(log2H (log logH)2 + d2 log4 d)}
where C3 is an effectively computable number depending only on g2, g3

and ω.

As remarked by Reyssat in [9], if ℘ has complex multiplication with
fundamental periods ω1, ω2, then for any algebraic number α of height ≤ h
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and degree ≤ d, the numbers

|η(ω1)− αη(ω2)| with g2g3 6= 0 and |ω2 − αη(ω1)|
will also have the same estimate as in Corollary 1. Hence for i, j ∈ {1, 2},
the numbers

η(ωi)/η(ωj) with i 6= j, g2g3 6= 0 and η(ωi)/ωj

have transcendence type ≤ 2 + ε for any ε > 0.

I thank Professor Yu. V. Nesterenko for suggesting the problem and
helping me with many valuable advice. I also thank Professor P. Philippon
for his valuable remarks and the referees for their helpful comments which
shaped the paper in its present form.

2. Main Proposition and proof of the Theorem. In this section, we
construct an auxiliary function and use it to prove the Theorem. Reyssat
uses ℘(z) and the corresponding zeta function ζ(z) for the construction
of the auxiliary function. The main method of his proof is the Schneider–
Gelfond method together with the knowledge of the number of zeros of
certain meromorphic functions involving ℘(z) and ζ(z). For proving our
theorem, we use the Ramanujan functions which are defined for any z ∈ C
with |z| < 1 as follows:

P (z) = 1− 24
∞∑
n=1

σ1(n)zn, Q(z) = 1 + 240
∞∑
n=1

σ3(n)zn,

R(z) = 1− 504
∞∑
n=1

σ5(n)zn,

where σk(n) =
∑
d|n d

k. Here the sum is taken over positive divisors of n.
These functions satisfy the differential equations

(3) θP = 1
12 (P 2 −Q), θQ = 1

3 (PQ−R), θR = 1
2 (PR−Q2)

where θ is the differential operator zd/dz. The Ramanujan functions are
closely connected to the Weierstrass elliptic function as follows. Let q =
e2πiω2/ω1 where ω1 and ω2 are fundamental periods with Im(ω2/ω1) > 0.
Then from Lang [6, Ch. 4] it is known that

(4) P (q) = 3
ω1

π
· η(ω1)

π
, Q(q) =

3
4

(
ω1

π

)4

g2, R(q) =
27
8

(
ω1

π

)6

g3.

We use the properties (3) and (4) of the Ramanujan functions for the con-
struction of a sequence of isobaric polynomials (see Section 3 for the defini-
tion).
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Proposition. Let ω be any period of ℘(z). Let C4, . . . , C8 be effectively
computable numbers depending only on ω. For every integer N > C4, there
exists an isobaric polynomial BN (X1, X2, X3) ∈ Z[X1, X2, X3] such that

degBN ≤ C5N logN, logH(BN ) ≤ C6N log2N

and

exp(−C7N
2) < |BN (η(ω)/ω, g2, g3)| < exp(−C8N

2).

Remark 1. Let 0 < |q| < 1 and C9, . . . , C13 be effectively computable
numbers depending on q. Following the proofs of Lemmas 2.1 to 2.4 of [8]
and using Theorem 3 of [8], it is possible to construct, for every integer
N > C9, a polynomial B′N (X1, X2, X3) ∈ Z[X1, X2, X3] such that

degB′N ≤ C10N logN, logH(B′N ) ≤ C11N log2N

and

exp(−C12N
3) < |B′N (P (q), Q(q), R(q))| < exp(−C13N

3).

We note here that the above construction of B′N depends on the algebraic
techniques of Nesterenko [8]. Our method of proving the Proposition is based
on his work but does not depend on his algebraic techniques.

Remark 2. Let {ω∗1 , ω∗2} be a pair of fundamental periods of ℘(z). Any
period ω of ℘(z) is of the form ω = mω∗1 + nω∗2 . Let r = gcd(m,n). Then
ω = rω1 where ω1 = aω∗1 + bω∗2 with a = m/r, b = n/r and gcd(a, b) = 1.
Hence there exist integers a∗ and b∗ such that aa∗ − bb∗ = 1. Let ω2 =
b∗ω∗1 + a∗ω∗2 . Then {ω1, ω2} forms a pair of fundamental periods of ℘(z)
and we may assume that Im(ω2/ω1) > 0. Since η(rω1) = rη(ω1), we have
η(ω)/ω = η(ω1)/ω1 and hence it is enough to prove the Proposition and
Corollary 3 for ω = ω1.

In the sequel, we denote by c3, c4, . . . effectively computable numbers
depending on g2, g3, ω and q. We now deduce the Theorem from the above
Proposition.

Proof of the Theorem. Suppose

η(ω)/ω − α1 = ε1, g2 − α2 = ε2, g3 − α3 = ε3.

Let ε0 = max(|ε1|, |ε2|, |ε3|). We may assume that ε0 < 1. We set t =
h∗d∗ + d∗ log(d∗ + 2). We choose N as the smallest integer such that

(5) t ≤ δ N + 1
log(N + 1)

where δ > 0 satisfies the inequality 3δC4/logC4 < 1. Since t ≥ 1, we see that
N > C4. Hence there exists a polynomial BN (X1, X2, X3) ∈ Z[X1, X2, X3]
as in the Proposition. Now
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BN (η(ω)/ω, g2, g3) = BN (α1 + ε1, α2 + ε2, α3 + ε3)(6)

= BN (α1, α2, α3) +B
(1)
N (α1, α2, α3, ε1, ε2, ε3)

for some polynomial B(1)
N . It is easy to see that

(7) |B(1)
N (α1, α2, α3, ε1, ε2, ε3)| ≤ ε0 exp{c3N2}.

If BN (α1, α2, α3) = 0, then it follows from (6), (7) and the Proposition that

ε0 > exp{−c4N2}.
If BN (α1, α2, α3) 6= 0, then we apply Theorem 1 of [5, p. 58] to conclude
that

|BN (α1, α2, α3)| > exp{−c5(d∗N log2N + h∗d∗N logN)} > exp{−c6δN2}.
Now if ε0 < exp{−c7N2} where c7 > c3 say, then by (6), (7) and the
Proposition, we get

|BN (α1, α2, α3)| < exp{−c8N2}.
Now we choose δ < c8/c6 to get a contradiction. Thus

ε0 > exp{−c9N2}.
Now the result follows by the choice of N in (5).

In Section 3 we prove several lemmas which lead to the proof of the
Proposition.

3. Lemmas and proof of the Proposition. Before beginning our
series of lemmas we fix some notation. Let f(z) =

∑∞
n=0 anz

n and g(z) =∑∞
n=0 bnz

n be two power series with an ∈ C for n ≥ 0 and bn ∈ R+ for n ≥ 0.
We say that g dominates f if |an| ≤ bn for n ≥ 0 and we write f � g. As set
in the introduction, for any non-zero polynomial B(X) ∈ Z[X], H(B) is the
maximum of the absolute values of the coefficients of B. Suppose B1, . . . , Bs
are in Z[X] and B = B1 . . . Bs. Then by Gelfond [3, p. 135], we have

H(B1) . . .H(Bs)e− degB ≤ H(B).

Thus

(8) logH(B1) + . . .+ logH(Bs) ≤ logH(B) + degB.

For any non-zero polynomial E(z1, . . . , zn) ∈ Q[z1, . . . , zn], we define the
weight w(E) as

(9) w(E) = degtE(tz1, t
2z2, . . . , t

nzn).

Further we say that E is isobaric of weight w(E) if for any monomial
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zi11 . . . zinn of E(z1, . . . , zn), we have

w(E) =
n∑
r=1

rir.

In the following lemmas, we take q as any complex number with 0 < |q| < 1.

Lemma 1. For all integers N ≥ 4 there exists a polynomial A ∈
Z[X1, X2, X3], A 6≡ 0, such that A is isobaric in X1, X2 and X3 of weight
N and

(10) logH(A) ≤ (6N + 2) logN

and if F (z) = A(P (z), Q(z), R(z)), then

(11) F (k)(0) = 0 for 0 ≤ k < [N2/24].

P r o o f. It is known (see [8, p. 1323]) that

(12) P (z)� 24 · 2!
(1− z)3 , Q(z)� 240 · 4!

(1− z)5 , R(z)� 504 · 6!
(1− z)7 .

For any triple k = (k1, k2, k3) with k1 + 2k2 + 3k3 = N , we write

(13) (P (z))k1(Q(z))k2(R(z))k3 =
∞∑
n=0

d(k, n)zn.

Here and everywhere in the paper we take k1, k2 and k3 as non-negative
integers. We note that d(k, n) ∈ Z. Using (12) we see that

(P (z))k1(Q(z))k2(R(z))k3

� (504 · 6!)k1/(2·9)+k2/(1·45)+k3

(1− z)3k1+5k2+7k3
� (504 · 6!)(k1+2k2+3k3)/(2·9)

(1− z)3N � 83N

(1− z)3N .

Writing 1/(1− z)3N =
∑∞
n=0 bnz

n, we find that b0 = 1 and for n ≥ 1

bn =
3N(3N + 1) . . . (3N + n− 1)

n!
=

(n+ 1) . . . (n+ 3N − 1)
(3N − 1)!

(14)

≤ n3N−1
(

1 +
1
n

)(
1
2

+
1
n

)
. . .

(
1

3N − 1
+

1
n

)

< n3N−1
(

1 +
1
n

)3N−1

= (n+ 1)3N−1.

From the definition of d(k, n) and (14) it follows that

(15) |d(k, n)| ≤ 83Nbn ≤ (83(n+ 1)3)N for n ≥ 0.

We solve the system of equations

(16)
∑

k

akd(k, n) = 0 for 0 ≤ n < [N2/24]
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in the unknowns ak. The number of equations in (16) is [N2/24]. The number
of unknowns ak is equal to the number of non-negative integral solutions in
(k1, k2, k3) of k1 + 2k2 + 3k3 = N , which is equal to the number of ways
N can be partitioned into parts equalling 1, 2 or 3, denoted by p3(N), say.
This is known to be equal to

(N + 3)2

12
− 7

72
+

(−1)N

8
+

2
9

cos
(

2Nπ
3

)

(see [2, p. 112 or p. 115]). In fact, this can be easily derived from the gener-
ating function 1/((1− x)(1− x2)(1− x3)) of p3(N) using partial fractions.
Thus the number of unknowns is ≤ (N + 3)2/12 + 1 and exceeds N2/12.
We apply Siegel’s lemma (see [12]) to the system of equations in (16) to
conclude that there exist integers ak, not all zero, satisfying (16) such that

|ak| ≤
(

(N + 3)2

12
+ 1
)

max(|d(k, n)|)

where the maximum is taken over all k with k1 + 2k2 + 3k3 = N and
0 ≤ n < [N2/24]. Now we use (15), n < N2/24 and N ≥ 4 to get

(17) |ak| ≤ N6N+2.

Now we set
A(X1, X2, X3) =

∑

k

akX
k1
1 Xk2

2 Xk3
3

where ak satisfies (16) with (17). Thus (10) holds. Since

F (z) =
∞∑
n=0

(∑

k

akd(k, n)
)
zn,

we see that (11) follows from (16).

Since A(X1, X2, X3) 6≡ 0, we observe that F (z) 6≡ 0. Otherwise we have
A(P (z), Q(z), R(z)) ≡ 0. But this contradicts the fact that the functions
P (z), Q(z), R(z) are algebraically independent over C(z) and hence over Q
in particular. This fact is a consequence of a result of Mahler [7]. Now let
M = ordz=0 F (z). Then by Lemma 1,

(18) M ≥ N2/24.

Lemma 2. Let q ∈ C with 0 < |q| < 1. For N ≥ c10 we have

(19) |F (q)| ≤ |q|MM3NN11N .

P r o o f. By Lemma 1, we see that

F (z) =
∞∑

n=M

fnz
n where fn =

∑

k

akd(k, n)
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with k1 + 2k2 + 3k3 = N . Hence by (17), (15), n ≥ M and (18), for N
sufficiently large (N ≥ 84 suffices) we obtain

|fn| ≤
∑

k

|ak d(k, n)| ≤ N6N+4(83(n+ 1)3)N ≤ n3NN7N .

Using the above estimate for |fn| we get

|F (q)| ≤
∞∑
n=0

|fn+Mq
n+M | ≤ |q|MN7N

∞∑
n=0

(n+M)3N |q|n

≤ |q|MN7NM3N
∞∑
n=0

(
1 +

n

M

)3N

|q|n

≤ |q|MN7NM3N
∞∑
n=0

(n+ 1)3N |q|n

≤ |q|MN7NM3N (3N)!
(1− |q|)3N+1 ≤ |q|MM3NN10N 27N

(1− |q|)3N+1 .

Now (19) follows by taking c10 sufficiently large.

In the next lemma we derive an upper bound for M in terms of N .
For this, we introduce the differential operator D : Q[X1, X2, X3] →
Q[X1, X2, X3] given by

D =
1
12

(X2
1 −X2)

∂

∂X1
+

1
3

(X1X2 −X3)
∂

∂X2
+

1
2

(X1X3 −X2
2 )

∂

∂X3
.

We show

Lemma 3. Let E be a non-zero polynomial in C[X1, X2, X3] which is
isobaric in X1, X2 and X3 of weight w(E) = w. Then

(20) ordz=0E(P,Q,R) ≤ w2 + w.

P r o o f. Suppose ordz=0E(P,Q,R) = 0. Then the assertion is trivially
true since w ≥ 0. Hence we may assume that ordz=0E(P,Q,R) 6= 0. Thus
E is a non-constant polynomial and not a monomial in X1, X2 and X3.
Since E is isobaric, this also means that E is a polynomial in at least two
of the variables X1, X2 and X3. Suppose E is a polynomial in X2 and X3

only. Then

E(X2, X3) =
∑

2k2+3k3=w

ckX
k2
2 Xk3

3

=
(
X3

X2

)w ∑

2k2+3k3=w

ck

(
X3

2

X2
3

)k2+k3

=
(
X3

X2

)w l∏

i=1

(
X3

2

X2
3
− βi

)
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where β1, . . . , βl are complex numbers and l ≤ w/2. Since

ordz=0

(
Q3

R2 − βi
)

=
{

1 if βi = 1,
0 if βi 6= 1,

we derive that

(21) ordz=0E(Q,R) ≤ l ≤ w/2.
Thus (20) is satisfied whenever E is a polynomial in X2 and X3 only.

Now we assume that E is irreducible and not a polynomial in X2 and
X3 only. For any polynomial E satisfying the hypothesis of Lemma 3, we
have

(22) DE =
∑

bkX
k1
1 Xk2

2 Xk3
3 , bk ∈ C,

and the summation is over k with k1 + 2k2 + 3k3 = w + 1. Thus DE is a
polynomial isobaric in X1, X2 and X3 of weight w + 1. Further we note by
virtue of (3) that

(23) θ(E(P (z), Q(z), R(z))) = (DE)(P (z), Q(z), R(z)).

Suppose DE ≡ 0. Then by (23), we conclude that E(P (z), Q(z), R(z)) =
α0 ∈ C. But this contradicts the result of Mahler [7]. Thus we obtain

DE 6≡ 0.

We consider two cases.
Case (i): E | DE. Then by Lemma 4.1 of [8] and the Corollary following

it, we have E = X3
2 −X2

3 and hence ordz=0E(P,Q,R) = 1 and (20) follows
in this case.

Case (ii): E -DE. Let F be the resultant of E and DE with respect to
X1. Then F 6≡ 0 and

(24) F (X2, X3) = UE + VDE
for some polynomials U and V in Z[X1, X2, X3]. It follows from the definition
of weight function and the representation of the resultant as a determinant
that

(25) w(F ) ≤ (degX1
E)w(DE) + (degX1

DE)w(E) ≤ 2w(w + 1).

Let F0 be the sum of the monomials of F of weight w(F ). Then F0 is an
isobaric polynomial in X2 and X3 of weight w(F ). On comparing terms of
weight w(F ) in (24), we get

(26) F0(X2, X3) = U0E + V0DE
where U0 and V0 are isobaric polynomials. Since

ordz=0E(P,Q,R) ≤ ordz=0DE(P,Q,R)
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we derive from (26) and (21) with E replaced by F0 and w by w(F0) that

ordz=0E(P,Q,R) ≤ ordz=0 F0(Q,R) ≤ 1
2w(F0) = 1

2w(F ),

which implies (20) by (25).
Thus the lemma is true whenever E is irreducible. Suppose E is reducible.

We observe that E can be written as E = Ea1
1 . . . Eass where each Ei is

irreducible, isobaric in X1, X2, X3 and a1, . . . , as are positive integers. Thus

ordz=0E(P,Q,R) =
s∑

i=1

ai ordz=0Ei(P,Q,R) ≤
s∑

i=1

aiw(Ei)(w(Ei) + 1)

since Ei’s are irreducible. Now we use the fact that w =
∑s
i=1 aiw(Ei) to

get

ordz=0E(P,Q,R) ≤
s∑

i=1

ai(w(Ei))2 + w ≤
( s∑

i=1

aiw(Ei)
)2

+ w ≤ w2 + w.

This completes the proof of the lemma.

It follows from Lemma 3 that

(27) M ≤ 2N2.

Following exactly the proof of Lemma 2.3 of [8] and then using (27), we
obtain

Lemma 4. Let q ∈ C with 0 < |q| < 1. Suppose N ≥ c10. Then there
exists an integer T with 0 ≤ T < c11N logN for which

|F (T )(q)| > exp{−c12N
2}.

In the above lemma and in the sequel we use without mention the as-
sumption that c10 is sufficiently large. Since the Ramanujan functions satisfy
differential equations of the type (3), it is convenient to change from the or-
dinary differentiation on F (z) to using θ on F . The next two lemmas serve
this purpose. For h ≥ 1 we see by induction on h that

(28) (z−1θ)h = z−h
h−1∏

k=0

(θ − k).

Set
h−1∏

k=0

(θ − k) =
h∑

k=1

s(h, k)θk.

The numbers s(h, k) are called the Stirling numbers of the first kind (see
Hall [4, p. 29, Ex-2]). They satisfy the recurrence relation

s(h+ 1, k) = s(h, k − 1)− hs(h, k)
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from which we derive

(29)
|s(h, 1)| = (h− 1)!, s(h, h) = 1,

|s(h, k)| ≤
(
h− 1
k − 1

)
hh−k for 1 < k < h.

Lemma 5. Let q ∈ C with 0 < |q| < 1. Suppose N ≥ c10. Then there
exists an integer T ′ with 0 ≤ T ′ ≤ T such that

|θT ′F (q)| > exp{−c13N
2}.

P r o o f. Let T = 0 or 1. Then we take T ′ = T . Thus θT
′
F (q) = F (q) or

qF ′(q). Now we use Lemma 4 to get the inequality in the lemma. Thus we
assume that T ≥ 2. Suppose

(30) |θtF (q)| ≤ |q|T
(T + 1)T

exp{−c12N
2} for 1 ≤ t ≤ T.

By (28),

F (T )(z) = (z−1θ)T (F (z)) = z−T
T∑

k=1

s(T, k)(θkF (z)).

Hence by (29) and (30), we have

|F (T )(q)|

≤ |q|−T
{

(T − 1)! +
T−1∑

k=2

(
T − 1
k − 1

)
TT−k + 1

} |q|T
(T + 1)T

exp{−c12N
2}

< exp{−c12N
2}

which contradicts Lemma 4. Thus there exists an integer T ′ with 1 ≤ T ′ ≤ T
such that

|θT ′F (q)| > |q|T
(T + 1)T

exp{−c12N
2}.

Now the result follows since T < c11N logN and N > c10.

For any integer t ≥ 1, we write

(31) θt =
t∑

k=1

S(t, k)zk
dk

dzk

where S(t, k) ∈ Z. We observe that for any integer k ≥ 1,

θ

(
zk

dk

dzk

)
= kzk

dk

dzk
+ zk+1 d

k+1

dzk+1 .

Hence we note from (31) that S(t, 1) = S(t, t) = 1 and

(32) S(t, k) = kS(t− 1, k) + S(t− 1, k − 1)
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where we take S(h, k) = 0 whenever k > h. In fact, S(t, k) are known
as Stirling numbers of the second kind (see Hall [4]). From the recurrence
relation (32) one can easily derive by induction on t and k that

(33) |S(t, k)| ≤ 1
(k − 1)!

(2k)t−1 for 1 ≤ k ≤ t.

Lemma 6. Let q ∈ C with 0 < |q| < 1. Suppose N ≥ c10 and T ′ is chosen
as in Lemma 5. Then

|θT ′F (q)| < exp{−c14N
2}.

P r o o f. Suppose T ′ = 0. Then the lemma is valid by Lemma 2 and (18).
Hence we assume that T ′ ≥ 1. By (31) and (33), we get

|θT ′F (q)| ≤
T ′∑

k=1

|S(T ′, k)qkF (k)(q)| ≤
T ′∑

k=1

(2T ′)T
′−1

(k − 1)!
|q|k|F (k)(q)|.

We estimate |F (k)(q)| by the formula

F (k)(q) =
k!

2πi

\
C

F (z)
(z − q)k+1 dz

where C is the circle |z−q| = r−|q| with |q| < r < 1 and r chosen depending
only on q. Then on C we have |z| ≤ |z − q| + |q| = r. Hence by Lemma 2
with q replaced by z, we get

|F (k)(q)| ≤ k!rMM3NN11N+4

(r − |q|)k .

Thus

|θT ′F (q)| ≤ (2T ′)T
′
rMM3NN11N+4

T ′∑

k=1

( |q|
r − |q|

)k
.

We use T ′ ≤ T < c11N logN , (27), (18) and r < 1 in the above estimate to
complete the proof.

By a simple induction, we see that the identity in (23) with E = A can
be extended as

(34) θh(A(P (z), Q(z), R(z))) = (DhA)(P (z), Q(z), R(z)) for h ≥ 1.

For T ′ as in Lemma 5, we set

(35) AN (X1, X2, X3) = 12T
′
(DT ′A)(X1, X2, X3).

Then AN (X1, X2, X3) ∈ Z[X1, X2, X3] and by (34),

AN (P (z), Q(z), R(z)) = 12T
′
θT
′
(F (z)).

Hence on using Lemmas 5 and 6, for N ≥ c10, q ∈ C with 0 < |q| < 1 we get

(36) exp{−c13N
2} < |AN (P (q), Q(q), R(q))| < exp{−c15N

2}.
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Further we show

Lemma 7. For N > c10, we have degAN ≤ c16N logN , logH(AN ) ≤
c17N log2N .

P r o o f. We observe that

(37) DtA =
∑

skX
k1
1 Xk2

2 Xk3
3 , sk ∈ Q,

is isobaric in X1, X2 and X3 of weight N + t. Hence degAN ≤ N + T ′.
Now the estimate for the degree follows since T ′ < c11N logN . To bound
H(AN ), we note that

A� H(A)(X1 +X2 +X3)N

where H(A) satisfies (10). Hence

DT ′A� H(A)(N + T ′)T
′
(X1 +X2 +X3)N+T ′ .

Thus H(AN ) ≤ (12T
′
H(A)(N + T ′)T

′
3N+T ′). Now the estimate follows.

Proof of the Proposition. By Remark 2, it is enough to prove the Propo-
sition when ω = ω1. We set η(ω1) = η and q = e2πiω2/ω. From (35) and (37)
we observe that

AN (P (q), Q(q), R(q)) = 12T
′∑

skP (q)k1Q(q)k2R(q)k3

where the summation is over k with k1 + 2k2 + 3k3 = N + T ′. Further by
(36), not all sk are zero. From the relations in (4), we get

AN (P (q), Q(q), R(q))

= 12T
′∑

sk

(
3
ω

π
· η
π

)k1
(

3
4

(
ω

π

)4

g2

)k2
(

27
8

(
ω

π

)6

g3

)k3

= 12T
′
(
ω

π

)2(N+T ′)∑
sk

(
3
η

ω

)k1
(

3
4
g2

)k2
(

27
8
g3

)k3

= 12T
′
(
ω

π

)2(N+T ′)

AN

(
3
η

ω
,

3
4
g2,

27
8
g3

)
.

Then we set

BN (X1, X2, X3) = 2N+T ′AN

(
3X1,

3
4
X2,

27
8
X3

)
.

We observe that BN (X1, X2, X3) ∈ Z[X1, X2, X3] and degBN ≤ N + T ′ ≤
c18N logN . To calculate H(BN ), we note that

H(BN ) ≤ H(AN )cN+T ′
19 .
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Now the required bound follows from Lemma 7. We observe that

|BN (η/ω, g2, g3)| = |2N+T ′12−T
′
(π/ω)2(N+T ′)AN (P (q), Q(q), R(q))|.

Now we use (36) to get the required lower and upper bounds for
|BN (η/ω, g2, g3)|. This completes the proof of the Proposition.

4. Proof of Corollary 3. By Remark 2, it is enough to prove the
corollary when ω = ω1. As earlier, we set η(ω1) = η and q = e2πiω2/ω. Let
B(X) ∈ Z[X] be any non-zero polynomial with H(B) ≤ H and degB ≤ d.

First we assume that B is irreducible. Let ξ be the root of B which is
nearest to η(ω)/ω. Then by a result of Diaz and Mignotte [1, Corollary 2],
we have

|η(ω)/ω − ξ| ≤ (H2d(d+ 1)3/2)d−1|B(η(ω)/ω)|,
and Corollary 1 yields the desired result.

Now let B be reducible over Q[X]. Write

B(X) = B1(X) . . . Bs(X)

where B1(X), . . . , Bs(X) are irreducible polynomials with Bi(X) having
height ≤ Hi and degree ≤ di for 1 ≤ i ≤ s. Then we have

|Bi(η(ω)/ω)| > exp{−c20(log2Hi(log logHi)2 + d2
i log4 di)} for 1 ≤ i ≤ s.

Thus

(38) |B(η(ω)/ω)| > exp
{
−c21

( s∑

i=1

log2Hi(log logHi)2+
s∑

i=1

d2
i log4 di

)}
.

Now we observe that

(39)
s∑

i=1

d2
i log4 di ≤

( s∑

i=1

d2
i

)
log4 d ≤ d2 log4 d

since
∑s
i=1 di = d. Further from (8), we get
s∑

i=1

log2Hi(log logHi)2 ≤ c22

( s∑

i=1

logHi

)2
(log(logH + d))2(40)

≤ c23(logH + d)2((log logH)2 + log2 d)

≤ c24(log2H + d2)((log logH)2 + log2 d)

≤ c25(log2H(log logH)2 + d2 log2 d).

Now we use (39) and (40) in (38) to obtain the result of Corollary 3.

Remark 3. Let α1, α2, α3 be algebraic numbers satisfying the hypothesis
of the Theorem. By following the proof of the Theorem with BN replaced by
AN , it is clear from Lemma 7 and (36) that for any q ∈ C with 0 < |q| < 1,

max(|P (q)− α1|, |Q(q)− α2|, |R(q)− α3|)
> exp{−C14((h∗d∗(log h∗d∗))2 + (d∗)2 log4 d∗)}
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where C14 is an effectively computable number depending only on q. The
above bound can be improved if we use the results of Nesterenko [8]. We
follow the proof of the Theorem with BN replaced by B′N mentioned in
Remark 1 and the inequality (5) replaced by

t ≤ δ (N + 1)2

log(N + 1)
.

Then we get
max(|P (q)− α1|, |Q(q)− α2|, |R(q)− α3|)

> exp{−C15((h∗d∗(log h∗d∗))3/2 + (d∗)3/2 log3 d∗)}.
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