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1. Introduction. For the coefficients of a cusp form of integral weight
k for SL2(Z), Perelli [13] showed an analogue of the Siegel–Walfisz prime
number theorem. His result was proved by using Rankin–Selberg L-functions
Lf⊗f (s, χ) (see the definition below). The aim of this paper is to prove
an analogue of the Siegel–Walfisz theorem for the product of the Fourier
coefficients of two cusp forms. It is obtained through the investigation of
Rankin–Selberg L-functions associated with two cusp forms for SL2(Z).

Let Sk(Γ ) be the space of cusp forms of weight k for Γ = SL2(Z). Let
f ∈ Sk(Γ ) and g ∈ Sl(Γ ) be normalized Hecke eigenforms. We write their
Fourier series expansions at the cusp as

(1.1) f(z) =
∞∑
n=1

ane
2πinz, g(z) =

∞∑
n=1

bne
2πinz.

The Rankin–Selberg L-function associated with f and g is defined as

Lf⊗g(s) =
∏
p

(1− αpβpp−s)−1(1− αpβpp−s)−1

× (1− αpβpp−s)−1(1− αpβpp−s)−1,

where p runs through all prime numbers, αp and βp appear in the Euler
products of Lf (s) and Lg(s) as follows:

Lf (s) =
∞∑
n=1

an
ns

=
∏
p

(1− αpp−s)−1(1− αpp−s)−1,

Lg(s) =
∞∑
n=1

bn
ns

=
∏
p

(1− βpp−s)−1(1− βpp−s)−1,

in other words αp and βp are complex numbers satisfying αp + αp = ap,
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|αp| = p(k−1)/2 and βp+βp = bp, |βp| = p(l−1)/2. (Here, z means the complex
conjugate of z.) We also define the twisted Rankin–Selberg L-function as

Lf⊗g(s, χ) =
∏
p

(1− αpβpχ(p)p−s)−1(1− αpβpχ(p)p−s)−1(1.2)

× (1− αpβpχ(p)p−s)−1(1− αpβpχ(p)p−s)−1,

where χ is a Dirichlet character modulo d ≥ 1. For Re(s) > (k + l)/2, it is
clear that

(1.3) Lf⊗g(s, χ) = L(2s− k − l + 2, χ2)Lf,g(s, χ),

where

Lf,g(s, χ) =
∞∑
n=1

anbnχ(n)n−s,

and L(s, χ) is the Dirichlet L-function attached to χ.
In Section 2, we consider the zero-free region of Lf⊗g(s, χ). When χ is

a non-primitive character modulo d and χ∗ is the primitive character which
induces χ, then Lf⊗g(s, χ) can be expressed as follows:

Lf⊗g(s, χ) = Lf⊗g(s, χ∗)
∏

p|d
(1− αpβpχ(p)p−s)(1− αpβpχ(p)p−s)(1.4)

× (1− αpβpχ(p)p−s)(1− αpβpχ(p)p−s).

Therefore, it is enough to consider the zero-free region of Rankin–Selberg
L-functions with primitive characters. In the classical argument for the zero-
free regions of Dirichlet L-functions, and also in Perelli’s proof for the case
f = g of Rankin–Selberg L-functions, positivity of some quantities plays an
essential role. Such positivity, however, is not valid for f 6= g. In this paper
we develop a new approach which is a variant of the classical argument
but without using the positivity, and we will obtain the following theorem.
Hereafter we write s = σ + it.

Theorem 1. Let f ∈ Sk(Γ ) and g ∈ Sl(Γ ) be normalized Hecke eigen-
forms. There exists a positive constant c = c(f, g) such that Lf⊗g(s, χ) 6= 0
in the region

σ >
k + l

2
− c

log(d(|t|+ 2))
,

where χ is a primitive Dirichlet character modulo d ≥ 1. However , there is
at most one exceptional zero (< (k + l)/2) which is real and simple in the
case where χ is a real non-principal character.

Consider the set S of functions Lf⊗g(s, χ) where χ runs through all real
primitive characters modulo d ≥ 2. Then there exists a positive constant c
such that in S there is at most one Lf⊗g(s, χ) which has a zero in the above
region, and this zero is unique, real and simple.
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The exceptional zero in Theorem 1 is called the Siegel zero. Concerning
the Siegel zero for the L-functions for GL(2) or GL(3), there is a work
of Hoffstein–Lockhart [7], with appendix by D. Goldfeld, J. Hoffstein and
D. Lieman. This article shows that, in many cases, Lf⊗f (s, χ) attached to a
Maass form f does not have the Siegel zero. For certain L-series for GL(3),
Hoffstein–Ramakrishnan [8] show the non-existence of the Siegel zero in
several cases. We cannot apply their result to Lf⊗g(s, χ), f 6= g, because it
is an L-series for GL(4). Though Lf⊗f (s, χ) is an L-series on GL(3), this
case needs Hypothesis 6.1 in Hoffstein–Ramakrishnan [8] for the proof of
the non-existence of the Siegel zero. Hence, investigating the Siegel zero for
Lf⊗g(s, χ) is still of interest. Theorem 2 is Siegel’s theorem for Lf⊗g(s, χ).
Siegel’s theorem for Lf⊗f (s, χ) in Perelli’s paper was proved by using a
result of Perelli–Puglisi [14]. But the proof in [14] is incorrect, as mentioned
in Carletti–Monti Bragadin–Perelli [1]. This mistake was also mentioned by
Golubeva–Fomenko [5], who suggested an alternative way of proving Siegel’s
theorem for Lf⊗f (s, χ), but their treatment seems to be a little rough.

The next theorem gives a zero-free region of Siegel’s type on the real axis
for Lf⊗g(s, χ). The basic idea of the proof is similar to Golubeva–Fomenko
[5]. We could get a sharp estimate of the twisted coefficient sum, which is
better than that used in [5], but we do not do it in this paper, because we are
able to obtain Siegel’s theorem for Lf⊗g(s, χ) without this sharp estimate.
Our proof includes the case of f = g, hence covers Perelli’s assertion.

Theorem 2 (An analogue of Siegel’s theorem). Let f and g be as in
Theorem 1 and χ a real primitive character modulo d ≥ 2. Then, for any
ε > 0, there exists a positive constant c(ε) = c(ε, f, g) such that Lf⊗g(s, χ) 6=
0 in the region

σ >
k + l

2
− c(ε)

dε
.

Professor A. Perelli informed us that now he has an idea, similar to the
method of proof in this paper, of proving an analogue of Siegel’s theorem
for Lf⊗f (s, χ).

In Section 3, taking account of Theorems 1 and 2, we will prove the fol-
lowing Theorem 3, which is an analogue of the Siegel–Walfisz prime number
theorem ∑

n≤x
n≡a (mod d)

Λ(n) =
x

kϕ(d)
+O(x exp(−c

√
log x)),

where Λ(n) is the von Mangoldt function. This is the main theorem in this
paper.

Theorem 3. Let f ∈ Sk(Γ ) and g ∈ Sl(Γ ) be normalized Hecke eigen-
forms and assume f 6= g. Denote by an and bn the nth Fourier coefficients
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of f and g respectively. Let a, d be positive integers with (a, d) = 1, and M
be a positive number. Then there exists a positive constant c = c(M) which
depends on M such that

∑

p≤x
p≡a (mod d)

apbp = O(x(k+l)/2 exp(−c
√

log x))

for d ≤ (log x)M .

The difference as compared with Perelli’s result [13] is that the main
term does not appear in the case of f 6= g. Perelli’s result implies that if
f = g then

∑

n≤x
n≡a (mod d)

a2
nΛ(n) =

xk

kϕ(d)
+O(xk exp(−c

√
log x)).

This difference is caused by the fact that Lf⊗f (s) has a simple pole at s = k,
while Lf⊗g(s), f 6= g, is an entire function.

Throughout this paper, c denotes a positive constant, not necessarily the
same at each occurrence.

The author would like to express her deep gratitude to Professor Yoshio
Tanigawa for his very important advice indicating how to construct an ar-
gument without using the positivity, and his kindness. She is also grateful
to Professor Kohji Matsumoto for valuable suggestions, discussions and en-
couragement, and to Professor A. Perelli for useful information and advice.
She expresses her thanks to Professor A. Ivić and Professor Hirotada Naito
for advice and comments, to Professor Tohru Uzawa and Professor Fumi-
hiro Sato for discussions and valuable opinions, and also to the referee for
valuable comments.

2. On the zeros of Rankin–Selberg L-functions. First, we recall
several known results on Lf⊗g(s, χ) which will be used later.

The Rankin–Selberg L-function is defined in (1.3). The functional equa-
tion of Lf⊗g(s, χ) was given by Li [9]. He considered the Rankin–Selberg
L-function attached to two cusp forms F1(τ) and F2(τ). Here we apply Li’s
result to

F1(τ) =
∞∑
n=1

ane
2πinτ , F2(τ) =

∞∑
n=1

bnχ(n)e2πinτ .

Then F1 is an element of Sk(Γ ), and F2 is a newform of type (l, χ2, d2).
Li’s work shows (see Theorem 2.2 of Li [9]) that the following functional
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equation holds for Rankin–Selberg L-functions. If we put

Φf⊗g(s, χ) =
(

2π
d

)−2s

Γ

(
s+

k − l
2

)

× Γ
(
s+

k + l

2
− 1
)
Lf⊗g

(
s+

k + l

2
− 1, χ

)
,

then we have

(2.1) Φf⊗g(s, χ) = CχΦf⊗g(1− s, χ)

where k ≥ l, Cχ is a constant which depends on χ and |Cχ| = 1. Without
loss of generality, we may assume that k ≥ l. Other important results are
that the function Lf⊗g(s+(k+ l)/2−1) is entire when f 6= g, while it has a
simple pole at s = 1 when f = g. Also, the function Lf⊗g(s+(k+l)/2−1, χ)
is entire for any f and g when χ is a primitive character modulo d ≥ 2.

The following facts can be easily verified by using the functional equation
(2.1) and the definition (1.3), where χ is a primitive character modulo d ≥ 1.

1. Lf⊗g(s, χ) 6= 0 for Re(s) > (k + l)/2.
2. Lf⊗g(s, χ) has a zero of order two at s = −n (n ∈ N ∪ {0}).
3. Lf⊗g(s, χ) has a simple zero at s = l−n−1 (n ∈ N∪{0}, 0 ≤ n ≤ l−2).

The zeros of Lf⊗g(s, χ) in Re(s) < (k + l)/2 − 1 are called the trivial
zeros, and those in (k+l)/2−1 ≤ Re(s) ≤ (k+l)/2 are called the non-trivial
zeros.

Next, Perelli’s general result [12] is also applicable to the case of Rankin–
Selberg L-functions. Manin–Pančǐskin [10] studied the functional equations
for the twisted Rankin–Selberg L-functions when the moduli of Dirichlet
characters are prime powers. However, the argument in 2.2 and 2.3 of their
paper is valid for any modulus d ≥ 1. Hence, 2.3(7) of their paper and the
integral expression of Epstein–Siegel zeta functions (see Siegel [15], p. 53)
show that Rankin–Selberg L-functions satisfy (A3) of Perelli [12]. Therefore,
all conditions of Perelli [12] are satisfied by Rankin–Selberg L-functions.
Theorem 1 of Perelli [12] and its corollary state the following facts. Let

NL(T ) = ]

{
% ∈ C

∣∣∣∣Lf⊗g
(
%+

k + l

2
− 1, χ

)
= 0, Re(%) ≥ 0, |Im(%)| ≤ T

}
.

Then

(2.2) NL(T ) =
2
π

{
2T log T − 2T + T log

d2

4π2

}
+O(log dT ),

where T ≥ 2. It is also known by Perelli [12] that

(2.3) NL(T +H)−NL(T )� (H + 1) log dT,

where H � T .
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Proof of Theorem 1. We prove the theorem in the case of f 6= g because
the proof for f = g was already completed in Perelli [13]. We first assume
d ≥ 2. Let

Ψf⊗g(σ + it, χ) = −3
L′f⊗g
Lf⊗g

(σ, χ0)− 4
L′f⊗g
Lf⊗g

(σ + it, χ)− L′f⊗g
Lf⊗g

(σ + 2it, χ2)

for σ > (k+ l)/2, where χ0 is the principal character modulo d. Considering
this type of auxiliary function is an orthodox method of studying zero-free
regions of L-functions. In fact, functions of this type were considered in the
study of zero-free regions for Dirichlet L-functions and also for Lf⊗f (s, χ).
In those cases, the real parts of the corresponding auxiliary functions are
non-negative, which is the key fact to the proof. However, in the present
case, since

Re(Ψf⊗g(σ + it, χ))

=
∑

(p,d)=1

∞∑
m=1

(αmp + αmp )(βmp + βmp )p−mσ log p · (3 + 4 cos θm,p + cos 2θm,p)

where cos θm,p = Re(χ(pm)p−mit), it seems impossible to prove that
Re(Ψf⊗g(σ + it, χ)) ≥ 0. For this reason, we cannot use the classical posi-
tivity argument in our case. The following method, indicated by Professor
Y. Tanigawa, is effective for our purpose. Using the relation between the
arithmetic and geometric means we have

(αmp + αmp )(βmp + βmp )p−mσ

≥ − 1
2{(αmp + αmp )2p−m(σ+(k−l)/2) + (βmp + βmp )2p−m(σ−(k−l)/2)},

hence

(2.4) Re(Ψf⊗g(σ + it, χ))

≥ −1
2

{
Re
(
Ψf⊗f

(
σ +

k − l
2

+ it, χ

))
+ Re

(
Ψg⊗g

(
σ +

l − k
2

+ it, χ

))}
.

First step. We consider the case when χ is a primitive complex character.
Then

(2.5) −Re
(
Ψf⊗f

(
σ+

k − l
2

+ it, χ

))
>

−3
σ − (k + l)/2

+O(log(d(|t|+2)))

in (k + l)/2 < σ ≤ (k + l)/2 + 1. This inequality can be derived by the
standard argument described in Perelli [13] and Section 14 of Davenport [2]
(cf. Lemma in the proof of Theorem 2 in Perelli [12]). The same type of
inequality can be obtained for Re(Ψg⊗g(σ − (l − k)/2 + it, χ)). Using (2.4),
we can show that, in (k + l)/2 < σ ≤ (k + l)/2 + 1,

(2.6) Re(Ψf⊗g(σ + it, χ)) >
−3

σ − (k + l)/2
+O(log(d(|t|+ 2))).
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Next, we show an upper bound of Re(Ψf⊗g(σ+it, χ)). We recall that if χ
is a primitive character, then Lf⊗g(s+(k+ l)/2−1, χ) is an entire function.
By the Lemma in the proof of Theorem 2 in Perelli [12] and the method of
Section 14 of Davenport [2], we get the following facts in (k + l)/2 < σ ≤
(k + l)/2 + 1:

Re
(
−L
′
f⊗g

Lf⊗g
(σ, χ0)

)
≤ c log d,(2.7)

Re
(
−L
′
f⊗g

Lf⊗g
(σ + it, χ)

)
≤ −

∑

|γ−t|<1

1
σ − β +O(log(d(|t|+ 2))),(2.8)

and

(2.9) Re
(
−L
′
f⊗g

Lf⊗g
(σ + 2it, χ2)

)
≤ c log(d(|t|+ 1)),

where % = β + iγ runs through non-trivial zeros of Lf⊗g(σ + it, χ). We fix
one such zero. We replace the terms −(σ − β)−1 on the right-hand side of
(2.8) by 0, for all zeros except this fixed %. Then from (2.7) and (2.9), we get

(2.10) Re(Ψf⊗g(σ + iγ, χ)) < − 4
σ − β +O(log(d(|γ|+ 2)))

for (k + l)/2 < σ ≤ (k + l)/2 + 1. Therefore, using (2.6), we get

(2.11) − 4
σ − β +O(log(d(|γ|+ 2))) > − 3

σ − (k + l)/2

for (k + l)/2 < σ ≤ (k + l)/2 + 1. Because this inequality is the same as
in Davenport [2], the rest of the proof in this case proceeds along the same
lines as in [2].

Second step. We consider the case when χ is a primitive real character.
Using (2.4), we get

−Re
(
Ψf⊗f

(
σ +

k − l
2

+ it, χ

))

>
−3

σ − (k + l)/2
− Re

(
1

σ + 2it− (k + l)/2

)
+O(log(d(|t|+ 2)))

in (k+ l)/2 < σ ≤ (k+ l)/2+1. This inequality is obtained by the argument
which shows (2.5). Similarly to (2.6) we get, in (k+ l)/2 < σ ≤ (k+ l)/2+1,

(2.12) Re(Ψf⊗g(σ + it, χ))

>
−3

σ − (k + l)/2
− Re

(
1

σ + 2it− (k + l)/2

)
+O(log(d(|t|+ 2))).
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Because (2.7)–(2.10) are also true in this case, we get, using (2.12),

− 4
σ − β +O(log(d(|γ|+ 2))) > − 3

σ − (k + l)/2
−Re

(
1

σ + 2iγ − (k + l)/2

)

for (k + l)/2 < σ ≤ (k + l)/2 + 1. We can get a zero-free region in the same
way as in the first case, except for the region close to the real axis.

We now consider the zero-free region close to the real axis. We again use
the relation between the arithmetic and geometric means to get

|(αmp + αmp )(βmp + βmp )χm(p)p−mσ|
≤ 1

2{(αmp + αmp )2p−m(σ+(k−l)/2) + (βmp + βmp )2p−m(σ+(l−k)/2)}.
Therefore

−L
′
f⊗g

Lf⊗g
(σ, χ) =

∑

(p,d)=1

∞∑
m=1

(αmp + αmp )(βmp + βmp )χm(p)p−mσ log p

≥ 1
2

{
L′f⊗f
Lf⊗f

(
σ +

k − l
2

)
+
L′g⊗g
Lg⊗g

(
σ +

l − k
2

)}
,

where σ > (k + l)/2. We recall that Lf⊗f (s) has a simple pole at s = k.
Then
L′f⊗f
Lf⊗f

(
σ+

k − l
2

)
>

−1
σ − (k + l)/2

+O(1) ((k + l)/2<σ≤ (k + l)/2+1).

Using this inequality and (2.8), we obtain the desired zero-free region for
Lf⊗g(s, χ) near the real axis, by the argument described in Section 14 of
Davenport [2].

Third step. We consider the real zero in the case when χ is a real character
modulo d ≥ 2. We prove that the stated zero-free region includes at most
one real zero of Lf⊗g(s, χ). This can be proved easily in the same way as
in Davenport [2]. We can show that the exceptional zero is unique for all
characters modulo d using the function F (s) which appears in the proof of
Theorem 2, and the argument is again similar to Davenport [2].

Fourth step. We consider the case d = 1, that is, the zero free-region for
Lf⊗g(s). In this case, we use the inequality (2.14) below, which corresponds
to (2.11) in the case of d ≥ 2. However we stress that (2.14) is not identical
to the one in Davenport [2], hence we need an alternative argument.

In a way similar to (2.12) we get

(2.13) Re(Ψf⊗g(σ + it))

> − 3
σ − (k + l)/2

− Re
(

4
σ + it− (k + l)/2

)
− Re

(
1

σ + 2it− (k + l)/2

)

+O(log(|t|+ 2))
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in (k + l)/2 < σ < (k + l)/2 + 1, where

Ψf⊗g(σ + it) = −3
L′f⊗g
Lf⊗g

(σ)− 4
L′f⊗g
Lf⊗g

(σ + it)− L′f⊗g
Lf⊗g

(σ + 2it).

Note that the existence of the poles at s = k of Lf⊗f (s) and s = l of Lg⊗g(s)
yields the second term on the right-hand side of (2.13). Using the Lemma
in the proof of Theorem 2 of Perelli [12], we get

(2.14) − 4
σ − β +O(log(|γ|+ 2))

> − 3
σ − (k + l)/2

− Re
(

4
σ + iγ − (k + l)/2

)
− Re

(
1

σ + 2iγ − (k + l)/2

)
.

For {s ∈ C | Im(s) ≥ 1}, we replace the denominators of the second and
third terms by 1. Then we obtain the desired zero-free region in a way similar
to that of Davenport [2].

We see that the required assertion is true for the non-trivial zeros which
are near the real axis, say |γ| < c0, since Lf⊗g((k+ l)/2) 6= 0. We can prove
the latter by applying the method of Ogg [11] to F (s) = Lf⊗f (s+ k − 1)×
L2
f⊗g(s+ (k + l)/2− 1)Lg⊗g(s+ l− 1) (cf. the proof of Theorem 4 of [11]).

Lastly we have to consider the non-trivial zero % = β + iγ, c0 ≤ |γ| < 1.
Let σ = (k + l)/2 + c1, c1 = c0/λ (λ > 1). Using (2.14), we get

− 4
σ − β + c2 > − 3

c1
− 4c1
c21 + c20

− c1
c21 + 4c20

> − 1
c1

(
3 +

4
λ2 + 1

+
1

4λ2 + 1

)
,

where log(|γ| + 2) < c2. We take λ which is large enough to satisfy 3 +
4/(λ2 + 1) + 1/(4λ2 + 1) < 4. Thus we obtain the zero-free region in this
case.

Siegel’s theorem gives the detailed information on the zero-free region of
Dirichlet’s L-functions on the real axis. We want to show its analogue for
Lf⊗g(s, χ). As mentioned in the introduction, Siegel’s theorem for Lf⊗f (s, χ)
has not been proved completely. Therefore we do not exclude the case
f = g in the following proof. We need the estimates Lf⊗g(s, χ) � dε

and L′f⊗g(s, χ) � dε for any ε > 0. We can get them by Theorem 2 of
Carletti–Monti Bragadin–Perelli [1] or by Phragmén–Lindelöf’s theorem.

Golubeva–Fomenko [5] stated a certain estimate of
∑
n≤x a

2
nχ(n),

without detailed proof; they deduced from it the necessary estimates for
Lf⊗f (s, χ) and L′f⊗f (s, χ). We can get an estimate of

∑
n≤x anbnχ(n), bet-

ter than that of Golubeva–Fomenko [5] in the case of f = g, by using Hafner
[6]. We will discuss this matter elsewhere, because such sharp estimates are
not necessary for our present aim.

The base of the proof of Theorem 2 is Davenport [2]. There is a simple
proof of Siegel’s theorem for Dirichlet L-functions (see Goldfeld [4]), but
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we cannot apply that argument to Lf⊗g(s, χ), because it has no pole at
s = (k + l)/2 in this case.

Proof of Theorem 2. Let χi (i = 1, 2) be primitive real characters modulo
di ≥ 2 such that χ1χ2 is a non-principal real character modulo d1d2. We
consider the case of f 6= g. Let F (s) be the meromorphic function defined by

F (s) = Lf⊗f (s+ k − 1)Lf⊗f (s+ k − 1, χ1)Lf⊗f (s+ k − 1, χ2)

× Lf⊗f (s+ k − 1, χ1χ2)L2
f⊗g

(
s+

k + l

2
− 1
)

× L2
f⊗g

(
s+

k + l

2
− 1, χ1

)
L2
f⊗g

(
s+

k + l

2
− 1, χ2

)

× L2
f⊗g

(
s+

k + l

2
− 1, χ1χ2

)
Lg⊗g(s+ l − 1)Lg⊗g(s+ l − 1, χ1)

× Lg⊗g(s+ l − 1, χ2)Lg⊗g(s+ l − 1, χ1χ2),

for σ > 1. This definition is inspired by Ogg [11], who used the func-
tion Lf⊗f (s)L2

f⊗g(s)Lg⊗g(s) in the proof that Lf⊗g(1) 6= 0 (Thorem 4
of Ogg [11]). The function F (s) has a pole of order two at s = 1. Let
λ1 = (F (s)(s − 1)2)′|s=1 and λ2 = (F (s)(s − 1)2)|s=1. We investigate
F (s) − λ2(s − 1)−2 − λ1(s − 1)−1 as in Davenport [2]. In this procedure
we use the estimates of Lf⊗g(s, χ) and L′f⊗g(s, χ) mentioned before this
proof. We also use Deligne’s estimate [3] repeatedly. We get

F (s) ≥ 1
2
− c(|λ2|+ |λ1|)

(σ − 1)2 (d1d2)c(1−σ)+ε

near s = 1. We prove Lf⊗g((k + l)/2, χ2) > 0 by applying the method of
Ogg [11] (cf. the proof of Theorem 4 of [11]) to F (s) in this case. Then we
get λi � Lf⊗g((k + l)/2, χ2)(d1d2)ε, i = 1, 2, for any ε > 0. Here, for the
estimate of λ1, it is essential that the function F (s) includes the square of
Lf⊗g(s+ (k + l)/2− 1, χ2) as a factor. Hence we obtain

F (s) ≥ 1
2
− cLf⊗g((k + l)/2, χ2)

(σ − 1)2 (d1d2)c(1−σ)+ε.

The proof in the case of f 6= g is now finished.
The proof in the case of f = g is easier, by applying the same method to

F (s) = Lf⊗f (s+ k − 1)Lf⊗f (s+ k − 1, χ1)

× Lf⊗f (s+ k − 1, χ2)Lf⊗f (s+ k − 1, χ1χ2).

This function was already introduced by Golubeva–Fomenko [5].

3. The proof of Theorem 3. The method of proof is similar to the
argument of Davenport [2]. We use the results of Section 2. We investigate
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the behaviour of

ψf,g(x; d, a) =
∑

n≤x
n≡a (mod d)

Λ(n, f ⊗ g), (a, d) = 1 (x ≥ 2),

where

Λ(y, f ⊗ g) =
{

(αmp + αmp )(βmp + βmp ) log p, y = pm, m ∈ N,
0, y ∈ R, y 6= pm, m ∈ N.

We consider

ψf⊗g(x, χ) =
∑

n≤x
Λ(n, f ⊗ g)χ(n),

where χ is a Dirichlet character modulo d. Then we get

ψf,g(x; d, a) =
1

ϕ(d)

∑
χ

χ(a)ψf⊗g(x, χ),

where ϕ is the Euler function and the summation runs over all χ modulo d.
Hence, we have to investigate the behaviour of ψf⊗g(x, χ). From the Euler
product of Lf⊗g(s, χ) we get

−L
′
f⊗g

Lf⊗g
(s, χ) =

∞∑
n=1

Λ(n, f ⊗ g)χ(n)n−s (σ > (k + l)/2).

Hence, defining χ(x) = 0 when x 6∈ N, we find

ψ0,f⊗g(x, χ) = ψf⊗g(x, χ)− 1
2Λ(x, f ⊗ g)χ(x),

where

ψ0,f⊗g(x, χ) =
1

2πi

h+i∞\
h−i∞

(
−L
′
f⊗g

Lf⊗g
(s, χ)

)
xs

s
ds (h > (k + l)/2).

Temporarily we assume that χ is a primitive character. Let T > 0 and
h = (k + l)/2 + 1/log x. We argue analogously to Sections 17 and 19 of
Davenport [2], using (2.3), the Lemma in the proof of Theorem 2 in Perelli
[12] and Theorem 1. We get

ψf⊗g(x, χ) = −
∑′

|γ|<T

x%

%
− xβ1

β1
(3.1)

+O

(
x(k+l)/2−3/4 log x+

x(k+l)/2

T
(log xd)2

)
,

where e ≤ T ≤ x, β1 is Siegel’s zero of Lf⊗g(s, χ) and the dash means that
we exclude two non-trivial zeros β1 and k+ l− 1− β1 from the summation.
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We now consider the case where χ is a non-primitive character. If the
primitive character χ∗ induces χ, then

|ψf⊗g(x, χ∗)− ψf⊗g(x, χ)| =
∣∣∣
∑

n≤x
(n,d)>1

Λ(n, f ⊗ g)χ∗(n)
∣∣∣� x(k+l)/2

T
(log xd)2

by using Deligne’s estimate [3]. Hence, the formula (3.1) is still valid.
Applying the same argument to ψf⊗g(x) =

∑
n≤x Λ(n, f ⊗ g), we get

ψf⊗g(x) = O(x(k+l)/2T−1(log x)2 + x(k+l)/2 exp(−c log x/log T )(log T )2).

This estimate yields the estimate of ψf⊗g(x, χ0), where χ0 is the principal
character. Hence, under the condition d ≤ (log x)M , we obtain

ψf,g(x; d, a) = O(x(k+l)/2 exp(−c
√

log x))

by choosing T = exp(c
√

log x) and using Theorems 1 and 2. Theorem 3 now
follows immediately.
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