# An inverse theorem $\bmod p$ 

## by

Yahya Ould Hamidoune (Paris) and Øystein J. Rødseth (Bergen)

1. Introduction. Let $p$ be a prime number. Let $A$ and $B$ be two nonempty subsets of $\mathbb{Z} / p \mathbb{Z}$. We write $|A|$ for the number of elements in the set $A$. The sumset $A+B$ is the set of all sums $a+b$ where $a \in A$ and $b \in B$.

If there exist elements $a, d \in \mathbb{Z} / p \mathbb{Z}$ such that

$$
A=\{a+i d|i=0,1, \ldots,|A|-1\},
$$

then $A$ is an arithmetic progression with difference $d$ (or a $d$-progression). If $A$ is a $d$-progression with one term removed, then $A$ is an almost-progression with difference $d$ (or an almost d-progression). If $A$ is the union of two $d$-progressions, then $A$ is a double-progression with difference $d$ (or a double d-progression). Note that an arithmetic progression is also an almostprogression, and that an almost-progression is also a double-progression.

A basic result on sumsets $\bmod p$ is the following well known theorem.
Theorem 1 (Cauchy-Davenport). $|A+B| \geq \min (p,|A|+|B|-1)$.
This theorem was proved by Cauchy [1] in 1813 and rediscovered by Davenport [3], [4]. Both proofs were transformation proofs. Cauchy used a transform which is essentially the transform called the "Dyson $e$-transform" by Mann [7, p. 5] and the " $e$-transform" by Nathanson [8, p. 42]. Davenport used a quite different transform.

The Cauchy-Davenport theorem is an example of a direct addition theorem $\bmod p$. The corresponding inverse problem is to describe the structure of those sets $A, B$ for which the cardinality of the sumset $A+B$ is small. The first nontrivial inverse theorem mod $p$ was found by Vosper [9]. The essential part of Vosper's theorem is as follows.

Theorem 2 (Vosper). Suppose that $|A|,|B| \geq 2$, and that

$$
|A+B|=|A|+|B|-1 \leq p-2
$$

Then $A$ and $B$ are arithmetic progressions with the same difference.
2000 Mathematics Subject Classification: 11A07, 11B13.

Vosper first used the Davenport transform in the proof of this result. Later he presented in [10] a simpler proof using the $e$-transform. Another transform was used by Chowla, Mann, and Straus in [2], where they also gave a nice application of Vosper's theorem to diagonal forms over $\mathbb{Z} / p \mathbb{Z}$ (cf. [7, Chap. 2], [8, p. 57]).

In this paper we use, among other things, the Davenport transform to give an elementary proof of the following theorem, which goes one step beyond the theorems of Cauchy-Davenport and Vosper.

Theorem 3. Suppose that $|A|,|B| \geq 3$, and that

$$
\begin{equation*}
7 \leq|A+B|=|A|+|B| \leq p-4 \tag{1}
\end{equation*}
$$

Then $A$ and $B$ are almost-progressions with the same difference.
This can again be seen to imply the following: Suppose that $|A|,|B| \geq 3$, and that (1) holds. Then one of $A$ and $B$ is a $d$-progression while the other is an almost $d$-progression, or that $A=\{a, a+2 d, a+3 d, \ldots, a+|A| d\}$ and $B=\{b, b+2 d, b+3 d, \ldots, b+|B| d\}$ for some $a, b, d \in \mathbb{Z} / p \mathbb{Z}$.

Using exponential sums and analytic methods, Freiman [5], [6] proved a beautiful inverse theorem for sumsets of the special form $A+A$ (cf. [8, Theorem 2.11]).

Theorem 4 (Freiman). Let $r$ be an integer, $0 \leq r \leq \frac{2}{5}|A|-2$. If

$$
|A+A|=2|A|-1+r \quad \text { and } \quad|A| \leq p / 35
$$

then $A$ is contained in an arithmetic progression with $|A|+r$ elements.
For certain applications it is of interest to relax the condition $|A| \leq p / 35$. If $r=0$, Theorem 2 shows that this condition can be replaced by $|A| \leq$ $\frac{1}{2}(p-1)$. If $r=1$, Theorem 3 shows that the condition can be replaced by $|A| \leq \frac{1}{2}(p-5)$.
2. Preliminaries. Throughout this paper $A$ and $B$ will be nonempty sets of residue classes modulo $p$. The sumset $A+B$ was defined in Section 1 . We put $2 B=B+B$. We write $A-B$ for the set of differences $a-b, a \in A$, $b \in B$, and we also put $x \pm B=\{x\} \pm B$ for a residue class $x$. We write $A \backslash B$ for the complement of $B$ in $A$. If $r$ is an integer, we shall on some occasions feel free to write $r$ for the residue class modulo $p$ represented by $r$.

For residue classes $x \neq 0$ and $y$, the set $x * A+y=\{x a+y \mid a \in A\}$ is an affine image of $A$. Most of the results below on sumsets $A+B$ are such that if there are residue classes $x \neq 0, y, z$ such that a result holds for the affine images $x * A+y$ and $x * B+z$, then the result is also true for the sets $A, B$. This is the reason why it is on many occasions sufficient to prove a result for some special choice of an affine image of $A$ or $B$.

We shall say that a nonempty set $Y \subseteq A$ is a $d$-component of $A$ if $Y$ is a maximal $d$-progression contained in $A$. Thus $Y \neq \emptyset$ is a $d$-component of $A$ if and only if the following two conditions hold:
(i) $Y$ is a $d$-progression,
(ii) if $C$ is a $d$-progression such that $Y \subseteq C \subseteq A$, then $Y=C$.

Clearly, a set $A$ has a unique partition into $d$-components. By considering the residue classes mod $p$ as points on a circle, one readily makes the following observations:
(I) $|\{0,1\}+A| \leq|A|+1$ if and only if $A$ is a 1-progression.
(II) $|\{0,1\}+A| \leq|A|+2$ if and only if $A$ is a double 1-progression.
(III) If $|A| \leq p-3$, then $|\{0,1,2\}+A| \leq|A|+2$ if and only if $A$ is a 1-progression.
(IV) If $|A| \leq p-4$, then $|\{0,1,2\}+A| \leq|A|+3$ if and only if $A$ is an almost 1-progression.
(V) If $|A| \leq p-1$, then $|\{0,1\}+A|=|A|+k$, where $k$ is the number of 1-components of $A$.

Lemma 1. Let $|B| \geq 3$, and suppose that

$$
\begin{equation*}
|A+B| \leq|A|+|B| \leq p-1 \tag{2}
\end{equation*}
$$

Also assume that $B$ is a d-progression. Then $A$ is an almost $d$-progression.
Proof. It is sufficient to prove the result for $d=1$, and we can assume that $B=\{0,1, \ldots,|B|-1\}$. Then $B=\{0,1,2\}+B^{\prime}$, where $B^{\prime}=$ $\{0,1, \ldots,|B|-3\}$. By (2) and Theorem 1, we have
$p-1 \geq|A|+|B| \geq|A+B|=\left|A+\{0,1,2\}+B^{\prime}\right| \geq|A+\{0,1,2\}|+\left|B^{\prime}\right|-1$, and since $\left|B^{\prime}\right|=|B|-2$, we have $|A+\{0,1,2\}| \leq|A|+3$. By (2), we also have $|A| \leq p-4$. Hence, by observation (IV), $A$ is an almost 1-progression.

Lemma 2. Let $|B| \geq 2$, and suppose that

$$
\begin{equation*}
|A+B| \leq|A|+|B| \leq p-1 \tag{3}
\end{equation*}
$$

Also assume that $B$ is a d-progression. Then $A$ is a double $d$-progression.
Proof. If $|B| \geq 3$, this is clear by Lemma 1. If $|B|=2$, we can assume that $B=\{0,1\}$. Then, by (3), we have $|A+\{0,1\}| \leq|A|+2$, and $A$ is a double 1-progression by observation (II).

Lemma 3. Suppose that $A+B$ is a d-progression such that

$$
\begin{equation*}
|A+B| \leq|A|+|B| \leq p-3 . \tag{4}
\end{equation*}
$$

Then $A$ is an almost d-progression.

Proof. We prove the result for $d=1$. Using (4), observation (III), and Theorem 1, we get

$$
\begin{aligned}
p-1 & \geq|A|+|B|+2 \geq|A+B|+2 \geq|\{0,1,2\}+A+B| \\
& \geq|\{0,1,2\}+A|+|B|-1,
\end{aligned}
$$

so that $|\{0,1,2\}+A| \leq|A|+3$, and the result follows by observation (IV).
3. An inverse theorem. In this section we prove the following inverse theorem $\bmod p$.

Theorem 5. Suppose that $|B| \geq 2$, and that

$$
\begin{equation*}
|A+B|=|A|+|B| \leq p-4 . \tag{5}
\end{equation*}
$$

Then $A$ is a double-progression.
Proof. Suppose that there exist pairs $(A, B)$ such that $|B| \geq 2$, (5) is satisfied, and $A$ is not a double-progression. Choose such a pair where $|B|$ is minimal. It is no restriction to assume $0 \in B$. Then $A+B \subseteq A+2 B$. Since $A+B \neq \mathbb{Z} / p \mathbb{Z}$ and $B$ generates $\mathbb{Z} / p \mathbb{Z}$, we have $A+B \neq A+2 B$. Putting

$$
X=(A+2 B) \backslash(A+B),
$$

we thus have $X \neq \emptyset$.
For $x \in X$, let

$$
B_{x}^{*}=\{b \in B \mid x-b \in A+B\}, \quad B_{x}=B \backslash B_{x}^{*} .
$$

Then $0 \notin B_{x}^{*} \neq \emptyset$, and $0 \in B_{x} \neq B$. (Here $B_{x}$ is the transform of $B$ employed by Davenport in his proof of Theorem 1.)

Moreover, it is easily seen that

$$
\left(A+B_{x}\right) \cup\left(x-B_{x}^{*}\right) \subseteq A+B, \quad\left(A+B_{x}\right) \cap\left(x-B_{x}^{*}\right)=\emptyset,
$$

so that

$$
|A+B| \geq\left|A+B_{x}\right|+\left|x-B_{x}^{*}\right|=\left|A+B_{x}\right|+|B|-\left|B_{x}\right| .
$$

Thus we have

$$
p-4 \geq|A|+|B|=|A+B| \geq\left|A+B_{x}\right|+|B|-\left|B_{x}\right|,
$$

so that

$$
\left|A+B_{x}\right| \leq|A|+\left|B_{x}\right| \leq p-5 .
$$

By the minimality of $|B|$, we thus have $B_{x}=\{0\}$ for any $x \in X$. Hence

$$
B_{x}^{*}=B^{\prime} \quad(x \in X),
$$

where $B^{\prime}=B \backslash\{0\}$.
Thus $X-B^{\prime} \subseteq A+B$, and we see that

$$
A \cup\left(X-B^{\prime}\right) \subseteq A+B \quad \text { and } \quad A \cap\left(X-B^{\prime}\right)=\emptyset .
$$

Hence, using (5) and Theorem 1, we get

$$
|A|+|B|=|A+B| \geq|A|+\left|X-B^{\prime}\right| \geq|A|+|X|+|B|-2
$$

that is, $|X| \leq 2$.
Now we have

$$
2 \geq|X|=|A+2 B|-|A+B| \geq|A+2 B|-(p-4)
$$

so that $|A+2 B| \leq p-2$. By Lemma $2, B$ is not an arithmetic progression. Since $|A+B| \geq 2$, Theorems 1 and 2 thus give

$$
|A+2 B| \geq|A+B|+|B|
$$

so that

$$
2 \geq|X|=|A+2 B|-|A+B| \geq|B|
$$

which contradicts the fact that $B$ is not an arithmetic progression.

## 4. More lemmas

Lemma 4. Suppose that $|A| \geq 3$, and that

$$
\begin{equation*}
|A+B|=|A|+|B| \leq p-4 \tag{6}
\end{equation*}
$$

Also assume that $A$ is a double 1-progression. Then one of the following holds.
(i) $B$ is a double 1-progression.
(ii) $A$ and $B$ are almost-progressions with the same difference.
(iii) $|A|=3, B$ has three 1-components $B_{1}, B_{2}, B_{3}$, and there exists an $a \in A$ such that $A+B$ has the three 1 -components $a+\{0,1\}+B_{i}, i=1,2,3$.

Proof. If $A$ is a $d$-progression, then, by Lemma $1, B$ is an almost $d$ progression. We therefore assume that $A$ is not a $d$-progression for any $d$. In particular, $A$ has two 1 -components $A_{1}, A_{2},\left|A_{1}\right| \leq\left|A_{2}\right|$.

We also assume that (i) is false, so that $B$ is not a double 1-progression. Thus $B$ has at least three 1-components, and by observation (V),

$$
\begin{equation*}
|\{0,1\}+B| \geq|B|+3 \tag{7}
\end{equation*}
$$

We look separately at the cases $\left|A_{1}\right| \geq 2$ and $\left|A_{1}\right|=1$.
Case 1: $\left|A_{1}\right| \geq 2$. Then $A=\{0,1\}+A^{\prime}$, where $\left|A^{\prime}\right|=|A|-2 \geq 2$. By (6), Theorem 1, and (7), we have

$$
\begin{aligned}
p-4 & \geq|A|+|B|=|A+B|=\left|A^{\prime}+\{0,1\}+B\right| \\
& \geq\left|A^{\prime}\right|+|\{0,1\}+B|-1 \geq|A|+|B|
\end{aligned}
$$

so that

$$
\left|A^{\prime}+(\{0,1\}+B)\right|=\left|A^{\prime}\right|+|\{0,1\}+B|-1 \leq p-4
$$

Hence, by Theorem 2 , both $A^{\prime}$ and $\{0,1\}+B$ are $d$-progressions for some $d$. Thus $A+B=A^{\prime}+\{0,1\}+B$ is a $d$-progression, and, by Lemma 3, (ii) holds.

Case 2: $\left|A_{1}\right|=1$. Then there is an $a \in A$ such that $A_{2}=a+$ $\{0,1, \ldots,|A|-2\}$. Thus $A_{2}=\{0,1\}+A_{2}^{\prime}$, where $A_{2}^{\prime}=a+\{0,1, \ldots,|A|-3\}$ and $\left|A_{2}^{\prime}\right|=|A|-2$.

By (6), Theorem 1, and (7), we have

$$
\begin{aligned}
p-4 & \geq|A|+|B|=|A+B| \geq\left|A_{2}+B\right|=\left|A_{2}^{\prime}+\{0,1\}+B\right| \\
& \geq\left|A_{2}^{\prime}\right|+|\{0,1\}+B|-1 \geq|A|-2+|B|+3-1=|A|+|B| .
\end{aligned}
$$

We see that $A+B=A_{2}+B$. We also have $|\{0,1\}+B|=|B|+3$, so that, by observation (V), $B$ has three 1-components $B_{1}, B_{2}, B_{3}$. Moreover,

$$
p-4 \geq\left|A_{2}^{\prime}+\{0,1\}+B\right|=\left|A_{2}^{\prime}\right|+|\{0,1\}+B|-1 .
$$

If $|A| \geq 4$, then $\left|A_{2}^{\prime}\right| \geq 2$. Hence by Theorem 2 , both $A_{2}^{\prime}$ and $\{0,1\}+B$ are $d$-progressions. Thus $A+B=A_{2}+B=A_{2}^{\prime}+\{0,1\}+B$ is a $d$-progression, and by Lemma 3, (ii) holds.

Finally, suppose that $|A|=3$. Then $A$ is not an arithmetic progression. If

$$
|\{0,1\}+A+B| \leq|A+B|+2,
$$

we thus have by (6), Theorems 1 and 2 , and (7),

$$
\begin{aligned}
p-2 & \geq 3+|B|+2=|A+B|+2 \geq|\{0,1\}+A+B| \\
& \geq|A|+|B+\{0,1\}| \geq 3+|B|+3,
\end{aligned}
$$

a contradiction. Hence,

$$
|\{0,1\}+A+B| \geq|A+B|+3,
$$

and, by observation (V), $A+B$ has at least three 1-components. Now, $A+B=A_{2}+B=a+\{0,1\}+B=\bigcup_{i=1}^{3}\left(a+\{0,1\}+B_{i}\right)$. Since each set $a+\{0,1\}+B_{i}$ is a 1 -progression, $A+B$ has the three 1 -components $a+\{0,1\}+B_{i}, i=1,2,3$.

Lemma 5. Let $|A|,|B| \geq 3$, and suppose that

$$
7 \leq|A+B|=|A|+|B| \leq p-4 .
$$

Also assume that $A$ is an almost-progression. Then $A$ and $B$ are almostprogressions with the same difference.

Proof. Suppose that $A$ is an almost 1-progression, and that $A$ and $B$ are not almost-progressions with the same difference. By Lemma 1, neither $A$ nor $B$ is an arithmetic progression. In particular, $A$ has two 1-components $A_{1}, A_{2},\left|A_{1}\right| \leq\left|A_{2}\right|$. We look separately at cases (i) and (iii) in Lemma 4.

We first consider (i). Then $B$ is a double 1-progression. Since $B$ is not an arithmetic progression, it has two 1-components $B_{1}, B_{2},\left|B_{1}\right| \leq\left|B_{2}\right|$. Since $|B| \geq 3$, we have $\left|B_{2}\right| \geq 2$.

We have

$$
\begin{equation*}
A+B=\left(A_{1}+B_{1}\right) \cup\left(A_{2}+B_{1}\right) \cup\left(A+B_{2}\right) \tag{8}
\end{equation*}
$$

Both $A_{1}+B_{1}$ and $A_{2}+B_{1}$ are 1-progressions. Since $A$ is an almost 1progression and $B_{2}$ is a 1-progression with at least two elements, we also find that $A+B_{2}$ is a 1-progression. Thus $A+B$ has at most three 1-components.

By Lemma $3, A+B$ has at least two 1-components. Thus $A+B$ has two or three 1-components. If they are three, then they are given in (8). Then we must have $\left|B_{1}\right|=1$, for otherwise $\left(A_{1}+B_{1}\right) \cup\left(A_{2}+B_{1}\right)=A+B_{1}$ would be a 1-progression. We have

$$
\left|A+B_{2}\right|=|A|+\left|B_{2}\right|=|A|+|B|-1
$$

and

$$
\begin{aligned}
|A|+|B| & =|A+B|=\left|A_{1}+B_{1}\right|+\left|A_{2}+B_{1}\right|+\left|A+B_{2}\right| \\
& =\left|A_{1}\right|+\left|A_{2}\right|+|A|+|B|-1=2|A|+|B|-1 \geq|A|+|B|+2
\end{aligned}
$$

a contradiction. Thus $A+B$ has two 1-components.
By observation (V), we have $|\{0,1\}+A|=|A|+2$ and $|\{0,1\}+A+B|=$ $|A+B|+2$, so that
$p-2 \geq|\{0,1\}+A|+|B|=|A|+|B|+2=|A+B|+2=|\{0,1\}+A+B| ;$ that is,

$$
|\{0,1\}+A+B|=|\{0,1\}+A|+|B| \leq p-2
$$

Since $A$ is an almost 1 -progression, $\{0,1\}+A$ is a 1 -progression. It follows by Lemma 1 that $B$ is an almost 1-progression, which is a contradiction.

We now consider case (iii) of Lemma 4 . Then $|A|=3$ and $|B| \geq 4$. Let the three components of $B$ satisfy $\left|B_{1}\right| \leq\left|B_{2}\right| \leq\left|B_{3}\right|$. Then $\left|B_{3}\right| \geq 2$, and $A+B_{3}$ is a 1-progression contained in some 1-component $a+\{0,1\}+B_{i}$ of $A+B$. Thus we have

$$
1+\left|B_{i}\right|=\left|a+\{0,1\}+B_{i}\right| \geq\left|A+B_{3}\right|=3+\left|B_{3}\right|
$$

a contradiction.
Lemma 6. Let $|A|,|B| \geq 3$, and suppose that

$$
\begin{equation*}
|A+B|=|A|+|B| \leq p-4 \tag{9}
\end{equation*}
$$

Also assume that both $A$ and $B$ are double 1-progressions, and that $B$ is not an almost 1-progression. Let $A_{1}$ be a 1-component of $A$, and let $B_{1}, B_{2}$ be the two 1-components of $B$. Then $A_{1}+B_{1}$ and $A_{1}+B_{2}$ lie in distinct 1-components of $A+B$. Moreover,

$$
\begin{equation*}
\left|A_{1}\right| \geq \frac{1}{2}|A|-1 \tag{10}
\end{equation*}
$$

Proof. By Lemma 1, $A$ is not a 1-progression. Thus $A$ has one more 1-component $A_{2}=A \backslash A_{1}$.

Suppose that $A_{1}+B_{1}$ and $A_{1}+B_{2}$ are contained in one 1-component $C$ of $A+B$. We can assume that $A_{1}=\left\{0,1, \ldots,\left|A_{1}\right|-1\right\}$. Since $C$ is a 1-progression containing $A_{1}+B$ and $B$ is not an almost-progression, it is then easy to see that

$$
\begin{equation*}
|C| \geq\left|A_{1}\right|+|B|+1 \tag{11}
\end{equation*}
$$

If $C=A+B$, then $A+B$ is a 1-progression, so that, by Lemma $3, B$ is an almost 1-progression, a contradiction. Thus $A+B$ contains a 1-component $C^{\prime} \neq C$.

We have

$$
A+B=\left(A_{1}+B_{1}\right) \cup\left(A_{1}+B_{2}\right) \cup\left(A_{2}+B_{1}\right) \cup\left(A_{2}+B_{2}\right),
$$

where $\left(A_{1}+B_{1}\right) \cup\left(A_{1}+B_{2}\right) \subseteq C$, and both $A_{2}+B_{1}$ and $A_{2}+B_{2}$ are 1-progressions. Either for $i=1$ or for $i=2$, we have $A_{2}+B_{i} \subseteq C^{\prime}$, so that, by (9), (11), and Theorem 1 ,

$$
\begin{aligned}
p-4 & \geq|A|+|B| \geq|C|+\left|C^{\prime}\right| \geq\left|A_{1}\right|+|B|+1+\left|A_{2}+B_{i}\right| \\
& \geq\left|A_{1}\right|+|B|+1+\left|A_{2}\right|+\left|B_{i}\right|-1=|A|+|B|+\left|B_{i}\right|,
\end{aligned}
$$

hence $\left|B_{i}\right| \leq 0$, a contradiction. Thus $A_{1}+B_{1}$ and $A_{1}+B_{2}$ lie in distinct 1-components of $A+B$.

Moreover, by Theorem 1, we now have

$$
p-4 \geq|A|+|B|=|A+B| \geq\left|A_{1}+B_{1}\right|+\left|A_{1}+B_{2}\right| \geq 2\left|A_{1}\right|+|B|-2,
$$

so that $|A| \geq 2\left|A_{1}\right|-2$. This also holds for the other 1-component $A_{2}=A \backslash A_{1}$ of $A$, so that $|A| \geq 2\left|A \backslash A_{1}\right|-2$, and (10) follows.

Lemma 7. Let $|A|,|B| \geq 3$, and suppose that

$$
7 \leq|A+B|=|A|+|B| \leq p-4
$$

Let $A_{1}, A_{2}$ be the distinct 1-components of $A$, and let $B_{1}, B_{2}$ be the distinct 1 -components of $B$. Also suppose that $B$ is not an almost d-progression for any d. The 1-components of $A+B$ are then $\left(A_{1}+B_{1}\right) \cup\left(A_{2}+B_{2}\right)$ and $\left(A_{2}+B_{1}\right) \cup\left(A_{1}+B_{2}\right)$.

Proof. We can assume that $\left|A_{1}\right| \geq\left|A_{2}\right|$ and $\left|B_{1}\right| \geq\left|B_{2}\right|$. By Lemma 6, $A_{1}+B_{1}$ and $A_{1}+B_{2}$ lie in distinct 1 -components of $A+B$, so that $A+B$ has at least two 1-components.

Suppose that $A+B$ has at least three 1-components. A third 1-component must then contain $A_{2}+B_{i}$ for $i=1$ or 2 , and using Theorem 1, we get

$$
\begin{aligned}
p-4 & \geq|A|+|B| \geq\left|A_{1}+B_{1}\right|+\left|A_{1}+B_{2}\right|+\left|A_{2}+B_{i}\right| \\
& \geq\left|A_{1}\right|+\left|B_{1}\right|-1+\left|A_{1}\right|+\left|B_{2}\right|-1+\left|A_{2}\right|+\left|B_{i}\right|-1 \\
& \geq|A|+|B|+\left|A_{1}\right|+\left|B_{2}\right|-3,
\end{aligned}
$$

so that

$$
\begin{equation*}
\left|A_{1}\right|+\left|B_{2}\right| \leq 3 \tag{12}
\end{equation*}
$$

By Lemma 5, since $B$ is not an almost-progression, neither is $A$. Hence, by symmetry, we also have

$$
\begin{equation*}
\left|A_{2}\right|+\left|B_{1}\right| \leq 3, \tag{13}
\end{equation*}
$$

and adding (12) and (13), we get $|A|+|B| \leq 6$, which is against the hypotheses. Therefore, $A+B$ has exactly two distinct 1 -components $C_{1}, C_{2}$.

Assume that $A_{1}+B_{1} \subseteq C_{1}$ and $A_{1}+B_{2} \subseteq C_{2}$. By Lemma $6, A_{1}+B_{1}$ and $A_{2}+B_{1}$ lie in distinct 1-components of $A+B$. Thus $A_{2}+B_{1} \subseteq C_{2}$. Similarly, $A_{2}+B_{2} \subseteq C_{1}$.

Lemma 8. Let $|A|,|B| \geq 3$, and suppose that

$$
7 \leq|A+B|=|A|+|B| \leq \min (p-4,8) .
$$

Then $B$ is an almost-progression.
Proof. By Lemma 5, if $A$ is an almost-progression, so is $B$. Therefore it is sufficient to show that one of $A$ and $B$ is an almost-progression. We can assume $|A| \geq|B|$. Then $|A| \geq 4$. Also assume that neither $A$ nor $B$ is an almost-progression.

By Theorem 5, $A$ is a double $d$-progression for some $d$. We can assume that $d=1$. Thus $A$ is a double 1 -progression. By Lemma 4 , so is $B$.

After some suitable affine transformations of $A$ and $B$, we get to consider the following cases.

Case I: $|A|=4,|B|=3$.
Case I.1: $A=\{0,1,2, u\}, B=\{0,1, v\}$. By Lemma $7, A+B$ has the two 1-components

$$
C_{1}=\{0,1,2,3\} \cup\{u+v\}, \quad C_{2}=\{u, u+1\} \cup\{v, v+1, v+2\} .
$$

We have $\left|C_{1}\right|+\left|C_{2}\right|=|A+B|=|A|+|B|=7$. Since $p \geq 11$, we have $\left|C_{1}\right| \geq 4$ and $\left|C_{2}\right| \geq 3$; thus $\left|C_{1}\right|=4$ and $\left|C_{2}\right|=3$. By looking at $C_{1}$, we see that $u+v=0,1,2$, or 3 . From $C_{2}$, we see that $u=v$ or $u=v+1$.

If $u=v$, then $2 v=0,1,2$, or 3 . Since $v \neq 0,1$, we have $v=1 / 2$ or $v=3 / 2$, and

$$
B=\{0,1 / 2,1\}=\{0, d, 2 d\} \quad \text { or } \quad B=\{0,1,3 / 2\}=\{0,2 d, 3 d\},
$$

where $d=(p+1) / 2$. This contradicts the fact that $B$ is not an almostprogression.

If $u=v+1$, then $2 v+1=0,1,2$, or 3 , so that $v= \pm 1 / 2$. Thus $B=\{-1 / 2,0,1\}=\{b, b+d, b+3 d\}$ for $b=(p-1) / 2, d=(p+1) / 2$, or $B=\{0,1 / 2,1\}$, and again we have reached a contradiction.

Case I.2: $A=\{0,1, u, u+1\}, B=\{0,1, v\}$. By Lemma $7, A+B$ has the two 1-components

$$
C_{1}=\{0,1,2\} \cup\{u+v, u+v+1\}, \quad C_{2}=\{u, u+1, u+2\} \cup\{v, v+1\} .
$$

We still have $\left|C_{1}\right|+\left|C_{2}\right|=7$. By symmetry, we can assume that $\left|C_{1}\right| \geq\left|C_{2}\right|$. Then $\left|C_{1}\right|=4,\left|C_{2}\right|=3$. We see that $u+v=-1$ or 2 , and that $u=v$ or $u=v-1$. If $u=v$, we find that $B=\{-1 / 2,0,1\}$, a contradiction. If $u=v-1$, then $B=\{0,1,3 / 2\}$, which is also a contradiction.

Case II: $|A|=5,|B|=3$. Let $A_{1}, A_{2}$ be the two 1 -components of $A$, $\left|A_{1}\right| \leq\left|A_{2}\right|$. By Lemma 6 , we then have $\left|A_{1}\right| \geq \frac{1}{2}|A|-1=3 / 2$, so that $\left|A_{1}\right| \geq 2$; hence $\left|A_{1}\right|=2$ and $\left|A_{2}\right|=3$. Thus we can assume that

$$
A=\{0,1,2, u, u+1\}, \quad B=\{0,1, v\} .
$$

By Lemma $7, A+B$ then has the two 1 -components
$C_{1}=\{0,1,2,3\} \cup\{u+v, u+v+1\}, \quad C_{2}=\{u, u+1, u+2\} \cup\{v, v+1, v+2\}$.
We have $\left|C_{1}\right|+\left|C_{2}\right|=|A+B|=|A|+|B|=8$. Clearly, we also have $\left|C_{1}\right| \geq 4$, $\left|C_{2}\right| \geq 3$.

CASE II.1: $\left|C_{1}\right|=5,\left|C_{2}\right|=3$. We have $u+v=-1$ or 3 , and $u=v$. Then $B=\{-1 / 2,0,1\}$ or $B=\{0,1,3 / 2\}$, a contradiction.

CASE II.2: $\left|C_{1}\right|=\left|C_{2}\right|=4$. We have $u+v=0,1$, or 2 , and $u=v \pm 1$. If $u=v-1$, we have $B=\{0,1 / 2,1\}$ or $B=\{0,1,3 / 2\}$, a contradiction. If $u=v+1$, we have $B=\{-1 / 2,0,1\}$ or $B=\{0,1 / 2,1\}$, a contradiction.

Case III: $|A|=|B|=4$.
Case III.1: $A=\{0,1,2, u\}, B=\{0,1,2, v\}$. By Lemma $7, A+B$ has the two 1-components

$$
C_{1}=\{0,1,2,3,4\} \cup\{u+v\}, \quad C_{2}=\{u, u+1, u+2\} \cup\{v, v+1, v+2\} .
$$

We have $\left|C_{1}\right|+\left|C_{2}\right|=8,\left|C_{1}\right| \geq 5,\left|C_{2}\right| \geq 3$, so that $\left|C_{1}\right|=5,\left|C_{2}\right|=3$. Thus $u+v=0,1,2,3$, or 4 , and $u=v$. It follows that $v=1 / 2$ or $3 / 2$, so that $B=\{0,1 / 2,1,2\}$ or $B=\{0,1,3 / 2,2\}$, a contradiction.

Case III.2: $A=\{0,1, u, u+1\}, B=\{0,1,2, v\}$. Similarly to Case III.1, we find that $B=\{0,1 / 2,1,2\}$ or $B=\{0,1,3 / 2,2\}$, a contradiction.

Case III.3: $A=\{0,1, u, u+1\}, B=\{0,1, v, v+1\}$. By Lemma 7, $A+B$ has the two 1-components

$$
\begin{aligned}
& C_{1}=\{0,1,2\} \cup\{u+v, u+v+1, u+v+2\}, \\
& C_{2}=\{u, u+1, u+2\} \cup\{v, v+1, v+2\} .
\end{aligned}
$$

By symmetry, we can assume that $\left|C_{1}\right| \geq\left|C_{2}\right|$. We have $\left|C_{1}\right|+\left|C_{2}\right|=8$, and $\left|C_{2}\right| \geq 3$.

Case III.3.1: $\left|C_{1}\right|=5,\left|C_{2}\right|=3$. We see that $u+v= \pm 2$, and that $u=v$. Thus $v= \pm 1$, which is impossible.

CASE III.3.2: $\left|C_{1}\right|=\left|C_{2}\right|=4$. We have $u+v= \pm 1$, and $u=v \pm 1$. If $u=v-1$, we get $v=0$ or 1 , which is impossible. If $u=v+1$, we get $v=-1$ or 0 , which is also impossible.
5. Proof of Theorem 3, concluded. Assume the theorem is false, and let $(A, B)$ be a counterexample with $|A|+|B|$ minimal and $|A| \geq|B|$. Then (1) holds, $|A| \geq 4,|B| \geq 3$, and $A$ and $B$ are not almost-progressions with the same difference. By Lemma 5, neither $A$ nor $B$ is an almost-progression.

By Theorem 5, $A$ is a double $d$-progression for some $d$. We can assume $d=1$. Thus $A$ is a double 1-progression. By Lemma 4 , so is $B$.

Let $A_{1}, A_{2}$ be the two 1-components of $A$. By Lemma 8, we have $|A|+$ $|B| \geq 9$, so that $|A| \geq 5$. By Lemma 6 , we have $\left|A_{i}\right| \geq \frac{1}{2}|A|-1 \geq 3 / 2$, so that $\left|A_{i}\right| \geq 2$ for $i=1,2$. Hence, $A=\{0,1\}+A^{\prime}$, where $A^{\prime}$ is a double 1-progression with $\left|A^{\prime}\right|=|A|-2 \geq 3$.

Let $k$ be the number of 1 -components of $A^{\prime}+B$. If $k=1$, then $A^{\prime}+B$ is a 1-progression, and so is $A+B=\{0,1\}+A^{\prime}+B$. By Lemma $3, A$ is an almost-progression, a contradiction. Hence $k \geq 2$.

Since $\left|A^{\prime}\right| \geq 3$ and $B$ is not an arithmetic progression, we have by (1), observation (V), and Theorems 1 and 2,

$$
\begin{aligned}
p-4 & \geq|A|+|B|=|A+B|=\left|\{0,1\}+A^{\prime}+B\right| \\
& =\left|A^{\prime}+B\right|+k \geq\left|A^{\prime}\right|+|B|+k=|A|-2+|B|+k
\end{aligned}
$$

so that $k \leq 2$; hence $k=2$. It follows that

$$
7 \leq\left|A^{\prime}+B\right|=\left|A^{\prime}\right|+|B| \leq p-6
$$

We also have $\left|A^{\prime}\right| \geq 3,|B| \geq 3$. By the minimality of $|A|+|B|$, we now deduce that $A^{\prime}$ and $B$ are almost-progressions, a contradiction.

## References

[1] A. L. Cauchy, Recherches sur les nombres, J. École Polytech. 9 (1813), 99-116.
[2] S. Chowla, H. B. Mann, and E. G. Straus, Some applications of the CauchyDavenport theorem, Norske Vid. Selsk. Forh. 32 (1959), 74-80.
[3] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.
[4] -, A historical note, ibid. 22 (1947), 100-101.
[5] G. A. Freiman, Inverse problems of additive number theory. On the addition of sets of residues with respect to a prime modulus, Dokl. Akad. Nauk SSSR 141 (1961), 571-573 (in Russian).
[6] -, Inverse problems of additive number theory. On the addition of sets of residues with respect to a prime modulus, Soviet Math. Dokl. 2 (1961), 1520-1522.
[7] H. B. Mann, Addition Theorems: The Addition Theorems of Group Theory and Number Theory, Interscience Publ., New York, 1965.
[8] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, New York, 1996.
[9] A. G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 200-205.
[10] -, Addendum to "The critical pairs of subsets of a group of prime order", ibid. 31 (1956), 280-282.
E. Combinatoire

Université P. et M. Curie
Department of Mathematics
University of Bergen
Johs. Brunsgt. 12
4 Place Jussieu
75005 Paris, France
E-mail: yha@ccr.jussieu.fr
N-5008 Bergen, Norway
E-mail: rodseth@mi.uib.no

