On the restricted Waring problem over $\mathbb{F}_{2^n}[t]$

by

Luis Gallardo (Brest)

1. Introduction. The Waring problem for polynomial cubes over a finite field F of characteristic 2 consists in finding the minimal integer $m \geq 0$ such that every sum of cubes in F[t] is a sum of m cubes. It is known that for F distinct from $\mathbb{F}_2, \mathbb{F}_4, \mathbb{F}_{16}$, each polynomial in F[t] is a sum of three cubes of polynomials (see [3]).

If a polynomial $P \in F[t]$ is a sum of n cubes of polynomials in F[t] such that each cube A^3 appearing in the decomposition has degree $< \deg(P) + 3$, we say that P is a restricted sum of n cubes.

The restricted Waring problem for polynomial cubes consists in finding the minimal integer $m \geq 0$ such that each sum of cubes S in F[t] is a restricted sum of m cubes.

The best known result for the above problem is that every polynomial in $\mathbb{F}_{2^n}[t]$ of sufficiently high degree that is a sum of cubes, is a restricted sum of eleven cubes. This result was obtained by the circle method in [1].

Here we improve this result using elementary methods. Let F be a finite field of characteristic 2, distinct from $\mathbb{F}_2, \mathbb{F}_4, \mathbb{F}_{16}$. In Theorem 7, we prove that every polynomial in F[t] is a restricted sum of at most nine cubes, and that every polynomial in $\mathbb{F}_{16}[t]$ is a restricted sum of at most ten cubes.

We also prove, in Theorem 9, that by adding to a given $P \in \mathbb{F}_{2^n}[t]$ some square B^2 with $\deg(B^2) < \deg(P) + 2$, the resulting polynomial is a restricted sum of at most four cubes, for all $n \neq 2$.

2. Sums of cubes. We consider a polynomial $P \in F[t]$ with F a field of characteristic 2. We want to write P as a restricted sum of cubes. In Lemma 5 we approach P by a sum of two cubes $A^3 + B^3$. This requires that F be distinct from \mathbb{F}_4 . Applying two more times the same reduction we are reduced to writing a polynomial of degree $< \deg(P)/3 + 1$ as a sum of cubes. Specializing F to a finite field distinct from \mathbb{F}_2 , \mathbb{F}_4 , \mathbb{F}_{16} , we obtain Theorem 6,

110 L. Gallardo

using the Serre Identity (see Lemma 2). For $F = \mathbb{F}_{16}$ a specific identity is used. The reduction requires that P has degree higher than some constant integer n. We finish the reduction in Theorem 7, proving in a case by case manner the result for all polynomials of degree less than this constant n.

LEMMA 1. Let F be a finite field of characteristic 2, $F \neq \mathbb{F}_4$ and $g \in F$, $g \neq 0$. There exist $a, b \in F$, $a \neq 0$, such that $g = a^3 + b^3$.

Proof. See [2].

LEMMA 2 (Serre Identity). Let F be a finite field of characteristic 2, distinct from \mathbb{F}_2 , \mathbb{F}_4 , \mathbb{F}_{16} . Every polynomial $P \in F[t]$ is a sum of three cubes, say $P = A^3 + B^3 + C^3$, with $A, B, C \in F[t]$, $\deg(A) = \deg(B) = \deg(C) = \deg(P)$.

Proof. This follows from the Serre formula

(1)
$$b^6 + a^6 + abc^3t = (at + b^2)^3 + (bt + a^2)^3 + (ct)^3$$

where a, b, c are nonzero elements in F such that $a^3 + b^3 + c^3 = 0$. See [3].

COROLLARY 3. Let F be a finite field of characteristic 2, distinct from $\mathbb{F}_2, \mathbb{F}_4, \mathbb{F}_{16}$. There exist three linear polynomials $A, B, C \in F[t]$ such that $t^2 = A^3 + B^3 + C^3$.

Proof. By a specialization of variables in formula (1) we obtain $t = U^3 + V^3 + W^3$, where $U, V, W \in F[t]$ and $\deg(U) = \deg(V) = \deg(W) = 1$. Replace t by 1/t in this last formula, and then multiply both sides by t^3 .

LEMMA 4. Let $F \neq \mathbb{F}_4$ be a field of characteristic 2. Let $n \geq 1$ be an integer, and $P \in F[t]$ a polynomial with $\deg(P) \in \{3n+3,3n+2,3n+1\}$. There exist polynomials $A, B, Q \in F[t]$ such that $P = A^3 + B^3 + Q$. Moreover $\deg(A) = n+1$, $\deg(B) \leq n+1$, $\deg(Q) \leq 2n+1$.

Proof. Set $P=\sum_{j=0}^{3n+3}p_jt^j, d=\deg(P), S=\sum_{j=0}^ns_jt^j, A=at^{n+1}+S,$ $B=\alpha t^{n+1}+\beta t^n+\gamma t^{n-1},$ where the $\{s_j\}_{j=0,\dots,n},$ and $a,\alpha,\beta,\gamma\in F$ are to be determined. If d=3n+3, then we set $\beta=0,\ \gamma=0.$ If d=3n+2, then we set $s_n=0,\ a=1,\ \alpha=1,\ \alpha=1,\ \beta=0.$ Set $Q=P+A^3+B^3.$ For j from 2n+2 to 3n+3, we force all coefficients q_j of Q to be 0, as follows. From the equations $q_{3n+3}=a^3+\alpha^3+p_{3n+3}=0,\ q_{3n+1}=a^2s_n+\beta\alpha^2+p_{3n+2}=0,\ q_{3n+1}=a^2s_{n-1}+\beta^2\alpha+as_n^2+\alpha^2\gamma+p_{3n+1}=0,$ we obtain the missing values of $\alpha,a,\beta,\gamma,s_n,s_{n-1}.$ More precisely, if d=3n+3, then we get $a\neq 0$ from Lemma 1, α from the equation $q_{3n+3}=0,\ s_n$ from the equation $q_{3n+2}=0,\ and\ s_{n-1}$ from the equation $q_{3n+1}=0;$ if d=3n+2, then we get β from the equation $q_{3n+2}=0,\ and\ s_{n-1}$ from the equation $q_{3n+1}=0.$ So the proof is finished for n=1, and we now take $n\geq 2$. Given an integer k such

that $1 \le k \le n-1$, suppose that we have determined s_n to s_{n-k} from the equations $q_{3n+3} = 0$ to $q_{3n-k+2} = 0$. We can then determine s_{n-k-1} from the equation $q_{3n-k+1} = 0 = a^2 s_{n-k-1} + p_{3n-k+1} + R$, where R is a cubic form in a, α, β, γ , and the $\{s_i\}_{n-k \le j \le n}$.

We now show the result of our reduction applied to a polynomial $P \in F[t]$, where F is a finite field of characteristic 2, distinct from \mathbb{F}_4 :

LEMMA 5. Let F be a finite field of characteristic 2, $F \neq \mathbb{F}_4$, and let $P \in F[t]$ be a polynomial of degree $d \geq 4$. There exist polynomials $A, B, Q \in F[t]$ such that $P = A^3 + B^3 + Q$. Moreover $\deg(A^3) < d + 3$, $\deg(Q^3) \leq 2d + e$, where e = -3 if $d \equiv 0 \mod 3$; e = -1 if $d \equiv 2 \mod 3$; e = 1 if $d \equiv 1 \mod 3$.

Proof. This follows from Lemma 4.

THEOREM 6. Let F be a finite field of characteristic 2, distinct from $\mathbb{F}_2, \mathbb{F}_4, \mathbb{F}_{16}$. Every polynomial $P \in F[t]$ with $\deg(P) > 6$ is a restricted sum of at most nine cubes. Every polynomial $P \in \mathbb{F}_{16}[t]$ with $\deg(P) > 6$ is a restricted sum of at most ten cubes.

Proof. Suppose $F \neq \mathbb{F}_2, \mathbb{F}_4, \mathbb{F}_{16}$. If $\deg(P) > 9$, we apply Lemma 5 three times and Lemma 2 once. If $7 \leq \deg(P) \leq 9$, we apply Lemma 5 twice and Lemma 2 once. For $F = \mathbb{F}_{16}$ the proof is the same, upon replacing the Serre formula in Lemma 2 by the identity

(2)
$$t = (tr+s)^3 + (tr+s+1)^3 + (t+sr^2)^3 + (t+(1+s)r^2)^3$$
, where $r \in \mathbb{F}_{16}$ satisfies $r^4 = r+1$, and $s = r^5$.

THEOREM 7. Let F be a finite field of characteristic 2, distinct from $\mathbb{F}_2, \mathbb{F}_4, \mathbb{F}_{16}$. Every polynomial $P \in F[t]$ is a restricted sum of at most nine cubes. Every polynomial $P \in \mathbb{F}_{16}[t]$ is a restricted sum of at most ten cubes.

Proof. From Theorem 6, we can assume that $\deg(P) \leq 6$. Suppose $F \neq \mathbb{F}_{16}$. If $\deg(P) \leq 1$ the result follows from the Serre identity in Lemma 2. Suppose $\deg(P) = 2$ and write $P = a_2t^2 + a_1t + a_0$. From Corollary 3, $a_2t^2 = (a_2^{1/2}t)^2$ is a sum of 3 cubes of polynomials of degree 1, but $\deg(P + a_2t^2) \leq 1$, so $P = (P + a_2t^2) + a_2t^2$ is a sum of at most 6 cubes, each of degree ≤ 1 . Suppose $\deg(P) = 3$ and write $P = a_3t^3 + P_2$ with $\deg(P_2) \leq 2$. By Lemma 1, $a_3 = a^3 + b^3$ with some $a, b \in F$; so $a_3t^3 = (at)^3 + (bt)^3$; it follows that P is a sum of at most 8 cubes, each of degree ≤ 1 . Suppose $\deg(P) = 4$ and write $P = t^3P_1 + P_2$ with $\deg(P_1) = 1$ and $\deg(P_2) = 2$. Apply Lemma 2 to P_1 and P_2 . We deduce that P is a sum of at most 6 cubes, each of degree ≤ 2 . Suppose $\deg(P) = 5$. By Lemma 4, $P = A^3 + B^3 + P_3$ with $\deg(A) \leq 2$, $\deg(B) \leq 2$ and $\deg(P_3) \leq 3$. By Lemma 1, $P_3 = (ct)^3 + (dt)^3 + P_2$ with some $c, d \in F$ and $\deg(P_2) \leq 2$; so that by Lemma 2, P_2 is a sum of at most 3 cubes, each of degree ≤ 2 . Suppose

112 L. Gallardo

 $\deg(P) = 6$. By Lemma 4, $P = A^3 + B^3 + P_4$ with $\deg(A) \le 2$, $\deg(B) \le 2$ and $\deg(P_4) \le 4$. So P is a sum of at most 8 cubes, each of degree ≤ 2 . The proof is similar when $F = \mathbb{F}_{16}$, with the appeal to Lemma 2 replaced by the identity (2), and Corollary 3 replaced by a similar result obtained after replacing t by 1/t and multiplying both sides of (2) by t^3 .

3. Allowing a square. We consider a polynomial $P \in F[t]$, where F is a perfect field of characteristic 2. We approach the square root S of the derivative of P relative to t by a sum of at most two polynomials, say U, V, of the form $A^2B + tB^3$. The reduced polynomial Q = S + U + V is of degree close to $\deg(S)/3$ (see Lemma 8). This reduction requires that every element in F is a sum of at most two cubes. So we specialize F to a finite field other than \mathbb{F}_4 , and we apply the identity $T = (T+1)^3 + T^3 + (T+1)^2$ to the polynomial tW^2 . The main result is Theorem 9.

LEMMA 8. Let F be a perfect field of characteristic 2 such that every element in F is a sum of at most two cubes. Let $n \geq 0$ be an integer, and $S \in F[t]$ be a polynomial with $\deg(S) \in \{3n+2,3n+1,3n\}$. There exist polynomials $A,B,C,D,Q \in F[t]$ such that

$$S = A^2B + tB^3 + C^2D + tD^3 + Q,$$

where $\deg(B) = n, \deg(C) \le n, \deg(D) \le n, \deg(Q) < n-1$. Moreover, if $\deg(S) \in \{3n, 3n+1\}$ then $\deg(A) \le n$; if $\deg(S) = 3n+2$ then $\deg(A) = n+1$.

Proof. Suppose that $n\geq 1$. Set $S=\sum_{j=0}^{3n+3}p_{3n+3-j}\,t^{3n+3-j},\,A=at^{n+1}+\sum_{k=0}^na_kt^k,\,B=ct^n,\,C=\sum_{k=0}^nc_kt^k,\,D=dt^n+t^{n-1}.$ If $p_{3n+1}=0$, then we set c=d=1. If $p_{3n+1}\neq 0$, then by hypothesis we obtain $c,d\in F$, $c\neq 0$, such that $p_{3n+1}=c^3+d^3.$ If $p_{3n+2}=0$, then we take a=0. If $p_{3n+2}\neq 0$, then we take $c\neq 0$ from $ca^2=p_{3n+2}.$ We now determine the $\{c_k,a_k\}_{0\leq k\leq n}$ such that all monomials $\{r_st^s\}_{n\leq s\leq 3n}$ of $S+A^2B+tB^3+C^2D+tD^3$ are 0, as follows. From the linear equation $r_{3n-1}=c_n^2+d+p_{3n-1}=0$, we obtain c_n , then from the linear equation $r_{3n-3}=ca_n^2+d^2+c_n^2d+p_{3n}=0$, we obtain a_n . From the linear equation $r_{3n-3}=ca_{n-1}^2+p_{3n-3}=0$, we obtain c_{n-1} , then from the linear equation $r_{3n-2}=ca_{n-1}^2+1+c_{n-1}^2d+p_{3n-2}=0$, we obtain a_{n-1} . This finishes the proof for n=1, and so we now take $n\geq 2$. From the linear equation $r_{3n-4}=ca_{n-2}^2+p_{3n-5}=0$, we obtain c_{n-2} , then from the linear equation $r_{3n-4}=ca_{n-2}^2+c_{n-2}^2d+p_{3n-4}=0$, we obtain a_{n-2},\ldots Finally, we obtain c_0 from the linear equation $r_{n-1}=c_0^2+p_{n-1}=0$, and a_0 from the linear equation $r_n=ca_0^2+dc_0^2=0$. So the resulting polynomial $Q=S+A^2B+tB^3+C^2D+tD^3$ is of degree less than or equal to n-2, finishing the proof. The proof for n=0 is similar by setting $A=at+a_0,\ B=c,\ C=c_0,\ D=d$.

THEOREM 9. Let F be a finite field of characteristic 2, distinct from \mathbb{F}_4 , and let $P \in F[t]$. There exists a square B^2 in F[t] with $\deg(B^2) < \deg(P) + 2$ such that $P + B^2$ is a restricted sum of at most four cubes.

Proof. For any $H \in F[t]$ we write H' for the derivative of H relative to t. Put $P' = S^2$, and $d = \deg(S) \in \{3n+2, 3n+1, 3n\}$ for some integer $n \ge 0$. Now P = (tP)' + tP', where (tP)' is a square in F[t] of degree $< \deg(P) + 2$. So it suffices to prove the result for tP'. Applying Lemmas 1 and 8 to S we get

(3)
$$(tP')' = S^2 = K^2K' + L^2L' + Q^2$$

with $K = A^2 + tB^2$, $L = C^2 + tD^2$. Then $\deg(L) \leq 2n + 1$. Also $\deg(K) = 2n + 1$ if $d \equiv 0$ or 1 mod 3; $\deg(K) = 2n + 2$ if $d \equiv 2 \mod 3$. Furthermore, $\deg(Q) < n - 1$. Integrating (3) over t, we get

$$R^2 + tP' = K^3 + L^3 + tQ^2$$

for some $R \in F[t]$. We have $\deg(L^3) \leq 6n + 3 < 6n + 4 \leq \deg(tP') + 3$. If $d \equiv 0 \mod 3$ or $d \equiv 1 \mod 3$ then $\deg(K^3) \leq 6n + 3 < 6n + 4 \leq \deg(tP') + 3$. If $d \equiv 2 \mod 3$ then $\deg(K^3) = 6n + 6 < 6n + 8 \leq \deg(tP') + 3$. Now $\deg((tQ^2)^2) \leq \deg((tQ^2)^3) < 6n - 3 < \deg(tP') + 2 < \deg(tP') + 3$. If $d \equiv 0 \mod 3$ or $d \equiv 1 \mod 3$ then, using $R^2 = tP' + K^3 + L^3 + tQ^2$, we obtain $\deg(R^2) \leq 6n + 3$; i.e. $\deg(R^2) < 6n + 3 \leq \deg(tP') + 2$. Similarly, $\deg(R^2) \leq 6n + 6 < 6n + 7 \leq \deg(tP') + 2$ when $d \equiv 2 \mod 3$. From the identity $T = (T+1)^3 + T^3 + (T+1)^2$, we obtain

$$tP' = K^3 + L^3 + (tQ^2 + 1)^3 + (tQ^2)^3 + (R + tQ^2 + 1)^2.$$

This establishes the result.

References

- [1] M. Car et J. Cherly, Sommes de cubes dans l'anneau $\mathbb{F}_{2^h}[X]$, Acta Arith. 65 (1993), 227–241.
- [2] R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1984, pp. 327 and 295.
- [3] L. N. Vaserstein, Sums of cubes in polynomial rings, Math. Comp. 56 (1991), 349– 357

Department of Mathematics University of Brest 6, Avenue le Gorgeu 29285, Brest Cedex, France E-mail: Luis.Gallardo@univ-brest.fr

> Received on 20.2.1998 and in revised form on 29.9.1999 (3340)