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1. Introduction and the result. The aim of this paper is to give a
new irrationality measure for the number

ζ(3) =
∞∑
n=1

1
n3 ,

as an application of Legendre-type polynomials

L(a, b, c, d;x) =
xa

d!
(xb(1− x)c)(d) ∈ Z[x]

of degree a + b + c − d, where a, b, c, d are integers satisfying b, c, d ≥ 0,
b+ c ≥ d and a ≥ min{0, d− b}.

The irrationality of ζ(3) was first shown by R. Apéry [1] in 1978. F. Beuk-
ers [2] reconstructed Apéry’s rational approximation to ζ(3) by introducing
the triple improper integral\ \ \

B

Ln(x)Ln(y)
1− (1− xy)u

dx dy du,

where B = (0, 1)3 is the open unit cube and Ln(x) = L(0, n, n, n;x) is the
usual Legendre polynomial of degree n.

Various proofs of the irrationality of ζ(3) are known. V. N. Sorokin [9]
constructed a number of Hermite–Padé approximations to certain series
which lead to the irrationality of ζ(3). Yu. V. Nesterenko [7], inspired by
L. A. Gutnik’s work [4], obtained a new continued fraction expansion of ζ(3)
by using the so-called Meyer functions. M. Prévost [8] recovered Apéry’s
sequences using Padé approximations to the asymptotic expansion of the
partial sum of ζ(3). We note that all the approximations mentioned above
give the same irrationality measure

µ0 = 1 +
4 log(

√
2 + 1) + 3

4 log(
√

2 + 1)− 3
= 13.4178202 . . .
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for ζ(3). Nothing is known about arithmetical properties of the values of
Riemann zeta function at odd points greater than 3.

The above irrationality measure µ0 was improved by R. Dvornicich and
C. Viola [3] to µ1 = 12.74359 . . . The author [5] obtained a fairly improved
measure µ2 = 8.8302837 . . . by introducing the Legendre-type polynomials

L(0, n−m,n+m,n;x) =
1
n!

(xn−m(1− x)n+m)(n)

of degree n, where m ∈ [1, n] is an integral parameter. This polynomial,
regarded as a perturbation of the Legendre polynomial, has the advantage
of possessing a large common factor of its coefficients and gives in fact the
best known irrationality measure, for example, of log 2.

In this paper, as another perturbation of the Legendre polynomial, we
consider the following Legendre-type polynomials:

Ln,m(x) = L(0, n+m,n, n;x) =
1
n!

(xn+m(1− x)n)(n)

of degree n+m, wherem is a positive integral parameter. It then follows from
Lemma 2.1 of [5] that Ln,m(x) is uniquely determined, up to a multiplicative
non-zero constant, by the following three conditions:

(a)
T1
0 x

jLn,m(x) dx = 0 for 0 ≤ j < n;
(b) Ln,m(x) vanishes at the origin with order at least m;
(c) degLn,m = n+m.

Note that the coefficients of Ln,m(x) have no common prime factors greater
than

√
2n+m; so it seems to be hopeless to use these polynomials in the

study of the irrationality measure for log 2. Nevertheless Ln,m(x) is suitable
for improving the irrationality measure for ζ(3). Indeed we have

Theorem 1. For any ε > 0 there exists an effective constant q0(ε) such
that ∣∣∣∣ζ(3)− p

q

∣∣∣∣ ≥ q−7.377956...−ε

for any integers p and q satisfying q ≥ q0(ε). The exact value of the constant
µ = 7.377956 . . . is given by

µ = 1 +
6 log c0 + d0

6 log c0 − d0

where

c0 =
352 + 133

√
7

9
and d0 = 26 + π

{√
3− cot

π

9
− cot

2π
9

}
.

To prove this theorem we need a few lemmas given in the next section.
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2. Preliminaries. The following lemma is due to Beukers [2, Lemma 1].

Lemma 2. For any non-negative integers r and s, we have\ \ \
B

xrys

1− (1− xy)u
dx dy du− 2δr,sζ(3)

=





−
r∑

l=1

2
l3

if r = s,

max{r,s}∑

l=min{r,s}+1

1
|r − s|l2 if r 6= s,

where δr,s is Kronecker’s delta.

It immediately follows from the above lemma that the integral

I =
\ \ \
B

P (x)Q(y)
1− (1− xy)u

dx dy du,

can always be written in the form αζ(3) + β with α ∈ Z and β ∈ Q for any
polynomials P (x), Q(x) ∈ Z[x]. We call β the rational part of the integral I,
which is uniquely determined by the irrationality of ζ(3). Thus we have the
possibility of improving the irrationality measure for ζ(3) by choosing suit-
able polynomials P (x) and Q(y). However this is not an easy task because
the corresponding measure depends highly both on the asymptotic decay of
the remainder term and on the arithmetical properties of the rational part.

The factor r− s in the denominators on the right-hand side when r 6= s
in Lemma 2 is very important. For, if one of the denominators is a multiple
of p3 for some prime p satisfying p2 > max{r, s}, then obviously r ≡ s
(mod p). And this enables us to obtain some arithmetical information on
the rational part. The details will be discussed in Section 3.

Let Dn be the least common multiple of {1, . . . , n}. Suppose now that
0 ≤ degP − degQ ≤ ord0Q where ord0Q denotes the order of the zero of
Q(x) at the origin. Then it follows from Lemma 2 that the rational part β of
I belongs to Z/(D2

degPDdegQ), since |r−s| ≤ max{degP−ord0Q,degQ} =
degQ. Furthermore this can be sharpened if either P (x) or Q(y) is a specific
Legendre-type polynomial, as follows.

Lemma 3. Suppose that P (x), Q(x) ∈ Z[x] satisfy 0 ≤ degP − degQ ≤
ord0Q. Suppose further that either

(1) P (x) = L(a, b, c, d;x) with degP − degQ ≤ a ≤ d ≤ degQ, or

(2) Q(y) = L(a′, b′, c′, d′; y)

with degP − degQ ≤ min{a′, a′ + b′ − d′} and a′ ≤ d′ ≤ c′.
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Then the rational part β of the integral

I =
\ \ \
B

P (x)Q(y)
1− (1− xy)u

dx dy du

belongs to the set
∆

D2
degPDdegQ

Z,

where ∆ is the product of all primes lying in the interval (degQ,degP ].

P r o o f. Put P (x) =
∑
arx

r and Q(y) =
∑
bsy

s. For any prime p ∈
(degQ,degP ] one of the denominators on the right-hand side in Lemma 2
is a multiple of p2 if and only if r ≥ p, since max{s, |r− s|} ≤ degQ for any
r and s. More precisely, the sum of the coefficients of p−2 is equal to

Jp =
∑

r≥p

∑
s

arbs
r − s .

If (1) holds, then clearly

ar = (−1)r−a−b+d
(

c

r − a− b+ d

)(
r − a+ d

d

)
,

which is a multiple of p for any r ≥ p since d ≤ degQ < p ≤ r ≤ r − a + d
and r − a ≤ degP − (degP − degQ) = degQ < p.

On the other hand, if (2) holds, then

∑
s

bs
r − s =

1\
0

xr−1Q

(
1
x

)
dx =

∞\
1

t−r−1Q(t) dt

=
1
d′!

∞\
1

t−r+a
′−1(tb

′
(1− t)c′)(d′) dt

=
(
r − a′ + d′

d′

) ∞\
1

t−r+a
′+b′−d′−1(1− t)c′ dt

=
(
r − a′ + d′

d′

) 1\
0

xr−a
′−b′−c′+d′−1(x− 1)c

′
dx.

Since r − a′ − b′ + d′ ≤ degP − a′ − b′ + d′ ≤ degQ, the denominator of
Jp is a divisor of DdegQ. The numerator of Jp is a multiple of p, since d′ ≤
a′+b′−degP+degQ ≤ a′+b′ = degQ−c′+d′ ≤ degQ < p ≤ r ≤ r−a′+d′
and since r − a′ ≤ degP − (degP − degQ) = degQ < p.

In either case it follows that the integer DdegQJp is a multiple of p;
therefore the integer D2

degPDdegQβ is a multiple of ∆. This completes the
proof.
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3. Construction of the approximations. We consider the integral

In,m =
\ \ \
B

xmLn,m(x)Ln,m(y)
1− (1− xy)u

dx dy du,

where m = [λn] and λ ∈ [0, 1) is a real parameter. This integral can be
written as αn,mζ(3) + βn,m by Lemma 2. Putting P (x) = xmLn,m(x) and
Q(y) = Ln,m(y), we have degP − degQ = m = ord0Q. Moreover since
P (x) = L(m,n+m,n, n;x) satisfies condition (1) in Lemma 3, the rational
part βn,m of In,m belongs to the set

∆n

D2
n+2mDn+m

Z,

where ∆n is the product of all primes lying in (n+m,n+ 2m].
We put P (x) =

∑
arx

r and Q(y) =
∑
bsy

s; that is,

ar = (−1)r
(

n

r − 2m

)(
n−m+ r

n

)
and bs = (−1)s+m

(
n

s−m
)(

n+ s

n

)
.

Then we have βn,m = (−1)m(−2β + β′), where

(3) β =
n+m∑
r=2m

(
n

r − 2m

)(
n−m+ r

n

)(
n

r −m
)(

n+ r

n

) r∑

l=1

1
l3

and

(4) β′ =
∑

r 6=s
2m≤r≤n+2m
m≤s≤n+m

(−1)r+s
(

n

r − 2m

)(
n−m+ r

n

)(
n

s−m
)(

n+ s

n

)

×
max{r,s}∑

l=min{r,s}+1

1
|r − s|l2 .

Let ω = {n/p}, η = {m/p}, θr = {r/p} and θs = {s/p} for brevity, where
{x} denotes the fractional part of x. Suppose now that one of the denom-
inators on the right-hand side in (4) is a multiple of p3 for some prime
p ∈ [

√
3n, n+m]. Then clearly r ≡ s (mod p); hence θr = θs. Put

S1 = {0 ≤ θ < 1 : ω ≥ {θ − 2η}},
S2 = {0 ≤ θ < 1 : ω + {θ − η} < 1},
S3 = {0 ≤ θ < 1 : ω ≥ {θ − η}},
S4 = [0, 1− ω).

For any prime p >
√
n, the exponent of p in the factorization of

(
n

r−2m

)
into prime powers is [n/p]− [(r − 2m)/p]− [(n+ 2m− r)/p] = {θr − 2η}+
{ω + 2η − θr} − ω, and therefore is 0 if ω ≥ {θr − 2η}, and 1 if ω <
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{θr − 2η}. Thus p | ( n
r−2m

)
if and only if θr 6∈ S1. The other binomial co-

efficients
(
n−m+r

n

)
,
(

n
s−m

)
and

(
n+s
n

)
satisfy the similar property for S2, S3

and S4 respectively. Note that
∑4
j=1 |Sj | = 2, where | · | denotes the one-

dimensional Lebesgue measure.
For any subset S ⊂ [0, 1) we define

ση(S) = {0 ≤ θ < 1 : {θ − η} ∈ S};
that is, ση(S) ≡ η + S(mod 1). Clearly S3 = ση([0, ω]) and Sj = ση(Sj+2)
for j = 1, 2. We need the following simple lemma.

Lemma 4. For any interval K ⊂ [0, 1) satisfying |K| < min{η, 1 − η},
we have

K ∩ ση(K) = ∅.
If , in addition, K is not closed , then the condition |K| < min{η, 1− η} can
be replaced by |K| ≤ min{η, 1− η}.

P r o o f. Suppose that K ∩ ση(K) 6= ∅. Then take a point ξ ∈ K with
{ξ − η} ∈ K. If ξ ≥ η, then |K| ≥ η since [ξ − η, ξ] ⊂ K. Otherwise we have
|K| ≥ 1− η since [ξ, ξ − η + 1] ⊂ K. Hence |K| ≥ min{η, 1− η}. It is clear
that |K| > min{η, 1− η} if K is not closed.

We now distinguish four cases, as follows.

Case I: 2ω+η < 1. Obviously S3 = [η, ω+η] = S3∩S4; hence |S3∩S4| =
ω. Therefore it follows from Lemma 4 that

4⋂

j=1

Sj = (S3 ∩ S4) ∩ ση(S3 ∩ S4) = ∅

if ω < η, since ω < 1− η.

Case II: ω + η < 1 and 2ω + η ≥ 1. We also have S3 = [η, ω + η]; hence
S3 ∩ S4 = [η, 1− ω) and so |S3 ∩ S4| = 1− ω − η. Therefore

⋂4
j=1 Sj = ∅ if

ω + 2η ≥ 1, since 1− ω − η ≤ 1− η.

Case III: ω+η ≥ 1 and 2ω+η < 2. We then have S3 = [0, ω+η−1]∪[η, 1);
hence S3∩S4 = [0, ω+η−1] and so |S3∩S4| = ω+η−1. Thus

⋂4
j=1 Sj = ∅

if ω + 2η < 2, since ω + η − 1 < η.

Case IV: 2ω+η ≥ 2. We have S3∩S4 = [0, 1−ω); hence |S3∩S4| = 1−ω.
Therefore

⋂4
j=1 Sj = ∅ if ω ≥ η, since 1− ω ≤ η.

We next define

E = {(η, ω) ∈ [0, 1)2 : ω < min{η, 2− 2η} or ω ≥ max{η, 1− 2η}},
which is illustrated in Figure 1. For any (η, ω) ∈ E we thus have

⋂4
j=1 Sj =

∅; hence there exists at least one j = j(θ) satisfying θ 6∈ Sj(θ) for every
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Fig. 1

θ ∈ [0, 1). This implies that

p

∣∣∣∣
(

n

r − 2m

)(
n−m+ r

n

)(
n

s−m
)(

n+ s

n

)

for any r 6= s satisfying r ≡ s (mod p); namely, p |D2
n+2mDn+mβ

′. Of
course, the same property holds when r = s; hence p |D3

n+mβ from (3).
Therefore Mn,mβn,m becomes an integer, where

Mn,m =
D2
n+2mDn+m

∆n∆n,m
∈ Z

and ∆n,m is the product of all primes p ∈ [
√

3n, n+m] satisfying (η, ω) ∈ E.
Thus

(5) Mn,mαn,mζ(3) +Mn,mβn,m = Mn,mIn,m,

our rational approximations to ζ(3). Note that Ωn,m ≡ ∆n∆n,m is equal to
the product of all primes p ≥ √3n satisfying (η, ω) ∈ E.

4. Proof of Theorem 1. It follows from (5) and Lemma 3.1 of [5] that
ζ(3) has an irrationality measure

(6) µ ≡ µ(λ) = 1 +
σ(λ) + κ(λ)
τ(λ)− κ(λ)

if τ(λ) > κ(λ), where

κ(λ) = lim
n→∞

1
n

logMn,m,
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σ(λ) ≥ lim sup
n→∞

1
n

log |αn,m| and τ(λ) = − lim
n→∞

1
n

log |In,m|.

We first consider the asymptotic behavior of Mn,m as n→∞. The prime
number theorem implies, analogously to [5], that

χ(λ) ≡ lim
n→∞

1
n

logΩn,m = λ
\
W

dt

t2
,

where W = {0 < t < ∞ : ({t}, {t/λ}) ∈ E}; hence κ(λ) = 3 + 5λ − χ(λ).
The value of χ(λ) can be easily calculated when λ = 1/k for any integer
k ≥ 2. Indeed we have

(7) kχ

(
1
k

)
=
∞∑

l=0

\
W0

dx

(x+ l)2 =
\
W0

dψ(x),

where W0 = W ∩ (0, 1) and ψ(x) = Γ ′(x)/Γ (x) is the digamma function.
Let H ⊂ [0, 1)2 be the union of k segments defined by ω = {kη}. Since
the set E, as well as the set H, is symmetric with respect to the point
(η∗, ω∗) = (1/2, 1/2), the set πη(E ∩ H) is also symmetric with respect to
η∗ = 1/2 where πη(·) denotes the orthogonal projection to the η-axis. This
implies that the Stieltjes integral on the right-hand side of (7) can be written
as a finite sum ∑

j

εj{ψ(1− γj)− ψ(γj)},

where {γj} are rational numbers which are endpoints lying in (0, 1/2) of the
intervals in πη(E∩H) and the sign εj is +1 or −1 according as γj is the left
or right endpoint. Then using the well-known formula ψ(1 − x) − ψ(x) =
π cot(πx), it follows that

χ

(
1
k

)
=
π

k

∑

j

εj cot(πγj).

For example, in the case k = 7, we have πη(E∩H) = [1/9, 1/6]∪ [2/9, 7/9]∪
[5/6, 8/9] (see Figure 1); so {γ1, γ2, γ3} = {1/9, 1/6, 2/9}, {ε1, ε2, ε3} =
{+1,−1,+1} and hence

χ

(
1
7

)
=
π

7

{
cot

π

9
+ cot

2π
9
−
√

3
}
.

Therefore we have κ(1/7) = d0/7, where d0 is the constant defined in The-
orem 1.

We next consider the asymptotic behavior of In,m as n → ∞. After an
n-fold partial integration with respect to y, we get

In,m =
\ \ \
B

xn+mLn,m(x)yn+m(1− y)nun

(1− (1− xy)u)n+1 dx dy du.
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We now need the following convenient lemma. We call

τd(u) = (1− u)/(1− du)

a nice transformation for any d < 1; it is a homeomorphism on [0, 1] and
satisfies τd ≡ τ−1

d . The nice transformation τ1−xy(u) was used in [2].

Lemma 5. By substituting v = τ1−xy(u) we have

1\
0

ua(1− u)b

(1− (1− xy)u)c+1 du = (xy)b−c
1\
0

vb(1− v)a

(1− (1− xy)v)a+b−c+1 dv

for any non-negative integers a, b and c.

The proof is straightforward. It follows from this lemma that

In,m =
\ \ \
B

xmLn,m(x)ym(1− y)n(1− v)n

1− (1− xy)v
dx dy dv.

Then, after an n-fold partial integration with respect to x,

In,m =
(−1)n

n!

\ \ \
B

xn+m(1− x)n
∂n

∂xn

(
xm

1− (1− xy)v

)

× ym(1− y)n(1− v)n dx dy dv

= (−1)m
\ \ \
B

xn+m(1− x)nyn(1− y)nvn−m(1− v)n+m

(1− (1− xy)v)n+1 dx dy dv;

hence we have

lim
n→∞

1
n

log |In,m| = max
0<x,y,v<1

logF (x, y, v),

where

F (x, y, v) =
x1+λ(1− x)y(1− y)v1−λ(1− v)1+λ

1− (1− xy)v
.

The above maximum is actually attained at (x∗, y∗, v∗) where

x∗ =
λ+ λ′

λ+ λ′ + 1
, y∗ =

λ′

λ′ + 1
and v∗ = λ′ − λ

with λ′ =
√

(1 + λ)/2, which is a unique solution of the equations

∂F

∂x
(x, y, v) =

∂F

∂y
(x, y, v) =

∂F

∂v
(x, y, v) = 0

in (0, 1)3. For λ = 1/7 it can be seen that F (x∗, y∗, v∗) = c
−6/7
0 , where the

constant c0 is defined in Theorem 1.
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We finally consider the asymptotic behavior of

αn,m =
2

2πi

\
C0

zm−1Ln,m(z)Ln,m

(
1
z

)
dz

=
2

(2πi)3

\
C0

\
C1

\
C2

zm−1w
n+m(1− w)n

(w − z)n+1 · ζ
n+m(1− ζ)n

(ζ − 1/z)n+1 dζ dw dz

as n → ∞. Taking the contours C0, C1, C2 to be the circles centered at
z = 0, w = z, ζ = 1/z with radii r, R, % respectively, we get

lim sup
n→∞

1
n

log |αn,m| ≤ min
r,R,%>0

logG(r,R, %),

where

G(r,R, %) =
(r +R)1+λ(1 + r +R)(1 + r%)1+λ(1 + r + r%)

r2R%
.

The above minimum is attained at (r∗, R∗, %∗) where

r∗ =
λ′ − λ
λ′ + λ

, R∗ =
2

λ′ + λ
− 1
λ′

and %∗ =
1

λ′ − λ,
which is a unique solution of the equations

∂G

∂r
(r,R, %) =

∂G

∂R
(r,R, %) =

∂G

∂%
(r,R, %) = 0

in (0,∞)3. Then it can be seen that F (x∗, y∗, v∗)G(r∗, R∗, %∗) = 1; hence we
can take σ(λ) = τ(λ) for any λ. Therefore ζ(3) has an irrationality measure

µ = µ

(
1
7

)
= 1 +

6 log c0 + d0

6 log c0 − d0
,

which completes the proof of Theorem 1.

5. Concluding remarks. Theorem 1 is thus proved by taking λ = 1/7.
However we do not know whether the irrationality measure µ(λ) in (6)
attains its minimum at λ = 1/7 as the real parameter λ ∈ (0, 1) varies,
although numerical calculations seem to support this.

We also note that the integral\ \ \
B

xmLn(x)Ln+m(y)
1− (1− xy)u

dx dy du

gives almost the same irrationality measure µ as in Theorem 1 numerically.
In this case we need to calculate the corresponding Stieltjes integral with
respect to the digamma function ψ(x) over twelve intervals, which is more
complicated than W0. Moreover the diffeomorphism

T (x, y, u) =
(

1− (1− xy)u,
xy

1− (1− xy)u
,

1− x
1− xy

)
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acting on the unit cube B and satisfying T ≡ T−1, converts the integral
In,m constructed in Section 3 into\ \ \

B

xmLn+m(x)Ln−m,2m(y)
1− (1− xy)u

dx dy du,

although this integral representation does not seem to give any further arith-
metical information on the rational part βn,m.
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