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On the restricted Waring problem over Fy. [t]
by

Luis GALLARDO (Brest)

1. Introduction. The Waring problem for polynomial cubes over a finite
field F' of characteristic 2 consists in finding the minimal integer m > 0 such
that every sum of cubes in F[t] is a sum of m cubes. It is known that for F'
distinct from Fo,Fy, Fi6, each polynomial in F[t] is a sum of three cubes of
polynomials (see [3]).

If a polynomial P € F[t] is a sum of n cubes of polynomials in F'[t] such
that each cube A3 appearing in the decomposition has degree < deg(P)+3,
we say that P is a restricted sum of n cubes.

The restricted Waring problem for polynomial cubes consists in finding
the minimal integer m > 0 such that each sum of cubes S in F[t] is a
restricted sum of m cubes.

The best known result for the above problem is that every polynomial in
[Fan [t] of sufficiently high degree that is a sum of cubes, is a restricted sum
of eleven cubes. This result was obtained by the circle method in [1].

Here we improve this result using elementary methods. Let F' be a finite
field of characteristic 2, distinct from Fy,F4,F16. In Theorem 7, we prove
that every polynomial in F[t] is a restricted sum of at most nine cubes, and
that every polynomial in Fig[¢] is a restricted sum of at most ten cubes.

We also prove, in Theorem 9, that by adding to a given P € Fax[t] some
square B2 with deg(B?) < deg(P)+2, the resulting polynomial is a restricted
sum of at most four cubes, for all n # 2.

2. Sums of cubes. We consider a polynomial P € F[t] with F' a field
of characteristic 2. We want to write P as a restricted sum of cubes. In
Lemma 5 we approach P by a sum of two cubes A3 4+ B3. This requires that
F be distinct from Fy. Applying two more times the same reduction we are
reduced to writing a polynomial of degree < deg(P)/3+1 as a sum of cubes.
Specializing F' to a finite field distinct from Fs, Fy, F14, we obtain Theorem 6,
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using the Serre Identity (see Lemma 2). For F' = Fi4 a specific identity is
used. The reduction requires that P has degree higher than some constant
integer n. We finish the reduction in Theorem 7, proving in a case by case
manner the result for all polynomials of degree less than this constant n.

LEMMA 1. Let F be a finite field of characteristic 2, F # F4 and g €
F, g #0. There exist a,b € F, a # 0, such that g = a® + b3.

Proof. See [2].

LEMMA 2 (Serre Identity). Let F be a finite field of characteristic 2,
distinct from Fo, Fy, F16. Every polynomial P € Ft] is a sum of three cubes,
say P = A%+ B3 + C3, with A, B,C € F|[t], deg(A) = deg(B) = deg(C) =
deg(P).

Proof. This follows from the Serre formula
(1) b8 + a8 + abc®t = (at + ) + (bt + a®)® + (ct)?
where a, b, ¢ are nonzero elements in F such that a® + b + ¢ = 0. See [3].

COROLLARY 3. Let F be a finite field of characteristic 2, distinct from
Fo,Fy,Fi6. There exist three linear polynomials A, B,C € FIt| such that
t2 =A%+ B3+ C3.

Proof. By a specialization of variables in formula (1) we obtain ¢ =
U3+ V3 + W3, where U, V,W € F[t] and deg(U) = deg(V) = deg(W) = 1.
Replace t by 1/t in this last formula, and then multiply both sides by 3.

LEMMA 4. Let F # F4 be a field of characteristic 2. Let n > 1 be an
integer, and P € F[t] a polynomial with deg(P) € {3n+ 3,3n +2,3n + 1}.
There exist polynomials A, B, Q € F|t] such that P = A3+ B3+Q. Moreover
deg(A) =n+1, deg(B) <n+1, deg(Q) < 2n+ 1.

Proof. Set P= Z?prjtj, d=deg(P), S =377 _s;t!, A=at"t1 4G,
B = at™! + Bt" + 4t"~ !, where the {s;};—o... n, and a,a, 3,y € F are to
be determined. If d = 3n + 3, then we set 3 =0, v = 0. If d = 3n + 2,
then we set s, = 0, a =1, a =1,v =0. If d = 3n 4+ 1, then we set
5, =0,8,_1=0,a=1 a=1,8=0.St Q = P+ A% + B3 For j
from 2n + 2 to 3n + 3, we force all coefficients g; of @ to be 0, as follows.
From the equations ¢z,43 = a® + a® + p3pe3 = 0, @3ni2 = a’s, + fa? +
P3nie = 0, @ani1 = a®sn_1 + f2a + as? + a®y + p3np1 = 0, we obtain
the missing values of «, a, 8,7, sn, Sn—1. More precisely, if d = 3n + 3, then
we get a # 0 from Lemma 1, o from the equation gs,+3 = 0, s, from the
equation ¢3,4+2 = 0, and s,—1 from the equation g3,+1 = 0; if d = 3n + 2,
then we get 8 from the equation ¢s3,42 = 0, and s,_; from the equation
G3n+1 = 0; if d = 3n + 1, then we get v from the equation gs3,+1 = 0. So the
proof is finished for n = 1, and we now take n > 2. Given an integer k such
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that 1 < k < n — 1, suppose that we have determined s,, to s,_j from the
equations ¢sn+3 = 0 to ¢3n_gr2 = 0. We can then determine s,_;_1 from
the equation gsn_x4+1 = 0 = a’sp_p_1 + P3n—k+1 + R, where R is a cubic
form in a, o, 3,7, and the {s;},_r<j<n.

We now show the result of our reduction applied to a polynomial P €
F[t], where F is a finite field of characteristic 2, distinct from Fy:

LEMMA 5. Let F be a finite field of characteristic 2, F # Fy, and let P €
F[t] be a polynomial of degree d > 4. There exist polynomials A, B,Q € Ft]
such that P = A3 + B3 + Q. Moreover deg(A3) < d + 3, deg(B?) < d + 3,
deg(Q?) < 2d + e, where e = —3 if d = 0mod 3; e = —1 if d = 2 mod 3;
e=11ifd=1mod 3.

Proof. This follows from Lemma 4.

THEOREM 6. Let F be a finite field of characteristic 2, distinct from
Fy,Fy4,Fi6. Every polynomial P € F[t] with deg(P) > 6 is a restricted sum
of at most nine cubes. Every polynomial P € Fi4[t] with deg(P) > 6 is a
restricted sum of at most ten cubes.

Proof. Suppose F' # Fo,Fy,Fi6. If deg(P) > 9, we apply Lemma 5
three times and Lemma 2 once. If 7 < deg(P) < 9, we apply Lemma 5 twice
and Lemma 2 once. For F' = 14 the proof is the same, upon replacing the
Serre formula in Lemma 2 by the identity

(2)  t=@r+s)P+tr+s+1)3+t+sr?)3+ (t+ (1+5)r?)3,

where r € Fi¢ satisfies r* = r 4+ 1, and s = 1.

THEOREM 7. Let F' be a finite field of characteristic 2, distinct from
Fy,Fy,Fi6. Every polynomial P € Ft] is a restricted sum of at most nine
cubes. Every polynomial P € Fig[t] is a restricted sum of at most ten cubes.

Proof. From Theorem 6, we can assume that deg(P) < 6. Suppose
F # Fq6. If deg(P) < 1 the result follows from the Serre identity in Lemma 2.
Suppose deg(P) = 2 and write P = ast?+a1t+ag. From Corollary 3, ast? =
(a;/Qt)2 is a sum of 3 cubes of polynomials of degree 1, but deg(P+ast?) < 1,
so P = (P+ast?)+ast? is a sum of at most 6 cubes, each of degree < 1. Sup-
pose deg(P) = 3 and write P = ast® + P, with deg(P) < 2. By Lemma 1,
az = a® + b% with some a,b € F; so agt® = (at)® + (bt)3; it follows that P is
a sum of at most 8 cubes, each of degree < 1. Suppose deg(P) = 4 and write
P = 3P, + P; with deg(P;) = 1 and deg(P,) = 2. Apply Lemma 2 to P; and
P,. We deduce that P is a sum of at most 6 cubes, each of degree < 2. Sup-
pose deg(P) = 5. By Lemma 4, P = A3+ B3+ P3 with deg(4) < 2,deg(B) <
2 and deg(P3) < 3. By Lemma 1, P; = (ct)3 + (dt)? 4+ P, with some ¢,d € F
and deg(P;) < 2; so that by Lemma 2, P, is a sum of at most 3 cubes, each of
degree < 2. Hence P is a sum of at most 7 cubes, each of degree < 2. Suppose
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deg(P) = 6. By Lemma 4, P = A3 + B3 + P, with deg(A4) < 2,deg(B) < 2
and deg(Ps) < 4. So P is a sum of at most 8 cubes, each of degree < 2. The
proof is similar when F' = 14, with the appeal to Lemma 2 replaced by
the identity (2), and Corollary 3 replaced by a similar result obtained after
replacing ¢ by 1/t and multiplying both sides of (2) by 3.

3. Allowing a square. We consider a polynomial P € F'[t], where F
is a perfect field of characteristic 2. We approach the square root S of the
derivative of P relative to t by a sum of at most two polynomials, say U, V,
of the form A?B +tB3. The reduced polynomial Q = S+ U +V is of degree
close to deg(S)/3 (see Lemma 8). This reduction requires that every element
in F'is a sum of at most two cubes. So we specialize F' to a finite field other
than Fy, and we apply the identity T = (T + 1)3 + T2 + (T + 1)? to the
polynomial ¢t W2. The main result is Theorem 9.

LEMMA 8. Let F be a perfect field of characteristic 2 such that every
element in F is a sum of at most two cubes. Let n > 0 be an integer, and
S € F[t] be a polynomial with deg(S) € {3n + 2,3n + 1,3n}. There exist
polynomials A, B,C, D, Q € F[t] such that

S =A?’B+tB%+C?D +tD3 + Q,

where deg(B) = n,deg(C) < n, deg(D) < n,deg(Q) < n — 1. Moreover, if
deg(S) € {3n,3n + 1} then deg(A) < n; if deg(S) = 3n + 2 then deg(A) =
n+ 1.

Proof. Suppose that n > 1. Set § = Zj’iﬁ;‘q’ Pants—; V3T A =
at"t 4+ Yoro apth, B=ct", C = Yoo cpth, D = dt™ +t" 1. If p3,4q = 0,
then we set ¢ = d = 1. If p3, 1 # 0, then by hypothesis we obtain ¢,d € F,
¢ # 0, such that p3, 1 = 3 +d>. If p3p+2 = 0, then we take a = 0. If p3y 42 #
0, then we take ¢ # 0 from ca? = p3,42. We now determine the {cy, ax }o<k<n
such that all monomials {rst*},<s<sn of S+ A2B+tB3+ C?D +tD? are 0,
as follows. From the linear equation 73, 1 = 0721 +d+ p3n—1 = 0, we obtain
Cn, then from the linear equation rs, = ca? + d? + ¢2d + p3, = 0, we obtain
an. From the linear equation r3,_3 = cfl_l + p3n_3 = 0, we obtain ¢, _1,
then from the linear equation r3, 2 = ca?2_; + 1+ c2_;d + p3n_2 = 0, we
obtain a,_1. This finishes the proof for n = 1, and so we now take n > 2.
From the linear equation rs,_5 = 02_2 + p3n_5 = 0, we obtain ¢, _s, then
from the linear equation rg,_4 = Ca%_z + ci_gd 4+ p3n_a = 0, we obtain
An_2, ... Finally, we obtain ¢y from the linear equation r, 1 = ¢z +p,_1 =
0, and ag from the linear equation r,, = ca? + dcz = 0. So the resulting
polynomial Q = S + A?B + tB3 + C?D + tD? is of degree less than or
equal to n — 2, finishing the proof. The proof for n = 0 is similar by setting
A=at+ag, B=c, C=cy, D=d.
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THEOREM 9. Let F' be a finite field of characteristic 2, distinct from Fy,
and let P € F[t]. There exists a square B? in F[t] with deg(B?) < deg(P)+2
such that P + B? is a restricted sum of at most four cubes.

Proof. For any H € F[t] we write H' for the derivative of H relative to
t. Put P’ = §% and d = deg(S) € {3n+2,3n+1,3n} for some integer n > 0.
Now P = (tP) 4+ tP’, where (tP)’ is a square in F'[t] of degree < deg(P)+2.
So it suffices to prove the result for tP’. Applying Lemmas 1 and 8 to S we get
(3) (tP/)/:S2:K2K/+L2L/+Q2
with K = A2 +tB2, L = C? +tD?. Then deg(L) < 2n + 1. Also deg(K) =
2n+1if d =0 or 1 mod 3; deg(K) = 2n + 2 if d = 2 mod 3. Furthermore,
deg(Q) < n — 1. Integrating (3) over ¢, we get

R? +tP' = K? + L* + tQ?
for some R € F[t]. We have deg(L3) < 6n+ 3 < 6n + 4 < deg(tP’) + 3. If
d=0mod 3 or d =1 mod 3 then deg(K?3) < 6n+3 < 6n+4 < deg(tP')+3.
If d = 2mod 3 then deg(K?3) = 6n+6 < 6n + 8 < deg(tP’') + 3. Now
deg((tQ?)?) < deg((tQ?)?) < 6n — 3 < deg(tP') + 2 < deg(tP’) + 3. If
d = 0mod 3 or d = 1 mod 3 then, using R? = tP' + K3 + L3 + tQ?, we
obtain deg(R?) < 6n + 3; i.e. deg(R?) < 6n + 3 < deg(tP’) + 2. Similarly,
deg(R?) < 6n +6 < 6n + 7 < deg(tP’) + 2 when d = 2 mod 3. From the
identity T = (T + 1)3 + T3 + (T + 1)?, we obtain
tP' = K3+ LP + (1Q% + 1)® + (tQ*)® + (R + tQ* + 1)%.

This establishes the result.
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