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1. Introduction. Let p ≥ 3 be a prime and m ≥ 1 an integer. We
write Um = (Z/pmZ)∗ for the group of reduced residue classes modulo pm,
where we drop the dependence on p in the notation for simplicity (we may
think of p as a fixed prime). Then |Um| = (p − 1)pm−1. It will often be
convenient to identify elements of Z/pmZ with the corresponding elements
of the least residue system modulo pm.

For given a, b ∈ Z/pmZ we consider a map ψ : Um → Z/pmZ of the form

(1) ψ(w) = aw−1 + b for w ∈ Um.

It is easy to see that ψ is a permutation of Um if and only if gcd(a, p) = 1
and b ≡ 0 (mod p). These conditions will be assumed from now on.

If we start from an initial value u0 ∈ Um, then the recurrence relation

(2) un+1 = ψ(un) for n = 0, 1, . . .

generates a sequence u0, u1, . . . of elements of Um. It is obvious that this se-
quence is purely periodic with least period length τ ≤ (p−1)pm−1. Detailed
studies of the possible values of τ can be found in [1] and [4].

If u0, u1, . . . is a sequence generated by (1) and (2), then it is of inter-
est for the application mentioned below to establish upper bounds for the
exponential sums

(3)
N−1∑
n=0

χ(un),

where χ is a nontrivial additive character of Z/pmZ and 1 ≤ N ≤ τ . In
the case m = 1, and with a slight change of formula (1) to arrive at more
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interesting permutations ψ of U1, a nontrivial upper bound for the corre-
sponding exponential sums was first proved in [10] (see also [12]). In the
present paper we treat the case m ≥ 2 in which the details of the method
are quite different.

The exponential sums (3) are relevant in the analysis of a well-known
family of pseudorandom numbers. If u0, u1, . . . is a sequence of elements of
Um as above, then the numbers u0/p

m, u1/p
m, . . . in the interval [0, 1) form

a sequence of inversive congruential pseudorandom numbers with modulus
pm. For p ≥ 3 and m ≥ 2, the case we are concerned with here, this
method of pseudorandom number generation was introduced in [4]. In prac-
tice, one works with a large power pm of a small prime p. For surveys of
results on inversive congruential pseudorandom numbers we refer to [2], [8,
Chapter 8], [9].

It is clear that upper bounds on the exponential sums (3) yield results
on the distribution of the inversive congruential pseudorandom numbers
u0/p

m, u1/p
m, . . . A quantitative version of such a result in the form of a

discrepancy bound will be given in Section 4. This is the first nontrivial
discrepancy bound for parts of the period of inversive congruential pseudo-
random numbers with prime-power modulus. An analogous result for prime
moduli was first established in [10]. Related results on the distribution
in parts of the period for pseudorandom numbers generated by nonlinear
methods can be found in [5], [6], [11], [12].

2. Auxiliary results. If ψ is the permutation of Um,m ≥ 1, given by
(1) and r is an arbitrary integer, then let ψr denote the rth power of ψ in
the group of permutations of Um. We have the explicit formula in Lemma 1
below. Here and in the following, it will often be convenient to write u/v
for an expression uv−1 in a multiplicative abelian group.

Lemma 1. For any integer r ≥ 0 there exist cr, er ∈ Z/pmZ such that

ψr(w) =
(bcr − er)w + acr

crw − er
for all w ∈ Um.

Moreover , for even r we have cr ≡ 0 (mod p) and er 6≡ 0 (mod p) and for
odd r we have cr 6≡ 0 (mod p) and er ≡ 0 (mod p).

P r o o f. For r = 0 we can take c0 = 0 and e0 = 1. The general case
follows by straightforward induction on r and the additional properties of
cr and er are obtained along the way.

If u0, u1, . . . is a sequence generated by (1) and (2), then for 1 ≤ k ≤ m
we let τk be the least period length of the sequence u0, u1, . . . considered
modulo pk (so that τ = τm).
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Lemma 2. If cr ≡ 0 (mod pk) for some r ≥ 1 and 1 ≤ k ≤ m, then τk
divides r.

P r o o f. From cr ≡ 0 (mod pk) it follows by Lemma 1 that er 6≡ 0 (mod p)
and hence ψr(w) ≡ w (mod pk) for all w ∈ Um. Then r is a period length
of the sequence u0, u1, . . . considered modulo pk, and so τk divides r.

Lemma 3. Let p ≥ 3 be a prime, let m be a positive integer , and let f and
g be arbitrary integers. Put gcd(f, pm) = pl. Then

pm−1∑
z=0

exp
(

2πi(fz2 + gz)
pm

)
= 0 if g 6≡ 0 (mod pl)

and ∣∣∣∣ pm−1∑
z=0

exp
(

2πi(fz2 + gz)
pm

)∣∣∣∣ = p(m+l)/2 if g ≡ 0 (mod pl).

P r o o f. This follows from Lemma 6 in [3].

For 1 ≤ r ≤ τ − 1 and a nontrivial additive character χ of Z/pmZ we
introduce the exponential sum

(4) σr =
∑

w∈Um

χ(ψr(w)− w).

Note that χ is determined by an integer h 6≡ 0 (mod pm), in the sense that

(5) χ(v) = exp
(

2πihv
pm

)
for all v ∈ Z/pmZ.

Put gcd(h, pm) = pd with 0 ≤ d < m, so that we can write h = pdh0 with
an integer h0 6≡ 0 (mod p). By Lemma 1 we have

σr =
∑

w∈Um

χ

(
cr(a+ bw − w2)

crw − er

)
.

Let gcd(cr, pm) = pk with k ≥ 0, then Lemma 2 shows that k < m. Thus,
we can write cr = pkc with an integer c 6≡ 0 (mod p). Then

(6) σr =
∑

w∈Um

exp
(

2πipd+k

pm
· ch0(a+ bw − w2)

pkcw − er

)
.

It is trivial that

(7) σr = |Um| = (p− 1)pm−1 if d+ k ≥ m.

For d+ k < m we obtain the following bound.

Lemma 4. With the notation above we have

|σr| ≤ 2p(m+d+k)/2 if d+ k < m.
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P r o o f. In (6) we put w = spm−d−k+t with 0 ≤ s < pd+k and t ∈ Um−d−k.
Then

(8) σr = pd+k
∑

t∈Um−d−k

exp
(

2πich0

pm−d−k
· a+ bt− t2

pkct− er

)
.

If k = 0, then t 7→ ct − er is a permutation of Um−d by Lemma 1, hence
carrying out this substitution in the sum above yields

|σr| = pd

∣∣∣∣ ∑
v∈Um−d

exp
(

2πich0

pm−d
((a+ bc−1er − c−2e2r)v

−1 − c−2v)
)∣∣∣∣.

The last exponential sum is always bounded by 2p(m−d)/2, namely by a
result in [13, p. 97] for d ≤ m − 2 and by the Weil bound for Kloosterman
sums (see [7, Theorem 5.45]) for d = m − 1. Therefore the result of the
lemma follows for k = 0.
Next we consider the case k ≥ m− d− k. Then from (8) we get

|σr| = pd+k

∣∣∣∣ ∑
t∈Um−d−k

exp
(

2πich0

pm−d−k
· t

2 − bt

er

)∣∣∣∣.
Furthermore,∑
t∈Um−d−k

exp
(

2πich0

pm−d−k
· t

2 − bt

er

)

=
pm−d−k−1∑

z=0

exp
(

2πich0

pm−d−k
· z

2 − bz

er

)
−
pm−d−k−1−1∑

z=0

exp
(

2πich0

pm−d−k−1
· pz

2 − bz

er

)
.

Now Lemma 3 applied to the last two sums shows that the first sum has
absolute value p(m−d−k)/2 and the second sum has absolute value at most
p(m−d−k)/2, and so the lemma is again established.
Finally, we consider the case 1 ≤ k < m − d − k. In (8) we put t =
zpm−d−2k + u, 0 ≤ z < pk, u ∈ Um−d−2k. Then

p−d−kσr =
∑

u∈Um−d−2k

exp
(

2πich0

pm−d−k
· a+ bu− u2

pkcu− er

)

×
pk−1∑
z=0

exp
(

2πich0

pm−d−k
· (b− 2u)pm−d−2kz − p2m−2d−4kz2

pkcu− er

)
=

∑
u∈Um−d−2k

exp
(

2πich0

pm−d−k
· a+ bu− u2

pkcu− er

)

×
pk−1∑
z=0

exp
(

2πich0

pk
· p

m−d−2kz2 + (2u− b)z
er

)
.
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By Lemma 3, each inner sum is 0 since m− d− 2k > 0 and 2u− b ≡ 2u 6≡ 0
(mod p) for all u ∈ Um−d−2k. Thus, we have σr = 0.

3. The bound for exponential sums. For a sequence u0, u1, . . . gen-
erated by (1) and (2) with least period length τ and for integers h and N
with 1 ≤ N ≤ τ we consider the exponential sum

SN (h) =
N−1∑
n=0

exp
(

2πihun

pm

)
.

Theorem 1. Let p ≥ 3 be a prime, let m ≥ 2 be an integer , and let h be
an integer with gcd(h, pm) = pd, 0 ≤ d < m. Then

|SN (h)| < 49
16

(
pm

τ

)1/2

N1/2p(m+d)/4 for 1 ≤ N ≤ τ.

P r o o f. With the notation in (5) we can write

SN (h) =
N−1∑
n=0

χ(un).

Note that un = ψn(u0) for all integers n ≥ 0, and we use this identity to
define un for all negative integers n. It is easy to see that for any integer k
we have

(9)
∣∣∣SN (h)−

N−1∑
n=0

χ(un+k)
∣∣∣ ≤ 2|k|.

For an integer K ≥ 1 put

R(K) =
{
{k ∈ Z : −(K − 1)/2 ≤ k ≤ (K − 1)/2} if K is odd,
{k ∈ Z : −K/2 + 1 ≤ k ≤ K/2} if K is even.

Then ∑
k∈R(K)

|k| ≤ K2/4.

If we use (9) for all k ∈ R(K), then we get

(10) K|SN (h)| ≤W +K2/2

with

W =
∣∣∣ N−1∑

n=0

∑
k∈R(K)

χ(un+k)
∣∣∣ ≤ N−1∑

n=0

∣∣∣ ∑
k∈R(K)

χ(un+k)
∣∣∣

=
N−1∑
n=0

∣∣∣ ∑
k∈R(K)

χ(ψk(un))
∣∣∣.
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By the Cauchy–Schwarz inequality we obtain

W 2 ≤ N
N−1∑
n=0

∣∣∣ ∑
k∈R(K)

χ(ψk(un))
∣∣∣2

≤ N
∑

w∈Um

∣∣∣ ∑
k∈R(K)

χ(ψk(w))
∣∣∣2

≤ N
∑

k,l∈R(K)

∣∣∣ ∑
w∈Um

χ(ψk(w)− ψl(w))
∣∣∣

≤ KNpm + 2N
∑

k,l∈R(K)
k>l

∣∣∣ ∑
w∈Um

χ(ψk(w)− ψl(w))
∣∣∣.

Recalling that ψ is a permutation of Um, we can now write∑
w∈Um

χ(ψk(w)− ψl(w)) =
∑

w∈Um

χ(ψk−l(ψl(w))− ψl(w))

=
∑

w∈Um

χ(ψk−l(w)− w),

and so

(11) W 2 ≤ KNpm + 2KN
K−1∑
r=1

|σr|,

where σr is as in (4) and we assume K ≤ τ . From Lemma 2, equation (7),
and Lemma 4 we derive

K−1∑
r=1

|σr| ≤ 2p(m+d)/2
m−d−1∑

k=0

pk/2Nk + (p− 1)pm−1
K−1∑
r=1

τm−d|r

1(12)

≤ 2p(m+d)/2
m−d−1∑

k=0

pk/2(Mk −Mk+1) + (p− 1)pm−1 K

τm−d
,

where Nk, resp. Mk, is the number of r, 1 ≤ r ≤ K − 1, with gcd(cr, pm) =
pk, resp. cr ≡ 0 (mod pk). For 1 ≤ k ≤ m and each r counted by Mk we
have τk | r by Lemma 2. By using either [4, Lemma 6] or noting that every
value modulo pk gives rise to pm−k distinct values modulo pm, we see that

(13) τ ≤ pm−kτk for 1 ≤ k ≤ m.

Therefore

Mk ≤ K/τk ≤ Kpm−k/τ for 1 ≤ k ≤ m.
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It follows that
m−d−1∑

k=0

pk/2(Mk −Mk+1)

= M0 +
m−d−1∑

k=1

(pk/2 − p(k−1)/2)Mk − p(m−d−1)/2Mm−d

≤ K +
(

1− 1
p1/2

) m−d−1∑
k=1

pk/2Mk < K +
(

1− 1
p1/2

)
Kpm

τ

∞∑
k=1

p−k/2

<

(
1 +

1
p1/2

)
Kpm

τ
.

Together with (12) and (13) this yields

K−1∑
r=1

|σr| < 2
(

1 +
1
p1/2

)
pm

τ
Kp(m+d)/2 +

p− 1
p

· p
m

τ
Kpd

≤
(

2 +
2
p1/2

+
p− 1
p3/2

)
pm

τ
Kp(m+d)/2

< 3.54
pm

τ
Kp(m+d)/2.

Substituting this bound in (11), we obtain

W 2 < KNpm + 7.08
pm

τ
K2Np(m+d)/2.

We put

K = dpm/2e.
Then

W 2 < 8.08
pm

τ
K2Np(m+d)/2.

We remark that if τ < K, then the bound in Theorem 1 is trivial because

|SN (h)| ≤ N ≤ τ < pm/2 <
49
16

(
pm

pm/2

)1/2

pm/4

<
49
16

(
pm

τ

)1/2

N1/2p(m+d)/4.

So we can assume K ≤ τ , and similarly we can assume

N1/2 ≥ 49
16
pm/4
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because otherwise

|SN (h)| ≤ N <
49
16

(
pm

τ

)1/2

N1/2p(m+d)/4.

Then

K ≤ pm/2 + 1 ≤ 64
147

N1/2pm/4.

From (10) we conclude

|SN (h)| ≤ W

K
+
K

2
<
√

8.08
(
pm

τ

)1/2

N1/2p(m+d)/4 +
32
147

N1/2pm/4

<

(√
8.08 +

32
147

)(
pm

τ

)1/2

N1/2p(m+d)/4,

and this yields the desired result.

4. The discrepancy bound. Let u0/p
m, u1/p

m, . . . , uN−1/p
m be inver-

sive congruential pseudorandom numbers with modulus pm and 1 ≤ N ≤ τ .
The discrepancy DN of these numbers is defined by

DN = sup
J⊆[0,1)

∣∣∣∣A(J,N)
N

− |J |
∣∣∣∣,

where the supremum is extended over all subintervals J of [0, 1), A(J,N) is
the number of points un/p

m in J for 0 ≤ n ≤ N − 1, and |J | is the length
of J .

Theorem 2. Let p ≥ 3 be a prime and m ≥ 2 an integer. Then the dis-
crepancy DN of inversive congruential pseudorandom numbers with modulus
pm satisfies

DN <

(
pm

τ

)1/2

N−1/2pm/4(1.8 logN + 15.1) for 1 ≤ N ≤ τ.

P r o o f. By the Erdős–Turán inequality in the form given in [14, p. 214],
for any integer H ≥ 1 we have

(14) DN ≤ 1
H + 1

+
2
N

H∑
h=1

(
1
πh

+
1

H + 1

)
|SN (h)|,

where SN (h) is as in Theorem 1. We apply this bound with

H =
⌊(

3τ
pm

)1/2

N1/2p−m/4

⌋
.

We can assume H ≥ 1 since otherwise the discrepancy bound in the theorem
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is trivial. By Theorem 1 we obtain
H∑

h=1

1
h
|SN (h)| < 49

16

(
pm

τ

)1/2

N1/2pm/4
m−1∑
d=0

pd/4
H∑

h=1
pd|h

1
h

≤ 49
16

(
pm

τ

)1/2

N1/2pm/4(1 + logH)
m−1∑
d=0

p−3d/4

<
11
2

(
pm

τ

)1/2

N1/2pm/4

(
1 +

1
2

logN
)
.

Similarly we get
H∑

h=1

|SN (h)| < 11
2

(
pm

τ

)1/2

N1/2pm/4H.

Using (14) and the special form of H, we conclude

DN <

(
pm

3τ

)1/2

N−1/2pm/4

+ 11
(
pm

τ

)1/2

N−1/2pm/4

(
1
2π

logN +
1
π

+ 1
)
,

and after simple calculations we derive the desired result.

Theorem 2 yields a nontrivial discrepancy bound in the case where N is
at least of the order of magnitude pm/2 log2 τ . We note that, in principle,
the method in this paper works also for the case p = 2 which is convenient
for practical implementations of pseudorandom number generators, but that
some modifications have to be made in the details. It is also of interest to
extend our results to inversive congruential pseudorandom numbers with an
arbitrary composite modulus.
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