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A Schinzel theorem on continued fractions
in function fields
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1. Introduction and statement of result. It is well known that the
expansion of the continued fraction of a positive quadratic irrational num-
ber « is periodical. The problem of evaluating and estimating the period
p(a) of the continued fraction of « is closely related to many number theo-
retic problems such as Pell’s equations and the fundamental unit of the real
quadratic field Q(«). In 1961, A. Schinzel [8] proved an interesting result.
Let a, b, ¢ be integers with a > 1, and let f(z) = a?z?+bx +c be a quadratic
polynomial with discriminant d = b> — 4a?c. We define two sets

Z={neZ:n>1and f(n) is square-frec},
E={neZ:df(2a*n+b)?}.
Schinzel’s result says that

(D) lim p(y/f(n)) <oo, (II) lim p(y/f(n)) = oco.
nelZ—E nek

Later, S. Louboutin [6] and A. Farhane [2] presented more exact and effective
lower bounds of p(y/f(n)) for n € E. In this paper we show an analogue of
Schinzel’s result in the function field case.

Let [, be the finite field with ¢ elements where ¢ is odd, k = F(t)
be the rational function field over F,, R = F,[t] be its polynomial ring,
ks =F4((1/t)) be the completion of k at the infinite place oo = (1/t). Each
element « € ko — k is a (formal) power series

1 n
a:ch<> , cn€F (n>1), sgna=cel,.

t
n>l

Let v be the normal exponential valuation in k. with vy (1/t) = 1. In
this paper we prefer to use the notation dega = —v () = —I since it is
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just the ordinary degree if « is a polynomial in R. We define

[a]:zojch)neR, (= % an)n.

n=I n>sup{1,l}

Then we have the continued fraction expansion of «,

1
a = [ag,a1,as,...| :ao—I——l

ar+ —
a2+'

where ag = [a] and «; = 1/{a;—1}, a; =[] for i > 1 so that
a; = [a;,ai41,...], dega; =dega; >1 fori>1.

Suppose that F(t) is a square-free polynomial in R such that deg F'(t) > 1
and \/F(t) € ks. (Note: F(t) is called square-free if there is no A € R with
deg A > 1 such that A% | F(t). By Hensel’s lemma, \/F(t) € ko if and only if
2| deg F'(t) and sgn F'(t) € Ff.) The subfield K = k(1/F(t)) of k is called
a “real” quadratic function field. It is well known that the continued fraction
of \/F(t) is periodical. In fact, we need a generalized version of the period
in the study of the algebraic structure of the real quadratic function field K.
For each a € ko, « is algebraic over k with degree two if and only if the
continued fraction of « = [ag, a1, ..., ay,...] is infinite and quasi-periodical,
which means that there exist ¢ € IF; and integers ng > 0 and [ > 1 such that

Upyl = c(*l)nan for all n > ny.

The smallest positive integer [ satisfying this condition is called the quasi-
period of the continued fraction o = [ag, a1, . ..] and denoted by p(a). If o =
VF(t) and | = p(y/F(t)), then the fundamental unit of the real quadratic

function field K = k(y/F(t)) is P—1 + Qi—1+/F(t) where
Pi_1/Qi-1 = lao, a1, ..., a;1].

The continued fraction method of studying the ideal class number and units
of real quadratic function fields was initiated by E. Artin [1]. For recent
work we refer to D. Hayes [4] and C. D. Gonzélez [3].

Now we state the result of this paper. Let A, B,C be polynomials in
R=T,[t], degA >0, f(z) = A%2* + Bx + C, D = B®> — 4A%C, and

R = {N € R: f(N) is square-free and \/W € kool
E={Ne€R:D}(24°N + B)?}.

Let p(y/ f(N)) be the quasi-period of the continued fraction of y/f(N).
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THEOREM 1.1.

T p(\/F(V)) < .
NeR-E

THEOREM 1.2.

Jim p(v/ (V) = oo.

Before proving Theorems 1.1 and 1.2, in Section 2 we introduce several
basic facts on continued fractions in function fields. Most results are just
simple analogues of facts in the theory of ordinary continued fractions in
the real number field case (see Hua’s book [5], for instance), so we present
the proof of some particular facts for the reader’s convenience and omit the
proof of others. In Sections 3 and 4 we prove Theorems 1.1 and 1.2.

2. Continued fractions in function fields. From now on we fix the
following notations: k = F,(t) (21q), R = F,[t], ke = F((1/t)). For o €
koo — k,

1 m m—+1
C)Z:Cm<t> +Cm+1<t> +..., CiEFq (sz), CmEFZ;
we set deg @ = —m, sgna = ¢,. We have the continued fraction
(2.1) a=lag,a1,...,0n,....

For n > 0, the nth convergent of the continued fraction (2.1) is
P,/Qn = [ag,a1,. .., a4)

which can be calculated recursively by
Py=ay, Pi=aja0+1, P,=a,Py,1+P,o (n>2),
Q=1 Qi1=a, Qn=0,Qn-1+Qn-2 (n>2).
We have the following basic facts.

Facrt 1. Forn > 1,
(2.3) PoQn-1— Pr1Qn = (-1)"*

(2.4) _ Oniiin ¥ T
Oy 1Qn + Qn-1

(2.2)

where oy, = [an, Qnii, -]

Let A,B,C € R, degA > 0, f(z) = A?x + Bz + C, D = B? — 4A%C,
and /J(N) € kw (N € R).

FacT 2. For a = \/f(N) = [ag,a1,...,an,...], we have

(2.5) ap = U”% an(N) (n>0)
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where U, V,, are polynomials in R and can be calculated recursively by
UO:O) ‘/0:17 QOZ[ f(N)]7

N) - U?
(26) Un+1 - anVn - Un7 Vn+1 - f()‘/TH_l7
U, v f(N
Uni1 = |: +1‘_/‘_ f( ):| (nZO)
n+1

Moreover, p(\/f(N)) = 2k if and only if k is the smallest integer such that
Uk/Uky1 € Fy, while p(\/f(N)) = 2k + 1 if and only if k is the smallest
integer such that Vi /Vii1 € Fy.

The next result means that the convergents are the best approximations
of a € k.

LEMMA 2.1. For o € koo — k, P,Q € R, Q # 0 and (P,Q) = 1, the
following statements are equivalent to each other:

(1) P/Q =P,/Qp or P/Q = —P,/Q, for some n > 0;

(2) deg(P? — a?Q?) < deg

(3) deg(P — aQ) < —deg @ or deg(P + aQ) < —deg Q.

Proof. Let P/Q = [co,c1,...,¢y] be the finite continued fraction of
P/Q, and P'/Q' = [co,c1,...,cn-1]. There is § € ko such that

B PP+ P
(2.7) a—[co,...,cn,ﬁ]—75Q+Q/.
Namely,
ﬁ B _aQ/ +Pl
- aQ-P
From (2.7) and (2.3) we have
P (_1)n /
a_§:m7 deg(P — aQ) = —deg(8Q + Q).
Therefore
P/Q=P,/Qn < degf > 1 & deg(P — aQ) < —degQ,

P/Q = —P,/Qn, & deg(P + aQ) < —deg Q.

So we proved the equivalence (1)< (3). The equivalence (2)<(3) is easy to
prove.

The following result is analogous to Theorem H in [8].

LEMMA 2.2. Suppose that & = [bg, by, ...| € keo—k and &, = [by,,by11, .. .].
Let p,r,s € R, degr < degs and rs =d # 0. If

é-lng_i_r p[b07b17"',bu—1]+r

S S

= [d07d17‘ . '7d,u,71]7
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then &' = [do,dy,...,du—1,&,] where §, = (p'& +17)/s', p'ir' s’ € R,
p's’ = +d, degr’ < degs'.
ab

Cd) over R and a € ko we

Proof. For a non-singular matrix A = (
define the action of A on « by

aa+b
Aler) = ca+d
Let [bo,...,bm| = Ap /By, and [dy,...,d]] = Cl/Dl From (2.4) we have
r_ #—1§ +Cﬂ—2 /
g - DM—1§Z+DH72 < )(fp,)v
e=(2 o= 1) (g; 1 B e

Therefore &, = ( :: (&) where
1
b r Au—l AV—2
e (0 )= 6) (0 an)
+ D C,u—2 pr Au—l AIJ—2
D n—1 o S Bufl Bl/72

+ _pr,—Q _TD;;—Q + SC/L—Q Al/—l Al/—2
pr,—l TDu—l - SC,U,—l BV—l BV—2

and
t/ = j:(p.DﬂflAyfl + TDﬂlel,,l — SCMleyfl)

pA,_1/By_1+r  Cu_1
— 4sD, 1B, _ _
sD, 1B, 1( S Dy 0,
= :I:(pDuflAu72 + 7’Dufl-Bqu - SCuleny)v
r = :F(prszyfz + T-D/,L72Bl/72 - 30/17231/72)7

so that degr’ < degs’. From (2.8) we have

p/ ,r/
o ¢

S
o S

p's’ = = 4d.

This completes the proof of Lemma 2.2 (cf. Theorem 3 in Chapter IV of [7]).

3. Proof of Theorem 1.1. Suppose that NV € E—E, which means that
f(N)= A%2N? + BN + C is square-free, \/f(N) € ko, and

(3.1) D = B? —4A%C | (2A%N + B)?.
Let

, 1
(3:2) §=VIN)=53VEAN+B)? = D.
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From (3.1) we know that there exist U, V, W € R such that

(3.3) 2A°N +B=UVW, D=UV?
The formula (3.2) becomes
Vv
(3.4) ¢ =
where
(3.5) ¢ = VURW? —U = [UW,2W,20W] = [UW, £"],
(3.6) " — [2W,2UW) = [2WW, 2UW, ¢").

Now we use Lemma 2.2 repeatedly to get the continued fraction expan-

sion of ¢ = /f(N). Let

_ VUW 242N + B

(37) m 24 24 = [ao,al,...,am_l].
From (3.5) and Lemma 2.2 we have
(3.8) ¢ = lag,an,...,au,-1,&]
where
/ p1£// + 7
(3.9) & =———, 1,711,851 €R, p15s; = £2AV, degr; < degs;.
S1
In general, for each 7 > 1 we have
Nl .
(3.10) &= ZM, pi,Ti,Si € R, pis; = £2AV, degr; < deg s;.
S
Let
' T 8 Si
= [aﬂi7aﬂi+17 v 7am+171]-

From (3.6) and Lemma 2.2 we have

(3.12) & = [@pss Qi1 s Oy 1, Ef 1]

where

(3.13) €&, = p“i:”l DistsTisn, sii1 € Ry pisisiss = 424V,
l degrit1 < degs;i1.

Since A, B,C and D = B? —4A2C are fixed polynomials, we choose N such
that

(3.14) deg N > max{deg(A?/B),deg(D/A)}.
From (3.3) we know that
deg(UVW) = deg(A*N) > deg(AD) = deg(AUV?)
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so that deg W > deg(AV) = deg(pis;) > degs; (i > 1). Therefore by (3.11),
piW
Si

degay, = deg[nit1] = deg >1 (i=1)

and by (3.8) and (3.11) we have the continued fraction expansion of ¢’ =

FN).
(3.15) f(N)
=[a0, -y Oy =1, Qs ooy Qg e ey Qg QgL - e vy Qg5 - - -
The total number of tuples (p,r, s) satisfying ps = £2AN and degr <
deg s is at most M = ¢?9¢8 AN+1 thus from (3.10) we know that there exist
land j, 1 <1 < j < M, such that § = &}. From the expansion (3.15) we
know that

j—1
(3.16) p(V [(N)) < Z(NiJrl — i)
i=l
We use Lemma 2.2 again to estimate p;. Let
2sz + 7
f = [C(),Cl, .o .,thl].

By Lemma 2.2 and (3.11) we have

Sl

[ P RUW) —l—r’]
Ni+1 = |CosC1y---Ct—1, ——

where p’s’ = £2AV and degr’ < degs’, so that deg(+/p'(2UW) +r'/s') >
1. Let

P QUW) + 1/

ﬁ = [Ct, Ct+1y- - ,Ct+)\,1].
Then 7,41 = [Co, €1y -+, Ct—1,Cty .y Ctor—1] and p;11 — p; = t+ X by (3.11).
From the recursive formula for @; in (2.2) and dege; > 1 (0 <i<t+A—1)
we know that

t <degs; <deg(AV), X <degs < deg(AV).
Therefore ;11 — p; =t + A < 2deg(AV) and by (3.16),

p(V/f(N)) < (5 —12deg(AV) < 2M deg(AV) < 2deg \/(AV)QQdeg(AVJrl)

provided the formula (3.14) is satisfied. Since there are only finitely many
N such that deg N < max{deg(A42/B),deg(D/A)}, this completes the proof
of Theorem 1.1.

4. Proof of Theorem 1.2. Now we assume that f(N) = A2N?2+BN+C
and D = B? —4A2CY(2A%N + B)?. Let | = p(y/f(N)) and

f(N) = [ag,a1,...,an,...],
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a; = [aj,aiq1,-..], Pi/Qi=lao,a1,...,a,
0i=Pi+QivVf(IN), @ =P —QiVf(N).

Then € = ¢;_1 is the fundamental unit of the quadratic function field K =
k(v/f(N)). Let

G=(AB), B=DG? U=2AG"', V=BG
We choose
Ay =AUN +V = (2A°N + B)G™', By =U =2AG™!
and
X =4, + BV f(N).
It is easy to see that
Norm(X) = XX = A7 — Bif(N) =3
where Norm denotes the norm for F, (¢, \/f(N))/F,(t). For each k > 1, let
Xk = Ay + By f(N), Ay By €eR.
The polynomials A and By can be calculated recursively by
(4.1) Agi1 = A1Ag, + B1Brf(N), Bpy1 = A1Bi + B1Ag.
Let
(42) Dy = (Ax,By), Ay = Ap/Dy, Bj = By/Dy, Ny=AZ—-Bf(N).
Then (A}, B},) = 1. Finally we choose

(4.3) = [d;’gdzg(g)] ~1.

LEMMA 4.1. For 1 < k < M, there exists iy, such that A} /B; = P;, /Qi, .
Proof. We have
deg(Ay? — B2 f(N)) = deg(A}, — Bif(N)) — 2deg Dy,
< deg(A2 — B2f(N)) = deg(Norm(X*)) = & deg §
< Mdegf < %degf(N).
Then the conclusion follows from Lemma 2.1 and deg(A}, + B,/ f(N)) > 0.
LEMMA 4.2. 4311 — i > 2 for 1 <k < M —1.

Proof. From the condition D (242N + B)? we know that there is an
irreducible polynomial P = P(t) in R such that vp(D) > 2vp(24%N + B),
which means that vp(3) > 2vp(A;) where vp is the normal P-adic expo-
nential valuation. From 3 = Norm(X) = A% — B?f(N) we have vp(A?) =
vp(B2f(N)). Then (A;,By) =1 and f(N) € R imply that

(4.4) vp(B1) = vp(f(N)) = vp(A1) =0.
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Now we prove that vp(Ax) = vp(Bx) = 0 for all £ > 1 by induction.
This is true for £ = 1 from (4.4). Assume that vp(B;) = vp(4;) = 0
for some i > 1. Since vp(f(N)) = 0, vp(3) > 2vp(4;) = 0 and B* =
A? — B2f(N), we know that A? = B?f(N) (mod P), which means that
(@) =1 and P is split in the quadratic field K = F,(t)(y/f(N)) where
(ﬁ) means the Legendre symbol. Let P = pp be the decomposition in K.
Then X = A; + B/ f(IN) has to be divisible by p or p. We can assume
that

A1+ B1y/f(N) =0 (mod p).
From vp(B;1) = 0 we know that v,(B;) = 0 so that

Ay

= —V/FV) (mod p).
Moreover, A; + Biy/f(N) = (A1 + B1y/f(N))® = 0 (mod p). From the
assumption vp(B;) = 0 we have

44/Bi = —/FV) (mod p).
Then from (4.1) we see that
Biy1 A4

A
B.B, —E+§i=—2vf(N)¢0 (mod p),

which means that v,(B;4+1) = 0 so that vp(B;+1) = 0. Finally we deduce
that vp(A;41) = 0 from gt = A2, —B?,, f(N). Thus we have proved that
vp(Ag) = vp(Bg) =0 for all k£ > 1. Then vp(Dy) = 0 since Dy, = (A, Bg).
From (2.3) and (2.4) we have

B (=)
Qn - Qn(an—l—lQn + Qn—l).

f(N)
Therefore
deg @, = deg(Pn — QnV/ f(N)) = — deg(an1@Qn + Qn—1)
= —deg(an+1Qn + Qn-1) = —deg Qn1.
From deg(A; — Bi/f(N)) < 0 and Dy, | Dy41 (by definition) we know that
—deg Qi +1 = degp;, = deg(F;;, — Qi V f(N))
= deg (A4}, — Br.v/ f(N))
= —deg Dy + deg(Ax — B/ f(N))
= —deg Dy + kdeg(A1 — Biv/ f(N))
> —deg Dyq1 + (k4 1) deg(Ar — Biy/ f(N))
=degp;, ., = —degQiy 41
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Therefore deg Q;, ,,+1 > degQ;, y1 which means that g1 > ig. If ipyq =
i + 1, then

Pik+1 Qik - Piink+1 = Pik-l-lQik - Pik- Qik-i-l = (*1)ik+17
so that vp (P, ,Qi, — P, Qi,,,) = 0. On the other hand,

vp(Piyyy Qi — Pi Qiyyy) = ve(Ap 1 By, — A Bjyy)
= vp(Ap4+1Br — A Bj41)
(since vp(Dy) = vp(Dy41) = 0)
= vp((AxA1 + BpB1f(N)) By,
— Ap(ArB1 + A1 By))
= vp(Bi(A; — BRif(N))) = vp(6°)
(since vp(By) = 0)
=kvp(B) >0 (for k >1).
This contradiction shows that i1 — ix > 2, which completes the proof of
Lemma 4.2.
LEMMA 4.3. Let
M, — deg f(N) —2degU] | (< M),
2deg
Then deg p;, < dege for all1 < k < M, where e = ¢;_; is the fundamental

unit in K =TFy(t,\/f(N)).

Proof. If deg¢;, > dege for some s (1 < s < M), let s be the smallest
one satisfying this condition. Then

i€ = (P, + Qi VJ(N))(P—1 — Qi1 f(N)) = A"+ B'\/f(N)
where A’, B’ € R, and
deg(A” — B f(N)) = deg(Norm(¢;,)) = deg(Norm(p;,€)) < § deg f(N).

From Lemma 2.1 and deg(y;. ) = degy;, — dege > 0 we know that there
exists j such that ¢; € = agp; for some o € Fy. Therefore D7lX® =g, =
ey (o € Fy). If j >y, then

sdeg X > deg(D; ' X®) = deg(cp;) > deg(cyp;,) = deg(eX) > deg X > 0.
Thus s > 2 and
deg @i, , > deg(Ds 1Dy i, ) = deg(D; ' X°7") > dege,
which contradicts the definition of s. Therefore j < ¢;. Since

deg(p;p;) = deg(vi, ;) = deg(8°D;?), @, = (—1) T (0j11Q;+Qj-1) "
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and deg avj1 = degaji1, we know that degp,; = —deg Q11 = —degQ;, =
—degU and

deg(B°U) > deg(B°D;?U) > deg(#°D; ;') = deg p; > & deg f(N).
Therefore s > (deg f(N) —2degU)/(2deg 3), which contradicts s < M;.
This completes the proof of Lemma 4.3.

Now Theorem 1.2 is a direct consequence since Lemma 4.2 says that
Ig+1 — 9% > 2 for 1 k < M; — 1 and Lemma 4.3 says that 1 < i, <
p(v/ f(N)) for all 1 < k < My, so that

deg f(N) —2degU
2deg 8

<
k

p(\/ f(N)) >2M;—1=2 —1—o00 as degN — oo.

This completes the proof of Theorem 1.2.

EXAMPLE. Let f(z) = 22 + C where C =2a + 1, a € R, dega > 1. We
have A=1, B=0, 8= —-4C = D and U = 1. For each k > 2, we choose
N = C*+asothat f(N) = (C¥+a)?+C. Since D = —4Ct(2A2N + B)? =
4(C* +a)?, N belongs to the set E for all k > 2. We use Fact 2 to determine
the quasi-period p(1/f(N)) as follows:

U():Oa V(J: ) aOZ[Vf(N)]:Ck+a7

k k _
Uy =CFia, V,=C, alz[zccjrza]:[%* +CC 1

] =20%"" 41,

B 2C% 4+ C
Uy=CFta+1, Vo=-20F1 02:[_2014;—1}:07
C+ (2C* —1)C
U3:Ck—a—1, V3: —(QC'k—l) :—02,
20F — 1
o= [t =

U4:C’k+a+1, V4:20k72, CL4:C2,
Us=C—a—1, Vz=C% a5=20""7,

In general, Va;y1 = aCt, Vo; = o/C*~%, where a, o/ € Fy. If k = 2n,
then Vo, /Vant1 € Fy and p(\/f(N)) = 4n+ 1 = 2k — 1. If k = 2n, then

Van—1/Van € F; and p(\/f(N)) = 4n — 1 = 2k — 1. Therefore p(\/f(N)) =
2k — 1 for all k£ > 2. On the other hand,
~ 2deg(C* + a)

deg f(N) —2degU 1= o1

2M; —1=2
! 2deg deg C
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Therefore p(1/f(N)) = 2M; — 1, which shows that our general estimate
p(v/f(N)) > 2M; — 1 is the best one.
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