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1. Introduction. Let

(1.1) S(α) =
∑

n≤N
Λ(n)e(nα), e(u) = e2πiu,

where Λ(n) is the von Mangoldt function defined by Λ(n) = log p if n = pm,
m ≥ 1, p a prime, and Λ(n) = 0 otherwise. Parseval’s equation and the
prime number theorem provide the L2 estimate

(1.2)
1\
0

|S(α)|2 dα =
∑

n≤N
Λ2(n) ∼ N logN as N →∞,

and therefore by the Cauchy–Schwarz inequality we have, for any ε > 0 and
N sufficiently large,

(1.3)
1\
0

|S(α)| dα ≤ (1 + ε)
√
N logN.

In this paper we obtain the following improvement on this L1 upper bound.

Theorem. For any ε > 0 and N sufficiently large we have

(1.4)
1\
0

|S(α)| dα ≤
(√

2
2

+ ε

)√
N logN.

Vaughan [3] has shown that

(1.5)
1\
0

|S(α)| dα�
√
N,
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and has also made the conjecture that there exists a constant c such that,
as N →∞,

(1.6)
1\
0

|S(α)| dα ∼ c
√
N logN.

This conjecture may be very difficult to prove, but it might be possible
to obtain the lower bound

(1.7)
1\
0

|S(α)| dα�
√
N logN.

I have proved that (1.7) follows from a strong form of either the Goldbach
or the twin prime conjectures. Further, certain approximations of S(α) also
satisfy (1.7). These results will be presented in a later paper.

Notation. We use the following notation. We take n, q, r, k, j to always
be positive integers, and in general summation signs will start with 1 if a
lower limit is not specified. We will use the notation

∑
*

a(q)

=
∑

1≤a≤q
(a,q)=1

and
∑

Q

=
∑

1≤q≤Q

∑
*

a(q)

.

2. The major arc approximation. Hardy and Littlewood ([1], [2])
introduced the method used for the analysis of S(α). For α near a fraction
a/q, S(α) = S(a/q+β) is large and can be approximated well by the simple
expression

µ(q)
φ(q)

I(β),

where

(2.1) I(β) =
N∑
n=1

e(nβ).

Here α = a/q + β where β needs to be small so that there are no other
fractions with denominators ≤ q within a distance of |β| of a/q. This re-
quirement leads to the Farey decomposition of the unit interval. The Farey
fractions of order Q are given by

FQ = {a/q : 1 ≤ q ≤ Q, 0 ≤ a ≤ q, (a, q) = 1}.
We define the Farey arcs around each of these fractions, except 0/1 which
we exclude, as follows. Let a′/q′ < a/q < a′′/q′′ be consecutive fractions in
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the Farey decomposition of order Q, and let

(2.2)
MQ(q, a) =

(
a+ a′

q + q′
,
a+ a′′

q + q′′

]
for

a

q
6= 1

1
, a 6= 0,

MQ(1, 1) =
(

1− 1
Q+ 1

, 0
]
∪
(

0,
1

Q+ 1

]
.

These intervals are disjoint and their union covers the interval [0, 1]. We will
sometimes shift these intervals to the origin, which we denote by

(2.3) θQ(q, a) =
(
a+ a′

q + q′
− a

q
,
a+ a′′

q + q′′
− a

q

]
=
( −1
q(q + q′)

,
1

q(q + q′′)

]

when q 6= 1, and θQ(1, 1) = (−1/(Q+ 1), 1/(Q+ 1)]. Since Q < q+ q′ < 2Q
and similarly for q + q′′, we see

(2.4) θQ(q, a) =
(
− 1
q(Q+ µ)

,
1

q(Q+ ν)

]
,

for integers 0 < µ, ν < Q which depend on a, q, and Q. In particular,

(2.5)
( −1

2qQ
,

1
2qQ

)
⊆ θQ(q, a) ⊆

(−1
qQ

,
1
qQ

)
.

Finally we define the characteristic function of MQ(q, a) by

(2.6) χQ(α; q, a) =
{

1 if α ∈MQ(q, a),
0 otherwise.

With this preparation, our approximation to S(α) is given by

(2.7) JQ(α) =
∑

1≤q≤Q

∑
*

a(q)

µ(q)
φ(q)

I

(
α− a

q

)
χQ(α; q, a).

We will call JQ(α) the major arcs approximation for S(α). This approxi-
mation has the advantage that each term in the approximation is orthogonal
to every other on the unit interval, which greatly simplifies the computation
of various means. One expects that JQ(α) will become a better approxima-
tion of S(α) as Q is increased as a function of N . For the L2 norm this
is the case when Q ≤ √N , but for

√
N < Q ≤ N the approximation de-

grades because the support χQ(α; q, a) becomes so small that the terms with
q ≥ N/Q no longer make any contribution. Because of this we define

(2.8) Q1 = min(Q,N/Q) =

{
Q if 1 ≤ Q ≤ √N ,

N/Q if
√
N ≤ Q ≤ N ,

and we interpret JQ(α) as actually being an L2 approximation to S(α) of
length Q1 rather than Q. This disadvantage of JQ(α) may be corrected by
simply deleting the factor χQ(α; q, a) in the definition of JQ(α), but the
resulting approximation is much harder to analyze when Q >

√
N .
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We comment that the term “major arcs” has different meanings depend-
ing on the problem the circle method is being applied to as well as individual
taste. Our function JQ(α) is not the only possible choice for an approxima-
tion. One complication in applying JQ(α) is that in some situations one
needs to take account of the exact positions of the endpoints of the Farey
arcs, which introduces Kloosterman sums. This can often be avoided by us-
ing arcs that do not depend on a, such as the intervals in (2.5) that envelope
θQ(q, a) or sometimes even intervals that do not depend on q. In this paper
however there is no problem with using the Farey arcs in our approximation.

The idea for the proof of the Theorem is quite simple. We write

(2.9) S(α) = JQ(α) + TQ(α),

and refer to TQ(α) defined by (2.9) as the minor arcs part of S(α). The major
arcs approximation JQ(α) consists of spikes which are amplified when we
take higher powers. As we will see in the next section, JQ(α) makes only a
contribution of at most

√
N in the L1 norm, but on squaring it contributes

half of the amount on the right hand side of (1.2) when Q =
√
N . Further,

in Section 4 we show JQ(α) and TQ(α) are essentially orthogonal in L2, so
that TQ(α) contributes the other half of the amount in (1.2). Thus, in L1

the size of S(α) is determined by TQ(α), which satisfies an L2 bound one
half as large as the bound in (1.2).

3. Means of JQ(α). We prove in this section some results on means of
JQ(α).

Lemma 1. For 1 ≤ Q ≤ N and Q1 = min(Q,N/Q), we have

(3.1)
1\
0

|JQ(α)| dα � Q1 log
2N
Q2

1
.

In particular ,

(3.2)
1\
0

|JQ(α)| dα�
√
N.

Lemma 2. For 1 ≤ Q ≤ N , Q1 = min(Q,N/Q), and k a positive integer ,
we have

(3.3)
1\
0

|JQ(α)|2k dα =
( ∑

q≤Q1

µ2(q)
φ2k−1(q)

)( ∑

n≤kN
ν2
k(n)

)
+O(Q2k−1Q1),

where

(3.4) νk(n) = νk(n,N) =
∑

n1,...,nk≤N
n1+...+nk=n

1.

In particular , for k = 1 we have
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(3.5)
1\
0

|JQ(α)|2 dα = N logQ1 +O(N).

P r o o f (of Lemma 1). By (2.7),
1\
0

|JQ(α)| dα =
∑

Q

µ2(q)
φ(q)

\
MQ(q,a)

∣∣∣∣I
(
α− a

q

)∣∣∣∣ dα(3.6)

=
∑

Q

µ2(q)
φ(q)

\
θQ(q,a)

|I(β)| dβ.

Since

I(β) = e

(
(N + 1)β

2

)
sin(πNβ)
sin(πβ)

,

we have, by (2.5),\
θQ(q,a)

|I(β)| dβ =
\

θQ(q,a)

∣∣∣∣
sin(πNβ)
sin(πβ)

∣∣∣∣ dβ(3.7)

= 2
1/(qQ)\

0

∣∣∣∣
sin(πNβ)
sin(πβ)

∣∣∣∣ dβ +O(1).

Using
1/(qQ)\

0

∣∣∣∣
sin(πNβ)
sin(πβ)

∣∣∣∣ dβ �
N/(qQ)\

0

∣∣∣∣
sin(πu)

u

∣∣∣∣ du(3.8)

�
{
N/(qQ) if N/(qQ) ≤ 1,
log((2N)/(qQ)) if N/(qQ) ≥ 1,

together with (3.6) and (3.7), for Q ≤ N1/2 we have

1\
0

|JQ(α)| dα �
∑

q≤Q
µ2(q)

( 1/(qQ)\
0

∣∣∣∣
sin(πNβ)
sin(πβ)

∣∣∣∣ dβ +O(1)
)

�
∑

q≤Q
µ2(q) log

2N
qQ
� Q log

2N
Q2 = Q1 log

2N
Q2

1
,

since Q1 = Q in this case, while for Q > N1/2,
1\
0

|JQ(α)| dα �
∑

q≤Q1

µ2(q) log
2N
qQ

+
∑

Q1<q≤Q
µ2(q)

N

qQ

� Q1 log
2N
Q1Q

+
N

Q
log

Q

Q1
� Q1 log

2Q
Q1

= Q1 log
2N
Q2

1
,

which completes the proof of the lemma.
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P r o o f (of Lemma 2). We have
1\
0

|JQ(α)|2k dα =
∑

Q

µ2(q)
φ2k(q)

\
MQ(q,a)

∣∣∣∣I
(
α− a

q

)∣∣∣∣
2k

dα.

Now

(3.9)
\

MQ(q,a)

∣∣∣∣I
(
α− a

q

)∣∣∣∣
2k

dα

=
\

θQ(q,a)

|I(β)|2k dβ =
1\
0

|I(β)|2k dβ −
\

[0,1]\θQ(q,a)

|I(β)|2k dβ

=
1\
0

∣∣∣
∑

n≤kN
νk(n)e(nβ)

∣∣∣
2
dβ +O

( 1/2\
1/(2qQ)

1
β2k dβ

)

=
∑

n≤kN
ν2
k(n) +O((qQ)2k−1).

We also have the trivial bound

(3.10)
\

MQ(q,a)

∣∣∣∣I
(
α− a

q

)∣∣∣∣
2k

dα� N2k

qQ

which becomes smaller than the error in (3.9) provided q ≥ N/Q. We con-
clude

1\
0

|JQ(α)|2k dα =
∑

q≤Q1

µ2(q)
φ2k(q)

∑
*

a(q)

( ∑

n≤kN
ν2
k(n) +O((qQ)2k−1)

)

+O

(
N2k

Q

∑′

Q1<q≤Q

µ2(q)
qφ2k−1(q)

)

=
( ∑

q≤Q1

µ2(q)
φ2k−1(q)

)( ∑

n≤kN
ν2
k(n)

)

+O(Q2k−1Q1) +O′
(

N2k

QQ2k−1
1

)
,

where the dash indicates this term only occurs if Q > N1/2. We thus see that
for Q ≤ N1/2 the error term above is � Q2k−1Q1 as stated in Lemma 2,
while for Q > N1/2 the error is � NQ2k−2 = Q2k−1Q1 and the lemma
follows. In the case k = 1 the result follows from the well known formula [4]

(3.11)
∑

q≤Q

µ2(q)
φ(q)

= logQ+O(1).
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4. Inner product of JQ(α) and S(α). The pointwise behaviour of
S(α) is complicated and the known results are much weaker than what is
expected to be true. However when one averages S(α) over the reduced
fractions with denominator q one easily obtains an asymptotic formula. It is
useful to obtain a result of this type due to Vaughan who used it in proving
(1.5).

Lemma 3. We have

(4.1)
∑

*

a(q)

S

(
a

q
+ β

)
= µ(q)S(β) +O(φ(q) log(2N) log(2q)).

P r o o f. We have
∑

*

a(q)

S

(
a

q
+ β

)
=
∑

n≤N
Λ(n)e(nβ)

∑
*

a(q)

e

(
an

q

)
=
∑

n≤N
Λ(n)cq(n)e(nβ),

where cq(n) is Ramanujan’s sum. Since cq(n) = µ(q) if (n, q) = 1, and
trivially |cq(n)| ≤ φ(q), we have
∑

n≤N
Λ(n)cq(n)e(nβ) = µ(q)

∑

n≤N
(n,q)=1

Λ(n)e(nβ) +O
( ∑

n≤N
(n,q)>1

Λ(n)φ(q)
)

= µ(q)S(β) +O
(
φ(q)

∑

n≤N
(n,q)>1

Λ(n)
)

= µ(q)S(β) +O(φ(q) log(2N) log(2q)).

We next evaluate the inner product of S(α) and JQ(α).

Lemma 4. For 1 ≤ Q ≤ N and Q1 = min(Q,N/Q), we have

(4.2)
1\
0

S(α)JQ(α) dα = N logQ1 +O(N
√

log(2N)).

P r o o f. We have
1\
0

S(α)JQ(α) dα =
∑

Q

µ(q)
φ(q)

\
θQ(q,a)

S

(
a

q
+ β

)
I(β) dβ(4.3)

=
∑

q≤Q1

+
∑

Q1<q≤Q
= S1 + S2.

For the main term S1 we have

S1 =
∑

q≤Q1

µ(q)
φ(q)

∑
*

a(q)

\
θQ(q,a)

S

(
a

q
+ β

)
I(β) dβ(4.4)
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=
∑

q≤Q1

µ(q)
φ(q)

∑
*

a(q)

1\
0

S

(
a

q
+ β

)
I(β) dβ

−
∑

q≤Q1

µ(q)
φ(q)

∑
*

a(q)

\
[0,1]\θQ(q,a)

S

(
a

q
+ β

)
I(β) dβ

= S3 − S4.

Now
1\
0

S

(
a

q
+ β

)
I(β) dβ =

∑

n≤N
Λ(n)e

(
na

q

) 1\
0

e(nβ)I(β) dβ

=
∑

n≤N
Λ(n)e

(
na

q

)
= S

(
a

q

)
,

and therefore by Lemma 3,

S3 =
∑

q≤Q1

µ(q)
φ(q)

∑
*

a(q)

S

(
a

q

)

=
∑

q≤Q1

µ2(q)
φ(q)

S(0) +O
( ∑

q≤Q1

µ2(q) log(2N) log(2q)
)

= ψ(N)
∑

q≤Q1

µ2(q)
φ(q)

+O(Q1 log2(2N)),

where ψ(x) =
∑
n≤x Λ(n). By the prime number theorem ψ(x) = x +

O(x(log x)−A) for any A > 0. Hence, by (3.11),

S3 =
(
N +O

(
N

logAN

)) ∑

q≤Q1

µ2(q)
φ(q)

+O(Q1 log2(2N))(4.5)

= N logQ1 +O(N).

To estimate S4, we have

S4 =
∑

q≤Q1

µ(q)
φ(q)

∑
*

a(q)

( 1−1/(2qQ)\
1/(2qQ)

−
\
N

)
S

(
a

q
+ β

)
I(β) dβ(4.6)

= S5 − S6,

where

N =
[

1
2qQ

,
1

q(Q+ ν)

]
∪
[
− 1
q(Q+ µ)

,− 1
2qQ

]
⊂ θQ(q, a)

where ν and µ are the numbers in (2.4) which depend on a, q, and Q. By
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Cauchy–Schwarz we have

S6 ≤
∑

q≤Q1

µ2(q)
φ(q)

∑
*

a(q)

( \
N

∣∣∣∣S
(
a

q
+ β

)∣∣∣∣
2

dβ

)1/2( \
N
|I(β)|2 dβ

)1/2
(4.7)

≤
( ∑

q≤Q1

∑
*

a(q)

\
N

∣∣∣∣S
(
a

q
+ β

)∣∣∣∣
2

dβ

)1/2

×
( ∑

q≤Q1

∑
*

a(q)

µ2(q)
φ2(q)

\
N
|I(β)|2 dβ

)1/2

�
(∑

q≤Q

∑
*

a(q)

\
MQ(q,a)

|S(α)|2 dα
)1/2

×
( ∑

q≤Q1

µ2(q)
φ(q)

1/(qQ)\
1/(2qQ)

1
β2 dβ

)1/2

�
( 1\

0

|S(α)|2 dα
)1/2

( ∑

q≤Q1

qQ

φ(q)

)1/2

�
√
Q1QN log(2N)� N

√
log(2N).

For S5 we have, by Lemma 3,

(4.8) S5 =
∑

q≤Q1

µ(q)
φ(q)

1−1/(2qQ)\
1/(2qQ)

(∑
*

a(q)

S

(
a

q
+ β

))
I(β) dβ

=
∑

q≤Q1

µ2(q)
φ(q)

1−1/(2qQ)\
1/(2qQ)

S(β)I(β) dβ

+O
(

log2(2N)
∑

q≤Q1

µ2(q)
1−1/(2qQ)\

1/(2qQ)

|I(β)| dβ
)

�
∑

q≤Q1

µ2(q)
φ(q)

( 1−1/(2qQ)\
1/(2qQ)

|S(β)|2 dβ
)1/2( 1−1/(2qQ)\

1/(2qQ)

|I(β)|2 dβ
)1/2

+O

(
log2(2N)

∑

q≤Q1

µ2(q)
1/2\

1/(2qQ)

dβ

β

)
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�
∑

q≤Q1

µ2(q)
φ(q)

( 1\
0

|S(α)|2 dα
)1/2

( 1/2\
1/(2qQ)

dβ

β2

)1/2

+O(Q1 log3(2N))

�
√
NQQ1 log(2N) +O(N1/2 log3(2N))� N

√
log(2N).

Finally we return to S2. For Q ≤ N1/2 we have S2 = 0. Assuming Q > N1/2

we have Q1 = N/Q and

S2 =
∑

Q1<q≤Q

µ(q)
φ(q)

∑
*

a(q)

\
θQ(q,a)

S

(
a

q
+ β

)
I(β) dβ(4.9)

�
∑

Q1<q≤Q

µ2(q)
φ(q)

∑
*

a(q)

( \
θQ(q,a)

∣∣∣∣S
(
a

q
+ β

)∣∣∣∣
2

dβ

)1/2

×
( \
θQ(q,a)

|I(β)|2 dβ
)1/2

�
(∑

q≤Q

∑
*

a(q)

\
MQ(q,a)

|S(α)|2 dα
)1/2

×
( ∑

Q1<q≤Q

∑
*

a(q)

µ2(q)
φ2(q)

1/(qQ)\
−1/(qQ)

|I(β)|2 dβ
)1/2

�
( 1\

0

|S(α)|2 dα
)1/2

( ∑

Q1<q

µ2(q)N2

qφ(q)Q

)1/2

�
√
N3 log(2N)

QQ1
= N

√
log(2N).

Lemma 4 now follows from (4.3) through (4.9).

5. Proof of the Theorem. As a simple consequence of Lemma 4 we
can determine how closely JQ(α) approximates S(α) in L2.

Lemma 5. For 1 ≤ Q ≤ N and Q1 = min(Q,N/Q), we have

(5.1)
1\
0

|S(α)− JQ(α)|2 dα = N log(N/Q1) +O(N
√

log(2N)).

P r o o f. On multiplying out we find the left hand side of (5.1) is
1\
0

|S(α)|2 dα− 2<
1\
0

S(α)JQ(α) dα+
1\
0

|JQ(α)|2 dα.

By (1.2), Lemma 2, and Lemma 4 the result follows.
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Proof of the Theorem. By Cauchy–Schwarz we have
1\
0

|S(α)− JQ(α)| dα ≤
( 1\

0

|S(α)− JQ(α)|2 dα
)1/2

(5.2)

=
√
N log(N/Q1) +O(N1/2 log1/4(2N)).

By the reverse triangle inequality and Lemma 1 the left hand side of (5.2)
is

(5.3) ≥
1\
0

|S(α)| dα−
1\
0

|JQ(α)| dα ≥
1\
0

|S(α)| dα−O(N1/2).

The Theorem now follows on taking Q = Q1 = N1/2 in (5.2).
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