ACTA ARITHMETICA
XCIL3 (2000)

The number of powers of 2 in a representation of
large even integers by sums of such powers and
of two primes

by

HoNGZE L1 (Jinan)

1. Main results. The Goldbach conjecture is that every integer not less
than 6 is a sum of two odd primes. The conjecture still remains open. Let
E(x) denote the number of positive even integers not exceeding z which
cannot be written as a sum of two prime numbers. In 1975 Montgomery and
Vaughan [9] proved that

E(z) < z'?
for some small computable constant § > 0. In [4] the author proved that
E(r) < 29921 and recently [5] he improved that to E(z) < 20914,

In 1951 and 1953, Linnik [6, 7] established the following “almost Gold-
bach” result.

Every large positive even integer N is a sum of two primes p;,ps and a
bounded number of powers of 2, i.e.

(1.1) N =pi+py+2" + ...+ 2%,

Let r/(N) denote the number of representations of N in the form (1.1).
In [8] Liu, Liu and Wang proved that for any k& > 54000, there exists Ny > 0
depending on k only such that if N > Ni is an even integer then

(1.2) i/ (N) > N(log N)k2.
In this paper we prove the following result.

THEOREM 1. For any integer k > 25000, there exists Ny > 0 depending
on k only such that if N > Ny is an even integer then

i (N) > N(log N)F2.

2000 Mathematics Subject Classification: 11P32, 11P55.
Project supported by The National Natural Science Foundation of China.

[229]



230 H. Z. Li

Let r}.(n) denote the number of representations of an odd integer n in
the form
(1.3) n=p+2" +.. .+ 2",
The second purpose of this paper is to establish the following result.

THEOREM 2. For any € > 0, there exists a constant ko depending on €
only such that if k > kg and N > Ny then

> (rh(n) = 2(logy N)¥(log N)™1)? < £2N(logy N)**(log N) ™.
2{n<N

In particular, for e = 0.9893, one can take kg = 12500.

In what follows, £ always stands for log PT, and L(s,x) denotes the

Dirichlet L-function. § denotes a positive constant which is arbitrarily small
but not necessarily the same at each occurrence.

2. Some lemmas. Let N be a large integer, and set
(21)  P:=N’ T:=P3logN)®, @Q:=P 'N(ogN)3,
where 6 is an absolute constant. Let x (mod g), xo (mod ¢) be a character
and a principal character mod ¢ respectively.

LEMMA 1. Let x be a non-principal character mod q. Then for any e > 0
there exists a 6 = 6(¢) > 0 such that

—§R£/(8 ) < — E %L + 3 +e|H
LX) = : 5—0 16" °
[143it—p| <8

uniformly for

log H

1+ <oc<L1+

1
HlogH —
providing that q is sufficiently large, where H = log q(|t|+2) and s = o +it.

This is Lemma 2.4 of [3].

For a real number o, set o* = aL~! and let
0 =1—=X+il, j=12...,
denote the non-trivial zeros of L(s,x) with |y;| < TL, where \; are in

increasing order.

LEMMA 2. Let N be sufficiently large. Then no function L(s,x) with x
primitive mod q < P, except for a possible exceptional one only, has a zero
in the region
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If the exceptional function, denoted by L(s,X), exists, then X must be a real
primitive character mod q, ¢ < P, and L(s,X) has a real simple zero 5; no
other function L(s,x) with x primitive mod ¢ < P has a zero in the region
0.517
o>1-—, [<T.

Proof If q1,q920 < P, ¢ # g2, consider the zeros of L(s,x, ) and
L(s, xq,) for non-principal characters x4, and xg,. If 01 is a zero of L(s, x4, )
and o2 is a zero of L(s,Xq,), then as in Lemma 3.7 of [3] and setting
n=aVN/L, 0 =n+1, note that T = P>?(log N)¢, log P>T = (5/4 + 6)L.
Then for any positive constant a we have

G(0) —G<—);1> —G<—Aa2> —|—a<2i +z—:> >0

T 1
G(z) = S exp {—43:2 + zx} dx.
0
Take a = 1.22; then A1 < 0.239 implies Ao > 0.63. Take a = 1.26; then
A1 <0.411, implies Ay > 0.411. If ¢; = ¢2, by Lemma 3.7 and Theorem 1.2
of [3] the lemma follows.

where

LEMMA 3. Suppose x is a real non-principal character mod q < P, and
01 is real. Then Ay > 0.8.

Proof. By Lemma 3.2 of [3] the assertion follows.
By Lemma 4 of [5] we have
LEMMA 4. Let x be a non-principal character mod q < P, and 01, 02,
03 be the zeros of L(s,x). Then
A2 > 0.575, A3 > 0.618.

LEMMA 5. Let x # xo be a character mod q < P. Let ng,ni,ns denote
the numbers of zeros of L(s,x) in the rectangles

Ro: 1-L71'<0<1-0239L7" |t—to| <5.8L71,

Ri: 1-5L71'<0<1-0239L7" |t —t] <23.4L71,
Ry:1-XAL71'<0<1-0239L7", |t —to] <23.4L71,
respectively, where tg, t1, ta are real numbers satisfying |t;| < T, and 5 <

Ay <loglog L. Then
no <3, mni1 <10, ng <0.2292(\; +42.9).

Proof. It is well known that
C/ L/

H(0) - R (5.0 20

where o = Rs.
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We consider the rectangle Ry. Let s = o + ity, o0 = 1+ 8.4L7!, and
denote by o = 1 — A\* + i~y the zero of L(s,x) in Ry. Hence 0.239 < \ <
1, |y —to] <5.8L71. So we have

1 8.4+ \ 9.4
Rl 0 T(BA+NZA ((y—to)L)? S Loy
By Lemma 1,
—%g(s,x) <- Y R 1 0.18751L.
L  hitodl<s ° 0

If [1 + ity — o] > & then R = O(1). So

L, 94710
—R— < L|0.18751 — ——— |.
7 (X)) < < 9.42 + 5.82>
Since —%(0‘) < ﬁ + A, where A is an absolute constant, we have
9. 4710 1

Now as above, let 0 =1+ 24£*1. Then ny < 10 and ne < 0.2292(A4 +
42.9).

3. The zero density estimate of the Dirichlet L-function. In this
section we use the notations of Section 3 of [8]. For 1 < j < 4, let h; denote
positive constants satisfying hy < he < hg, ho+hs+3/8 < hs,2hs+3/8 < hy.

Let

(3.1) zj = (P, a:=1-A"' A<loglogL,
(32) DANT):=D:={s=0c+it:a<oc<1-0.239L"" |t| <T}.
Let N(x,a,T) denote the number of zeros of L(s, x) in D, and

(3.3) (o, P,T) Z Z (x,a, T),

q<P x (modq)

where Z; (mod q) indicates that the sum is over primitive characters mod gq.
For positive 61, d3, let

(3.4) k(s) = s (e (1700 ogz)s _ o=(og21)8) 5, (Jog 23)
_ (ef(logzg)s _ 67(1+63)(10gz3)s)51(10g Zl)}
For a zero g9 € D, let

(3.5) Z |k(o(x) + 009 — 20)|,

o(x)
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where the sum is over the zeros of L(s, x) in D. If 2hy + 3/8 < (1 — 61)hq,
then as in (3.17) of [8] we have

(3.6) N*(Oé,P, T)
< (14 0) max,, M(00)
- 2(1 — Oé)(hg — h1)61(53h1h3h4(10g P2T)

(i) If5 < XA <loglog L, let A =23.4L1. Then as in [8], by Lemma 5 we
have

M (o) < 0.2292(\ + 42.9)(log P*T)?(1/2)
x{(61h1(203 + 63)ha — d3h3(261 — 67)h3) + (7/23.4)*(61h1 + d3h3)}.

Choose hl = 058, hz = 0669, h3 = 108, h4 = 00353, 51h1 = 53h3 =
w/23.4. By (3.6) we have

(3.7) N*(a, P,T) < 268.6(P>T)%16(1=)
(ii) If 1 < XA <5, then as in [8], by Lemma 5 (n; < 10) we have
M(00) < (10/2)(log P*T)?
x{(61h1 (263 + 63)h3 — d3h3(261 — 61)h3) + (m/23.4)%(01hy + d3h3)}.

Choose h1 = 082, hg = 1179, h3 = 1.71, h4 = 0155, 51h1 = (53h3 = 71'/234
By (3.6) we have

- (P2T)2h3(1fa)_

(3.8) N*(a, P,T) < (104.1/)\)(P?T)342(—),
iii) If 0.618 < X < 1, for a = 6.3 we have
1 1 2(a+1)
1 _ 0.1876
<a a+1 (a+1)2+5.82+ )
a+1 1 a+0.618 1
< 0.014621.
Xmax{ 582 Tax1 ssE T a—1—0.618} = 00146

As in [8], by Lemma 5 we have
M(00) < {1.5(61h1 (283 + 65)h3 — d3h3(261 — 07)h7)
+2-0.014621 - (01hy + d3h3)}(log P2T)3.
Choose h; = 1.0065, hy = 1.599, hy = 2.25, hy = 0.2759, §; = 0.079,
d3 = 0.094. By (3.6) we have
(3.9) N*(a, P,T) < (14.3/\)(P?T)*°(1=),

(iv) If 0.575 < A < 0.618, by Lemma 4 there are at most two zeros
satisfying o =1 — 3/L —iy/L, § < 0.618. As in (v) of [8], we have

(310)  N'(a,P.T) < (1+0)M

P2T 2hs3(1—a)
- 2(1 — Oz)(hg — hl)h4 IOgPQT( )
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where
logzs j
—~ 1

2
M := max max — S ‘E e (e(lx)—a)z dzx,
xmodg 1<5<2 7
q<P logz; I=1

and o(l, x) is a zero of L(s, x) in D. We have

log z3
S e (@) =72 4o < (hg — hy) log PT,
log z1
1 log z3 2 2
5 ‘ Z e~ (ex)=a)z|” g0 < 9(hy — hy)log P2T.

logz; I=1

Choose hy = 0.9, hy = 1.4525, hy = 2.09, hy = 0.2624. By (3.10) we have
N*(a, P,T) < (8.21/\)(P2T)*1801-),
(v) If 0.411 < A < 0.575, by Lemma 4 there is at most one zero satisfying
o=1—-p/L—iy/L, f <0.575. As in (v) of [8], we have
(1+0)(hg — h1)?
(h2 — h1)hg
Choose hy = 1.01, hge = 1.4074, hs = 2.1, hy = 0.3174. By (3.11) we have
N*(a, P, T) < 9.42(P?*T)*2(1=),

(3.11) N*(a, P,T) < (P2T)2h3(1—a)'

In conclusion we have

LEMMA 6. If N*(a, P,T) and o =1 — XL are defined by (3.3), (3.1),
then
2, A <0.411,
9.42(P?T)*2(-2) 0.411 < X < 0.575,
14.28( P2T)4180=2) = 0.575 < A < 0.618,
23.14(P?T)*50-2) 0618 < A < 1,
104.1(P?T)3420-2) 1 < XA < 5,
268.6(P2T)>160-) 5 < X\ <loglog L.

N*(a, P,T) <

4. The proof of the theorems. By Dirichlet’s lemma on rational
approximations, each a € [Q™!,1 + Q'] may be written in the form

(4.1) a=alqg+Ar  MN<(@Q)

for some positive integers a, ¢ with 1 < a < ¢,(a,q) = 1 and ¢ < Q. We
denote by I(a, q) the set of « satisfying (4.1), and put

q

B= U Il E=Q1+Q7"-Ew.
q<P a=1
(a,q)=1
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When g < P we call I(a, q) a major arc. By (2.1), all major arcs are mutually
disjoint. Let e(a) = exp(i27a) and S(a) = 3_ -y e(pa).
Let o(n) denote the singular series in the Goldbach problem, i.e.

o) :=[[a+@-DH][[0-(-D?)>1
pln p'fn
for even n. Let
J(n):= Z (lognilogng) ™.

1<n1 , N2 SN
n]y—na2=n

For 0 < 6 < 1/30, define

268.6(1 — (64 0)0) 5 (84 +6)0
@2 JO) = T"Fss 100 (‘ 4+0)0 )
104.1(1 — (6 + 6)6)
1= (231 +0)0

Ao (i) e )

23.14(1 — (6 + 0)6)

1—(28.5+0)0
0.618(1 — (28.5 + 6)6) 1—(28.5+6)0
- {e"p (‘ (4+0)8 > TP (‘ (4+0)8 >}
14.28(1 — (6 4 6)0)
1— (26.9 + 5)0
0.575(1 — (26.9 + 6)6) 0.618(1 — (26.9 + 6)6)
. {eXp (‘ (4+0)0 ) — e (‘ (4+0)0 >}
9.42(1 — (6 + 6)0)
1—(2746)0
0.411(1 — (27 + 0)0) 0.575(1 — (27 4 6)0)
- {e"p (‘ (4+06)0 ) —ew (‘ (4+06)0 >}
0.239(1 — (6 + 6)6) 0.411(1 — (6 + 6)6)
“{‘”{p (‘ (1+0)0 ) B (‘ (1+0)0 )}
and
(43) F0) 5.0947(1 + 6) 10)+ 5.09472(1 + 6) 200).

~VB{1— (6+0)6) 4V6{1 — (6+6)6}2
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THEOREM 3. Let n with |n| < N? be a non-zero integer, and P, Q satisfy
(2.1). If 6 < 1/30, then for even n we have

S |S(e)?e(na) da = o(n)J(n) + R,
Eq

where
|R| < [n|N(¢(|n])(log N)?)THE(9) + O(Fe((n,7))/6* (7))},
with the O term occurring only when there exists 5 in Lemma 2.

The proof of Theorem 3 is the same as in [8], but we use our Lemmas
1-4, Lemma 6 and the fact that [ -5(1+1/(p —1)%) < 1.132 (see page 6
of [1]) so we can replace 5.205 by 5.094.

For the proof of Theorems 1 and 2, as in Lemma 20 in Section 7 of [8],
we define

1
= = 2 log —————
0 :=06(n) 1Og277csc (m/8)log T )
1 , 1
+ Tog2 (1 — nesc?(w/8)) log -

1 2k
- log £/ 4 2.32
ECSC2(7T/8)> og £ +2.3270

)

H(k) := 9£nEiEL {1.7811 <1

1+10gE}

where L = log, N.

Choose # = 1/98 and n = 1/7758, so ©(n) < . When k > 12500, choose
E = 460 one has H(k) < 0.03989, for cg < 2.1967,¢co9 < 17.2435 one has
co(1 —n)?*=2 < 0.6873, (cs + 6)F(0) < 0.26202 and (cg + 6)F(0) + H (k) +
co(1 —n)?#~2 < 0.9893. As in Section 7 of [8], Theorems 1 and 2 can be
proved in the same way as Theorems 1 and 2 in [8].
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