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Introduction. Let A be a strictly increasing sequence of positive in-
tegers. The set of all the subset sums of A will be denoted by P(A), i.e.
P(A) = {d ea; : a; € A; ¢, = 0 or 1}. A is said to be subcomplete
if P(A) contains an infinite arithmetic progression. A natural question of
P. Erdés asked how dense a sequence A which is subcomplete has to be.
He conjectured that a,1/a,, — 1 implies the subcompleteness. But in 1960
J. W. S. Cassels (cf. [1]) showed that for every € > 0 there exists a sequence

A for which a1 —a, = o(a}/ 2+E) and A is not subcomplete. In 1962 Erdds

[2] proved that if A(n) > Cn(V3=1/2 (C > 0) then A is subcomplete, where
A(n) is the counting function of 4, i.e. A(n) =3, ., 1. In 1966 J. Folkman

[4] improved this result showing that A(n) > n'/2* (¢ > 0) implies the
subcompleteness.
In this note we improve this result. In Section 3 we prove

THEOREM 1. Let A = {0 < a1 < az < ...} be an infinite sequence of
integers. Assume that A(n) > 300v/nlogn for n > ng. Then A is subcom-
plete.

We mention here that 300v/nlog n cannot be replaced by v/2n; it is easy
to construct a sequence A for which A(n) > v/2n and A is not subcomplete.

The main tool for the proof of Theorem 1 is a remarkable theorem of
G. Freiman and A. Sarkézy (they proved it independently, see [5] and [7]).
We are going to use it as Lemma 3.

We use the following notations. The cardinality of the finite set S is
denoted by |S|. The set of positive integers is denoted by N. A + B denotes
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the set of integers that can be represented in the form a + b with a € A,
be B. Wewrite Xy +...+ X, =(X1+...+Xn1) + Xp,n=3,4,...

Acknowledgements. I would like to express my thanks to Prof. G. Frei-
man for his helpful comments and suggestions.

1. Preliminaries. First we prove

PROPOSITION. Let A = {0 < a1 < az < ...} be an infinite sequence of
integers. Assume that A(n) > 2y/nlogn for n > ny. Then for every d there
exists an L > 0 and an infinite sequence {y1 < y2 < ...} in P(A) for which
d’yl andyi-‘rl -y < L7Z: 1727"'

Proof. A(n) > 2y/nlogn implies

2
(1.1) ay < —

logn’
Let U; = {a(i—1)a+1 < ... < aiq}. We need some lemmas.

LEmMA 1. If d € N and uq,...,uq are integers, then there is a sum of
the form
Uiy + ..+ U, (1§21<<Zt§d)
such that d|w;, + ...+ u,,.
Proof. Either there is a k, 1 < k < d, such that d|uy+ ...+ uy or there
are k,m with £ < m and uy + ... +up = ug + ...+ 4y, (mod d) so that
d]uk+1+...+um.

By Lemma 1, for every i there exists y; such that d|y; = a;, +... 4+ a;,,

a;, <...<a; and {a;,,...,a; } C U;. Furthermore by (1.1) we get
id 2 ;2
ys < dayg < a8 — p
log i log i

or equivalently

vnlogn

a7
Now if yp, = a;, +...+a;, = aj, +...+a;,, {ai,,...,a;,} CU; {a;,,...,a;,}
C U, for some m and r < s then clearly v < t < d. This implies that if we
renumber the elements y1,y2,... so that y1 < yo < ... and y; = y;y, for
some ¢ then v < d. Thus we conclude that there is a sequence Y* = {y; <
Yo < ...} in P(A) for which d|y; and Y*(n) > Y(n)/d > /nlogn/d* or
y; < d%?/logi (i =1,2,...).

Y(n) > where Y = {y1,y2,...}.

LEMMA 2. Let Y = {y1 < y2 < ...} be a sequence of positive integers
and let P(Y') = {s1 < so < ...}. Assume that there exists n* such that for
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n > n* we have

n
Ynt1 < Z Yi-
=1

Then there is L > 0 such that s;y1 — s; < L for every i.
We omit the easy proof (see [6]).

By Lemma 2 the proof of the Proposition will be complete if we check
that the sequence Y* defined in Lemma 1 satisfies the condition y,1; <

S, yi for large n.
Assume contrary to the assertion that there are infinitely many n for
which y,41 > Y i | yi. Then

n+1
e R S NI ME

which is impossible if n is large enough. ThlS proves the Proposition.

2. Arithmetic progressions

DEFINITION. Let A(d,l) = {a + kd : 0 < k < [} be an arithmetic
progression.

In this section we prove

THEOREM 2. Let A be an infinite sequence of positive integers. Assume
that A(n) > 200y/nlogn for n > ng. Then there exists a A > 0 such that
for every | € N there is an arithmetic progression A(d,l) = {u+kd : 0 <
k<l} C P(A) and d < A.

To prove Theorem 2 we shall use the following important lemma:

LEMMA 3. Let 0 < a1 < ... < ar < n be an increasing sequence of
integers. Assume that n > 2500 and k > 100v/nlogn. Then there exist
integers d, b, z such that 1 < d < 1004/n/logn, z > %nlogn, b<T7z/logn
and

{sd:b<s<z}CP{ay,...,ar}).

Lemma 3 is a special case of Theorem 4 in [7].

Now we prove the following

be an infinite sequence of arithmetic progressions. Assume that lim;_, o, H;
=00 and

(21) Hz > D1 —|— Di+1

for every i > 1. Then for every T there is an n for which Ay + ...+ A,
contains an arithmetic progression A(d,h) with d < Dy and h > T.



102 N. Hegyvari

Thus we are led to construct a long arithmetic progression with bounded
difference.

Proof. We shall prove that for every n, A;+...+ A, contains an A(d, h),
where
(2.2) d< D\, h>H,—D.

By the condition lim;_,, H; = 00, (2.2) completes the proof.

We show (2.2) by induction on n. For n = 1, (2.2) is trivial. Assume now
that n > 2 and the assertion holds with 1,...,n — 1 in place of n.

By the inductive hypothesis there exists A(d’,h’) C Ay +...+ A,,—1 with
d/ S Dl, h/ Z Hn—l - Dl. Since

A+ + A, =(A1+...+A, 1)+ A, DA W)+ A,
it is enough to show that there exists A(d, h) with
A(d,h) C A(d',W)+ A, and d< Dy,h> H, — D;.
Let d = (d', D)) and u =d'/d,w = D,,/d. Now (u,w) = 1. Then
Ad WY+ A, ={a+td :0<t<hY+{an,+sD,:0<s<H,}
={a+a,+dtu+sw):0<t<h,0<s<H,}.

It follows from a result of Frobenius (cf. [3]) that if (u,w) =1 and if t > w

then every integer in the interval [(u—1)(w—1)+1, H,w| can be represented
in the form

tu + sw, 0<t<w, 0<s< Hy.
By (2.1) we infer h’ > H,,_1 > D,, + D1 > D,,/d = w. Thus by Frobenius’
result we get
A(d' W)+ A, D A(d, h) :=={(a+ ap + duw) +rd: 0 <r < Hyw — uw},

where h = Hyw —uww = (H,, —uw)w > H,, —u > H, —d'/d > H, — Dy and
d<d < D;.

This completes the proof of the lemma.

Now define the infinite sequence of integers [e*°] +1 = ng < ny < ...
where

ni:n?_l, 1=1,2,...

Let B; := (n;—1,n;] N A. Now |B;| = A(n;) — A(ni—1) > 200y/n; logn; —
ni—1 > 200y/n;logn; — \/n; > 100y/n;logn; since n; > ny = [¢**] + 1. By
Lemma 2 there are arithmetic progressions

where
Uz

1
R —n; logn; < H;

log n;
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if n; is large enough. Since B; N B; = 0, for i # j we get A(D1, H1) + ...+
A(D,,,H,) C P(A) for every n € N.

Proof of Theorem 2. In view of Lemma 4 taking the arithmetic pro-
gressions A(Dq, Hy), A(D2, Hs), ... given above we have to show that for
i=1,2,...,

H;,>Di+D;41.
By (2.3),

n;
Vlogn;
Thus for every [ there is an arithmetic progression A(D,,, H,,) C P(A) where
H, > and D,, < D;.

Theorem 2 is proved.

1
H; > 3 log n; > 20e'? 4100 > D+ Djy1.

3. Proof of Theorem 1. Let B = {ag,—1 : n =1,2,...} C A, C =
A\ B. Now if n > ng then

B(n) > 3004 /glogg > 200+/nlogn and C(n) > 200y/nlogn.

By Theorem 2 there is a A such that for every [ there is an arithmetic
progression A(d,l) = {u+kd : 0 < k <[} C P(B) and d < A. Let
D =lcm.[1,2,...,[4A]]. By the Proposition there are an L and an infinite
sequence {r; < xo < ...} in P(C) for which D|xz; and z;41 — z; < L
(1 = 1,2,...). Now choose an arithmetic progression A(d,l) contained in
P(B),l> L. Here d < A, thus d| D and d|z;, i € N, as well.

We claim {kd : (z1 + u)/d < k} C P(A). Indeed, let pd € [x;,2j41),
x; > x1 + u. This yields that there exists an ¢ < j for which z; +u <
pd — x; < u+ Ld.

Now d | z; so pd—x; = u+td, t < L. This means pd = x;+u+td € P(A).

Theorem 1 is proved.

Addendum (December 8, 1999). I have learned that T. Luczak and T. Schoen proved

a theorem essentially equivalent to my Theorem 1. They obtained their result indepen-
dently and later.
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