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1. Introduction and statement of result. It is well known that the
expansion of the continued fraction of a positive quadratic irrational num-
ber α is periodical. The problem of evaluating and estimating the period
p(α) of the continued fraction of α is closely related to many number theo-
retic problems such as Pell’s equations and the fundamental unit of the real
quadratic field Q(α). In 1961, A. Schinzel [8] proved an interesting result.
Let a, b, c be integers with a ≥ 1, and let f(x) = a2x2 +bx+c be a quadratic
polynomial with discriminant d = b2 − 4a2c. We define two sets

Z̃ = {n ∈ Z : n ≥ 1 and f(n) is square-free},
E = {n ∈ Z̃ : d - (2a2n+ b)2}.

Schinzel’s result says that

(I) lim
n∈Z̃−E

p(
√
f(n)) <∞, (II) lim

n∈E
p(
√
f(n)) =∞.

Later, S. Louboutin [6] and A. Farhane [2] presented more exact and effective
lower bounds of p(

√
f(n)) for n ∈ E. In this paper we show an analogue of

Schinzel’s result in the function field case.
Let Fq be the finite field with q elements where q is odd, k = Fq(t)

be the rational function field over Fq, R = Fq[t] be its polynomial ring,
k∞ = Fq((1/t)) be the completion of k at the infinite place∞ = (1/t). Each
element α ∈ k∞ − k is a (formal) power series

α =
∑

n≥l
cn

(
1
t

)n
, cn ∈ Fq (n ≥ l), sgnα = cl ∈ F∗q .

Let v∞ be the normal exponential valuation in k∞ with v∞(1/t) = 1. In
this paper we prefer to use the notation degα = −v∞(α) = −l since it is
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just the ordinary degree if α is a polynomial in R. We define

[α] =
0∑

n=l

cn

(
1
t

)n
∈ R, {α} =

∑

n≥sup{1,l}
cn

(
1
t

)n
.

Then we have the continued fraction expansion of α,

α = [a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2 + .. .

where a0 = [α] and αi = 1/{ai−1}, ai = [αi] for i ≥ 1 so that

αi = [ai, ai+1, . . .], degαi = deg ai ≥ 1 for i ≥ 1.

Suppose that F (t) is a square-free polynomial inR such that degF (t) ≥ 1
and

√
F (t) ∈ k∞. (Note: F (t) is called square-free if there is no A ∈ R with

degA ≥ 1 such that A2 |F (t). By Hensel’s lemma,
√
F (t) ∈ k∞ if and only if

2 | degF (t) and sgnF (t) ∈ F∗q2.) The subfield K = k(
√
F (t)) of k∞ is called

a “real” quadratic function field . It is well known that the continued fraction
of
√
F (t) is periodical. In fact, we need a generalized version of the period

in the study of the algebraic structure of the real quadratic function field K.
For each α ∈ k∞, α is algebraic over k with degree two if and only if the
continued fraction of α = [a0, a1, . . . , an, . . .] is infinite and quasi-periodical,
which means that there exist c ∈ F∗q and integers n0 ≥ 0 and l ≥ 1 such that

an+l = c(−1)nan for all n ≥ n0.

The smallest positive integer l satisfying this condition is called the quasi-
period of the continued fraction α = [a0, a1, . . .] and denoted by p(α). If α =√
F (t) and l = p(

√
F (t)), then the fundamental unit of the real quadratic

function field K = k(
√
F (t)) is Pl−1 +Ql−1

√
F (t) where

Pl−1/Ql−1 = [a0, a1, . . . , al−1].

The continued fraction method of studying the ideal class number and units
of real quadratic function fields was initiated by E. Artin [1]. For recent
work we refer to D. Hayes [4] and C. D. González [3].

Now we state the result of this paper. Let A,B,C be polynomials in
R = Fq[t], degA ≥ 0, f(x) = A2x2 +Bx+ C, D = B2 − 4A2C, and

R̃ = {N ∈ R : f(N) is square-free and
√
f(N) ∈ k∞},

E = {N ∈ R̃ : D - (2A2N +B)2}.
Let p(

√
f(N)) be the quasi-period of the continued fraction of

√
f(N).
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Theorem 1.1.

lim
N∈R̃−E

p(
√
f(N)) <∞.

Theorem 1.2.

lim
N∈E

p(
√
f(N)) =∞.

Before proving Theorems 1.1 and 1.2, in Section 2 we introduce several
basic facts on continued fractions in function fields. Most results are just
simple analogues of facts in the theory of ordinary continued fractions in
the real number field case (see Hua’s book [5], for instance), so we present
the proof of some particular facts for the reader’s convenience and omit the
proof of others. In Sections 3 and 4 we prove Theorems 1.1 and 1.2.

2. Continued fractions in function fields. From now on we fix the
following notations: k = Fq(t) (2 - q), R = Fq[t], k∞ = F((1/t)). For α ∈
k∞ − k,

α = cm

(
1
t

)m
+ cm+1

(
1
t

)m+1

+ . . . , ci ∈ Fq (i ≥ m), cm ∈ F∗q ;

we set deg α = −m, sgnα = cn. We have the continued fraction

(2.1) α = [a0, a1, . . . , an, . . .].

For n ≥ 0, the nth convergent of the continued fraction (2.1) is

Pn/Qn = [a0, a1, . . . , an]

which can be calculated recursively by

(2.2)
P0 = a0, P1 = a1a0 + 1, Pn = anPn−1 + Pn−2 (n ≥ 2),

Q0 = 1, Q1 = a1, Qn = anQn−1 +Qn−2 (n ≥ 2).

We have the following basic facts.

Fact 1. For n ≥ 1,

PnQn−1 − Pn−1Qn = (−1)n+1,(2.3)

α =
αn+1Pn + Pn−1

αn+1Qn +Qn−1
(2.4)

where αn = [an, an+1, . . .].

Let A,B,C ∈ R, degA ≥ 0, f(x) = A2x + Bx + C, D = B2 − 4A2C,
and

√
f(N) ∈ k∞ (N ∈ R).

Fact 2. For α =
√
f(N) = [a0, a1, . . . , an, . . .], we have

(2.5) αn =
Un +

√
f(N)

Vn
(n ≥ 0)
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where Un, Vn are polynomials in R and can be calculated recursively by

U0 = 0, V0 = 1, a0 = [
√
f(N)],

(2.6) Un+1 = anVn − Un, Vn+1 =
f(N)− U2

n+1

Vn
,

an+1 =
[
Un+1 +

√
f(N)

Vn+1

]
(n ≥ 0).

Moreover , p(
√
f(N)) = 2k if and only if k is the smallest integer such that

Uk/Uk+1 ∈ F∗q , while p(
√
f(N)) = 2k + 1 if and only if k is the smallest

integer such that Vk/Vk+1 ∈ F∗q .

The next result means that the convergents are the best approximations
of α ∈ k∞.

Lemma 2.1. For α ∈ k∞ − k, P,Q ∈ R, Q 6= 0 and (P,Q) = 1, the
following statements are equivalent to each other :

(1) P/Q = Pn/Qn or P/Q = −Pn/Qn for some n ≥ 0;
(2) deg(P 2 − α2Q2) < degα;
(3) deg(P − αQ) < −degQ or deg(P + αQ) < − degQ.

P r o o f. Let P/Q = [c0, c1, . . . , cn] be the finite continued fraction of
P/Q, and P ′/Q′ = [c0, c1, . . . , cn−1]. There is β ∈ k∞ such that

(2.7) α = [c0, . . . , cn, β] =
βP + P ′

βQ+Q′
.

Namely,

β =
−αQ′ + P ′

αQ− P .

From (2.7) and (2.3) we have

α− P

Q
=

(−1)n

Q(βQ+Q′)
, deg(P − αQ) = −deg(βQ+Q′).

Therefore

P/Q = Pn/Qn ⇔ deg β ≥ 1⇔ deg(P − αQ) < − degQ,

P/Q = −Pn/Qn ⇔ deg(P + αQ) < −degQ.

So we proved the equivalence (1)⇔(3). The equivalence (2)⇔(3) is easy to
prove.

The following result is analogous to Theorem H in [8].

Lemma 2.2. Suppose that ξ = [b0, b1, . . .] ∈ k∞−k and ξν = [bν , bν+1, . . .].
Let p, r, s ∈ R, deg r < deg s and rs = d 6= 0. If

ξ′ =
pξ + r

s
,

p[b0, b1, . . . , bν−1] + r

s
= [d0, d1, . . . , dµ−1],
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then ξ′ = [d0, d1, . . . , dµ−1, ξ
′
µ] where ξ′µ = (p′ξν + r′)/s′, p′, r′, s′ ∈ R,

p′s′ = ±d, deg r′ < deg s′.

P r o o f. For a non-singular matrix A =
(
a b

c d

)
over R and α ∈ k∞ we

define the action of A on α by

A(α) =
aα+ b

cα+ d
.

Let [b0, . . . , bm] = Am/Bm and [d0, . . . , dl] = Cl/Dl. From (2.4) we have

ξ′ =
Cµ−1ξ

′
µ + Cµ−2

Dµ−1ξ′µ +Dµ−2
=
(
Cµ−1 Cµ−2

Dµ−1 Dµ−2

)
(ξ′µ),

ξ′ =
(
p r
o s

)
(ξ) =

(
p r
o s

)(
Aν−1 Aν−2

Bν−1 Bν−2

)
(ξν).

Therefore ξ′µ =
(
p′ r′

t′ s′
)
(ξν) where

(
p′ r′

t′ s′

)
=
(
Cµ−1 Cµ−2

Dµ−1 Dµ−2

)−1(
p r
o s

)(
Aν−1 Aν−2

Bν−1 Bν−2

)
(2.8)

= ±
(−Dµ−2 Cµ−2

Dµ−1 −Cµ−1

)(
p r
o s

)(
Aν−1 Aν−2

Bν−1 Bν−2

)

= ±
(−pDµ−2 −rDµ−2 + sCµ−2

pDµ−1 rDµ−1 − sCµ−1

)(
Aν−1 Aν−2

Bν−1 Bν−2

)

and

t′ = ±(pDµ−1Aν−1 + rDµ−1Bν−1 − sCµ−1Bν−1)

= ±sDµ−1Bν−1

(
pAν−1/Bν−1 + r

s
− Cµ−1

Dµ−1

)
= 0,

s′ = ±(pDµ−1Aν−2 + rDµ−1Bν−2 − sCµ−1Bν−2),

r′ = ∓(pDµ−2Aν−2 + rDµ−2Bν−2 − sCµ−2Bν−2),

so that deg r′ < deg s′. From (2.8) we have

p′s′ =
∣∣∣∣
p′ r′

o s′

∣∣∣∣ = ±
∣∣∣∣
p r
o s

∣∣∣∣ = ±d.

This completes the proof of Lemma 2.2 (cf. Theorem 3 in Chapter IV of [7]).

3. Proof of Theorem 1.1. Suppose that N ∈ R̃−E, which means that
f(N) = A2N2 +BN + C is square-free,

√
f(N) ∈ k∞ and

(3.1) D = B2 − 4A2C | (2A2N +B)2.

Let

(3.2) ξ′ =
√
f(N) =

1
2A

√
(2A2N +B)2 −D.
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From (3.1) we know that there exist U, V,W ∈ R such that

(3.3) 2A2N +B = UVW, D = UV 2.

The formula (3.2) becomes

(3.4) ξ′ =
V

2A
ξ

where

ξ =
√
U2W 2 − U = [UW, 2W, 2UW ] = [UW, ξ′′],(3.5)

ξ′′ = [2W, 2UW ] = [2W, 2UW, ξ′′].(3.6)

Now we use Lemma 2.2 repeatedly to get the continued fraction expan-
sion of ξ′ =

√
f(N). Let

(3.7) η1 =
V UW

2A
=

2A2N +B

2A
= [a0, a1, . . . , aµ1−1].

From (3.5) and Lemma 2.2 we have

(3.8) ξ′ = [a0, a1, . . . , aµ1−1, ξ
′
1]

where

(3.9) ξ′1 =
p1ξ
′′ + r1

s1
, p1, r1, s1 ∈ R, p1s1 = ±2AV, deg r1 < deg s1.

In general, for each i ≥ 1 we have

(3.10) ξ′i =
piξ
′′ + ri
si

, pi, ri, si ∈ R, pisi = ±2AV, deg ri < deg si.

Let

ηi+1 =
pi[2W, 2UW ] + ri

si
=
pi(2W + 1/(2UW )) + ri

si
(3.11)

= [aµi , aµi+1, . . . , aµi+1−1].

From (3.6) and Lemma 2.2 we have

(3.12) ξ′i = [aµi , aµi+1, . . . , aµi+1−1, ξ
′
i+1]

where

ξ′i+1 =
pi+1ξ

′′ + ri+1

si+1
, pi+1, ri+1, si+1 ∈ R, pi+1si+1 = ±2AV,(3.13)

deg ri+1 < deg si+1.

Since A,B,C and D = B2−4A2C are fixed polynomials, we choose N such
that

(3.14) degN > max{deg(A2/B),deg(D/A)}.
From (3.3) we know that

deg(UVW ) = deg(A2N) > deg(AD) = deg(AUV 2)
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so that degW > deg(AV ) = deg(pisi) ≥ deg si (i ≥ 1). Therefore by (3.11),

deg aµi = deg[ηi+1] = deg
piW

si
≥ 1 (i ≥ 1)

and by (3.8) and (3.11) we have the continued fraction expansion of ξ′ =√
f(N):

(3.15)
√
f(N)

= [a0, . . . , aµ1−1, aµ1 , . . . , aµ2−1, . . . , aµi , aµi+1, . . . , aµi+1 , . . .].

The total number of tuples (p, r, s) satisfying ps = ±2AN and deg r <
deg s is at most M = q2 degAN+1, thus from (3.10) we know that there exist
l and j, 1 ≤ l < j ≤ M, such that ξ′l = ξ′j . From the expansion (3.15) we
know that

(3.16) p(
√
f(N)) ≤

j−1∑

i=l

(µi+1 − µi).

We use Lemma 2.2 again to estimate µl. Let
2Wpi + ri

si
= [c0, c1, . . . , ct−1].

By Lemma 2.2 and (3.11) we have

ηi+1 =
[
c0, c1, . . . , ct−1,

p′(2UW ) + r′

s′

]

where p′s′ = ±2AV and deg r′ < deg s′, so that deg(
√
p′(2UW ) + r′/s′) ≥

1. Let
p′(2UW ) + r′

s′
= [ct, ct+1, . . . , ct+λ−1].

Then ηi+1 = [c0, c1, . . . , ct−1, ct, . . . , ct+λ−1] and µi+1−µi = t+λ by (3.11).
From the recursive formula for Qi in (2.2) and deg ci ≥ 1 (0 ≤ i ≤ t+λ− 1)
we know that

t ≤ deg si ≤ deg(AV ), λ ≤ deg s′ ≤ deg(AV ).

Therefore µi+1 − µi = t+ λ ≤ 2 deg(AV ) and by (3.16),

p(
√
f(N)) ≤ (j − l)2 deg(AV ) ≤ 2M deg(AV ) ≤ 2 deg

√
(AV )q2 deg(AV+1)

provided the formula (3.14) is satisfied. Since there are only finitely many
N such that degN ≤ max{deg(A2/B),deg(D/A)}, this completes the proof
of Theorem 1.1.

4. Proof of Theorem 1.2. Now we assume that f(N) = A2N2+BN+C
and D = B2 − 4A2C - (2A2N +B)2. Let l = p(

√
f(N)) and

√
f(N) = [a0, a1, . . . , an, . . .],
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αi = [ai, ai+1, . . .], Pi/Qi = [a0, a1, . . . , ai],

ϕi = Pi +Qi
√
f(N), ϕi = Pi −Qi

√
f(N).

Then ε = ϕl−1 is the fundamental unit of the quadratic function field K =
k(
√
f(N)). Let

G = (A,B), β = DG−2, U = 2AG−1, V = BG−1.

We choose

A1 = AUN + V = (2A2N +B)G−1, B1 = U = 2AG−1

and
X = A1 +B1

√
f(N).

It is easy to see that

Norm(X) = XX = A2
1 −B2

1f(N) = β

where Norm denotes the norm for Fq(t,
√
f(N))/Fq(t). For each k ≥ 1, let

Xk = Ak +Bk
√
f(N), Ak, Bk ∈ R.

The polynomials Ak and Bk can be calculated recursively by

(4.1) Ak+1 = A1Ak +B1Bkf(N), Bk+1 = A1Bk +B1Ak.

Let

(4.2) Dk = (Ak, Bk), A′k = Ak/Dk, B′k = Bk/Dk, Nk = A′2k −B′kf(N).

Then (A′k, B
′
k) = 1. Finally we choose

(4.3) M =
[

deg f(N)
2 deg β

]
− 1.

Lemma 4.1. For 1 ≤ k ≤M , there exists ik such that A′k/B
′
k = Pik/Qik .

P r o o f. We have
deg(A′2k −B′2k f(N)) = deg(A2

k −B2
kf(N))− 2 degDk

≤ deg(A2
k −B2

kf(N)) = deg(Norm(Xk)) = k deg β

≤M deg β < 1
2 deg f(N).

Then the conclusion follows from Lemma 2.1 and deg(A′k +B′k
√
f(N)) ≥ 0.

Lemma 4.2. ik+1 − ik ≥ 2 for 1 ≤ k ≤M − 1.

P r o o f. From the condition D - (2A2N + B)2 we know that there is an
irreducible polynomial P = P (t) in R such that vP (D) > 2vP (2A2N + B),
which means that vP (β) > 2vP (A1) where vP is the normal P -adic expo-
nential valuation. From β = Norm(X) = A2

1 − B2
1f(N) we have vP (A2

1) =
vP (B2

1f(N)). Then (A1, B1) = 1 and f(N) ∈ R̃ imply that

(4.4) vP (B1) = vP (f(N)) = vP (A1) = 0.
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Now we prove that vP (Ak) = vP (Bk) = 0 for all k ≥ 1 by induction.
This is true for k = 1 from (4.4). Assume that vP (Bi) = vP (Ai) = 0
for some i ≥ 1. Since vP (f(N)) = 0, vP (β) > 2vP (A1) = 0 and βi =
A2
i − B2

i f(N), we know that A2
i ≡ B2

i f(N) (mod P ), which means that( f(N)
P

)
= 1 and P is split in the quadratic field K = Fq(t)(

√
f(N)) where(

P

)
means the Legendre symbol. Let P = pp̃ be the decomposition in K.

Then X = A1 + B1
√
f(N) has to be divisible by p or p̃. We can assume

that

A1 +B1

√
f(N) ≡ 0 (mod p).

From vP (B1) = 0 we know that vp(B1) = 0 so that

A1

B1
≡ −

√
f(N) (mod p).

Moreover, Ai + Bi
√
f(N) = (A1 + B1

√
f(N))i ≡ 0 (mod p). From the

assumption vP (Bi) = 0 we have

Ai/Bi ≡ −
√
f(N) (mod p).

Then from (4.1) we see that

Bi+1

B1Bi
=
A1

B1
+
Ai
Bi
≡ −2

√
f(N) 6≡ 0 (mod p),

which means that vp(Bi+1) = 0 so that vP (Bi+1) = 0. Finally we deduce
that vP (Ai+1) = 0 from βi+1 = A2

i+1−B2
i+1f(N). Thus we have proved that

vP (Ak) = vP (Bk) = 0 for all k ≥ 1. Then vP (Dk) = 0 since Dk = (Ak, Bk).
From (2.3) and (2.4) we have

√
f(N)− Pn

Qn
=

(−1)n+1

Qn(αn+1Qn +Qn−1)
.

Therefore

degϕn = deg(Pn −Qn
√
f(N)) = −deg(αn+1Qn +Qn−1)

= − deg(an+1Qn +Qn−1) = −degQn+1.

From deg(A1−B1
√
f(N)) < 0 and Dk |Dk+1 (by definition) we know that

−degQik+1 = degϕik = deg(Pik −Qik
√
f(N))

= deg(A′k −B′k
√
f(N))

= − degDk + deg(Ak −Bk
√
f(N))

= − degDk + k deg(A1 −B1

√
f(N))

> − degDk+1 + (k + 1) deg(A1 −B1

√
f(N))

= degϕik+1
= − degQik+1+1.
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Therefore degQik+1+1 > degQik+1 which means that ik+1 > ik. If ik+1 =
ik + 1, then

Pik+1Qik − PikQik+1 = Pik+1Qik − PikQik+1 = (−1)ik+1,

so that vP (Pik+1Qik − PikQik+1) = 0. On the other hand,

vP (Pik+1Qik − PikQik+1) = vP (A′k+1B
′
k −A′kB′k+1)

= vP (Ak+1Bk −AkBk+1)

(since vP (Dk) = vP (Dk+1) = 0)

= vP ((AkA1 +BkB1f(N))Bk
−Ak(AkB1 +A1Bk))

= vP (B1(A2
k −B2

kf(N))) = vP (βk)

(since vP (B1) = 0)

= kvP (β) > 0 (for k ≥ 1).

This contradiction shows that ik+1 − ik ≥ 2, which completes the proof of
Lemma 4.2.

Lemma 4.3. Let

M1 =
[

deg f(N)− 2 degU
2 deg β

]
− 1 (≤M).

Then degϕik < deg ε for all 1 ≤ k ≤M1 where ε = ϕl−1 is the fundamental
unit in K = Fq(t,

√
f(N)).

P r o o f. If degϕis ≥ deg ε for some s (1 ≤ s ≤M1), let s be the smallest
one satisfying this condition. Then

ϕisε = (Pis +Qis
√
f(N))(Pl−1 −Ql−1

√
f(N)) = A′ +B′

√
f(N)

where A′, B′ ∈ R, and

deg(A′2 −B′2f(N)) = deg(Norm(ϕis)) = deg(Norm(ϕisε)) <
1
2 deg f(N).

From Lemma 2.1 and deg(ϕisε) = degϕis − deg ε ≥ 0 we know that there
exists j such that ϕisε = αϕj for some α ∈ F∗q . Therefore D−1

s Xs = ϕis =
α′εϕj (α′ ∈ F∗q). If j ≥ i1, then

s degX ≥ deg(D−1
s Xs) = deg(εϕj) ≥ deg(εϕi1) = deg(εX) > degX > 0.

Thus s ≥ 2 and

degϕis−1 ≥ deg(Ds−1D
−1
s ϕis−1) = deg(D−1

s Xs−1) ≥ deg ε,

which contradicts the definition of s. Therefore j < i1. Since

deg(ϕjϕj) = deg(ϕisϕis) = deg(βsD−2
s ), ϕj = (−1)j+1(αj+1Qj+Qj−1)−1



Continued fractions in function fields 301

and degαj+1 = deg aj+1, we know that degϕj = − degQj+1 = − degQi1 =
− degU and

deg(βsU) ≥ deg(βsD−2
s U) ≥ deg(βsD−2

s ϕ−1
j ) = degϕj ≥ 1

2 deg f(N).

Therefore s ≥ (deg f(N)− 2 degU)/(2 deg β), which contradicts s ≤ M1.
This completes the proof of Lemma 4.3.

Now Theorem 1.2 is a direct consequence since Lemma 4.2 says that
ik+1 − ik ≥ 2 for 1 ≤ k ≤ M1 − 1 and Lemma 4.3 says that 1 ≤ ik ≤
p(
√
f(N)) for all 1 ≤ k ≤M1, so that

p(
√
f(N)) ≥ 2M1−1 = 2

[
deg f(N)− 2 degU

2 deg β

]
−1→∞ as degN →∞.

This completes the proof of Theorem 1.2.

Example. Let f(x) = x2 + C where C = 2a + 1, a ∈ R, deg a ≥ 1. We
have A = 1, B = 0, β = −4C = D and U = 1. For each k ≥ 2, we choose
N = Ck+a so that f(N) = (Ck+a)2 +C. Since D = −4C - (2A2N+B)2 =
4(Ck+a)2, N belongs to the set E for all k ≥ 2. We use Fact 2 to determine
the quasi-period p(

√
f(N)) as follows:

U0 = 0, V0 = 1, a0 = [
√
f(N)] = Ck + a,

U1 = Ck+a, V1 = C, a1 =
[

2Ck + 2a
C

]
=
[

2Ck + C − 1
C

]
= 2Ck−1 +1,

U2 = Ck + a+ 1, V2 = −2Ck−1, a2 =
[

2Ck + C

−2Ck−1

]
= −C,

U3 = Ck − a− 1, V3 =
C + (2Ck − 1)C
−2Ck−1 = −C2,

a3 =
[

2Ck − 1
−C2

]
= −2Ck−2,

U4 = Ck + a+ 1, V4 = 2Ck−2, a4 = C2,

U5 = Ck − a− 1, V5 = C3, a5 = 2Ck−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In general, V2i+1 = αCi+1, V2i = α′Ck−i, where α, α′ ∈ F∗q . If k = 2n,
then V2n/V2n+1 ∈ F∗q and p(

√
f(N)) = 4n + 1 = 2k − 1. If k = 2n, then

V2n−1/V2n ∈ F∗q and p(
√
f(N)) = 4n− 1 = 2k − 1. Therefore p(

√
f(N)) =

2k − 1 for all k ≥ 2. On the other hand,

2M1 − 1 = 2
[

deg f(N)− 2 degU
2 deg β

]
− 1 =

2 deg(Ck + a)
degC

− 1 = 2k − 1.
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Therefore p(
√
f(N)) = 2M1 − 1, which shows that our general estimate

p(
√
f(N)) ≥ 2M1 − 1 is the best one.
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