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1. Introduction and results. In a sequence of three papers Mahler
([4]–[6]) discussed the transcendence and algebraic independence of values of
functions in several variables satisfying a certain type of functional equation.
In his survey article [7], 37 years later, he stated three new problems. The
third problem (for the first and second problem cf. Loxton and van der
Poorten [3]) dealt with implicit functional equations of the type

(1) P (z, f(z), f(Tz)) = 0

with Tz = zd, d ∈ Z, d ≥ 2 and a polynomial P (z, y, u) with coefficients in
Q, the algebraic closure of Q. Nishioka [8] (cf. Chapter 1.5 in [11]) solved this
problem for polynomial transformations T . In [9] she extended her method
to functions in several variables and suitable generalizations of the transfor-
mation Tz = zd.

Becker [1] generalized the result of Nishioka to algebraic transforma-
tions T. Töpfer gave in [15] a quantitative version of Becker’s result. In that
article Töpfer asked for a proof of the algebraic independence of the val-
ues of several functions satisfying implicit functional equations at algebraic
points.

In this paper we follow the proof of Töpfer [15] and derive a lower bound
for the transcendence degree of the values of functions f1, . . . , fm satisfy-
ing a special system of implicit functional equations for the transformation
Tz = zd with an integer d ≥ 2. It should be easy to generalize the follow-
ing result to polynomial or even rational or algebraic transformations T (cf.
Becker [1] and Töpfer [14, 15]).

For the development of Mahler’s method in the last 15 years see the
monograph of Nishioka [11] and the overview article of Waldschmidt [16] for
further references.
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2 B. Greuel

Throughout the paper let K denote an algebraic number field and OK
the ring of integers in K. As usual we denote by α the house of an algebraic
number α, which is the maximum of the absolute values of the conjugates
of α. A denominator of an algebraic number α is a positive integer D such
that Dα ∈ OK. If P (z, y1, . . . , ym) =: P (z, y ) is a polynomial with complex
coefficients, degz P =: dzP denotes the partial degree of P with respect to z,
degyP =: dyP denotes the total degree in y := (y1, . . . , ym) and analogous
notations in other cases. If the coefficients of P are algebraic, the height
H(P ) of P is defined as the maximum of the houses of the coefficients of P ,
and the length L(P ) is the sum of the houses of the coefficients. In what
follows let c, c0, c1, . . . and γ0, γ1, . . . denote positive constants which are
independent of the parameters M,N, k, k0, k1 used. For a vector µ ∈ Cm we
define |µ| := |µ1|+ . . .+ |µm| and by N and N0 we denote the positive and
nonnegative integers.

Theorem 1. Let f1, . . . , fm be analytic in a neighborhood U of the ori-
gin, algebraically independent over C(z) and suppose that the coefficients of
their power series

fi(z) =
∞∑

j=0

fi,jz
j (i = 1, . . . ,m)

belong to a fixed algebraic number field K and satisfy

fi,j ≤ exp(c0(1 + jL)) and D[c0(1+jL)]fi,j ∈ OK
for j ∈ N0 and i = 1, . . . ,m with suitable constants D ∈ N and L ≥ 1. Let
n ∈ Nm and β := n1 · . . . · nm. Suppose that the functions f1, . . . , fm satisfy
the functional equations

(2) a(z)fj(zd)nj =
nj−1∑
ν=0

Pν,j(z, f(z))fj(zd)ν

with polynomials a ∈ Q[z]\{0} and P0,1, . . . , Pnm−1,m ∈ Q[z, y ] and an
integer d satisfying d > max{βL, dy(P )}, where dy(P ) is defined by

dy(P ) := max{degy(P0,1), . . . , degy(Pnm−1,m)}.

Assume α ∈ Q∗ ∩ U and a(αd
k

) 6= 0 for all k ∈ N0. Let m0 be the smallest
integer satisfying

m0 ≥
m log d− L(m+ 1) log β

(
1 + log β

log d

)

log β + log d+
(
L(m+ 1)

(
1 + log β

log d

)
+m

)
(2 log β + log dy(P ))

.

Then

trdegQQ(f1(α), . . . , fm(α)) ≥ m0.
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As an application of this theorem we obtain easily the following

Corollary 2. Under the assumptions of Theorem 1, if α, f and the
parameters d, β and dy(P ) satisfy for m > 1 the inequality

log dy(P )

log d
<

1− log β
log d

(
2m2 −m− 1 + L(m+ 1)

(
1 + log β

log d

)
(2m− 1)

)

(m− 1)
(
L(m+ 1)

(
1 + log β

log d

)
+m

) ,

then f1(α), . . . , fm(α) are algebraically independent.

Remarks. (i) Nishioka [8] proved the transcendence of f(α) under the
condition d2 > n2 max{d,degy(P )}, where f satisfies the functional equation
(1) and n = degu(P ).

Under the hypotheses of Theorem 1 we get the transcendence of f(α)
only under the stronger condition d > max{n

√
3+1, degy(P )}. The reason

for this is that we have to construct a sequence of polynomials (Qk)k0≤k≤k1 ,
where the difference k1− k0 has to be relatively large (cf. Lemma 8). In the
simpler case m = 1 it suffices to find just one integer k to obtain a contradic-
tion. By an improvement of the method of proof we get the transcendence
of f(α) under the condition d > max{n2, degy(P )}, which coincides with
the condition of Nishioka in the case d > degy(P ). Note that we have to
assume d > dy(P ) only for technical reasons (cf. formula (24)).

(ii) Töpfer proved in [15] a transcendence measure for f(α) under the
condition d > nmax{n, degy(P )}.

(iii) For m ≥ 1 and β = 1 we get the result of Nishioka [10]. In [10]
one can also find a lot of applications. For other examples in this case, but
dy(P ) = 1, see Chirskĭı [2] and Töpfer [14].

Our next example deals with infinite products of the form

fn(z) :=
∞∏

j=0

(1− zdj )nj,

where d and n are positive integers with d ≥ 2.
Let 1 ≤ n1 < . . . < nm (m ≥ 2). Then the functions fni are analytic for

|z| < 1 and satisfy the functional equations

fni(z) = (1− z)fni(zd)ni (i = 1, . . . ,m).

Hence we have the following:

Corollary 3. Let 1 ≤ n1 < . . . < nm be integers and β := n1 · . . . · nm.
If α is algebraic with 0 < |α| < 1 and d is an integer with

log d > (2m2 − 1 +
√

4m4 − 2m2 +m) log β,
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then the values
∞∏

j=0

(1− αdj )nj1 , . . . ,
∞∏

j=0

(1− αdj )njm

are algebraically independent over Q. Under the corresponding conditions on
α, d and n we get the algebraic independence of

∞∏

j=0

(1− αdj ),
∞∏

j=0

(1− αdj )2j , . . . ,

∞∏

j=0

(1− αdj )nj .

Remark. Nishioka proved (Theorem 3.4.13 in [11]) the algebraic inde-
pendence of

∞∏

j=0

(1− αdj ) (d = 2, 3, . . .)

for any algebraic number α with 0 < |α| < 1.

P r o o f (of Corollary 3). The algebraic independence of the functions
fn1 , . . . , fnm over C(z) will be shown in the last section.

By the remark after Lemma 4, fn1 , . . . , fnm satisfy the conditions for the
houses and denominators of the coefficients in Theorem 1 for any L > 1.
Then the assumption of Corollary 3 follows immediately from Theorem 1
and Corollary 2.

2. Preliminaries and auxiliary results. For µ ∈ N0, µ ∈ Nm0 and
fi(z) :=

∑∞
j=0 fi,jz

j (i = 1, . . . ,m) we define

fi(z)µ :=
∞∑

j=0

f
(µ)
i,j z

j , f
(µ)
i,j :=

∑

ν1,...,νµ∈N0
ν1+...+νµ=j

fi,ν1 · . . . · fi,νµ ,(3)

f(z)µ := f1(z)µ1 · . . . · fm(z)µm =
∞∑

j=0

f
(µ)
j zj ,

f
(µ)
j :=

∑

ν1,...,νm∈N0
ν1+...+νm=j

f
(µ1)
1,ν1
· . . . · f (µm)

m,νm .
(4)

Lemma 4. If fi,j ≤ exp(c0(1 + jL)) and D[c0(1+jL)]fi,j ∈ OK for i =
1, . . . ,m and all j ∈ N0 with L ≥ 1 and D ∈ N, then for all µ ∈ N0 and
µ ∈ Nm0 the following assertions hold :

(i) f
(µ)
i,j ≤ exp(c1(µ+ jL)), D[c1(µ+jL)]f

(µ)
i,j ∈ OK,

(ii) f
(µ)
j ≤ exp(c2(|µ|+ jL)), D[c2(|µ|+jL)]f

(µ)
j ∈ OK.
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P r o o f. Assertions (i) and (ii) are consequences of the identities (3) and
(4) using the fact that the number of ν ∈ Nµ0 with ν1 + . . . + νµ = j is
bounded by

(
j+µ−1
µ−1

) ≤ 2j+µ.

Remark. If the functions f1, . . . , fm satisfy functional equations of type

Pi(z, fi(z), fi(zd)) = 0 (i = 1, . . . ,m)

with polynomials Pi ∈ Q[z, y, u]\{0} and degu(Pi) ≥ 1, we see that there
exist an algebraic number field K, an explicit computable constant c > 0
and a positive integer D ∈ N such that for j ∈ N0 and all ε > 0:

(i) fi,j ∈ K,
(ii) fi,j ≤ exp(c(1 + j1+ε)),

(iii) D1+jfi,j ∈ OK
hold, i.e. the conditions of Lemma 4 are fulfilled for all L > 1. For a proof
of this remark see Lemma 1.5.3 of Nishioka [11] and Proposition 1 of Becker
[1] for a more general result.

Lemma 5. For N ∈ N there exists a polynomial R ∈ OK[z, y ]\{0} with
the following properties:

(i) degz R ≤ N , degy R ≤ N ,

(ii) logH(R) ≤ c3N (m+1)L,
(iii) ν := ord0R(z, f(z)) ≥ c4Nm+1

for suitable constants c3, c4 ∈ R+.

P r o o f. Put

R(z, y ) :=
N∑

λ=0

∑

|µ|≤N
rλ,µz

λyµ

with (N + 1)
(
N+m
m

)
unknown coefficients rλ,µ. Then

R(z, f(z)) :=
N∑

λ=0

∑

|µ|≤N
rλ,µz

λf(z)µ =
∞∑

h=0

βhz
h (say)

with (cf. the identity (4))

(5) βh =
min{h,N}∑

λ=0

∑

|µ|≤N
rλ,µ f

(µ)
h−λ.

Assertion (iii) is equivalent to the condition βh = 0 for 0 ≤ h < c4N
m+1,

and this yields at most [c4Nm+1] + 1 equations in the

(N + 1)
(
N +m

m

)
≥ 1
m!
N1+m > 2c4Nm+1 + 1
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unknowns rλ,µ for a suitable constant c4. After multiplication with a suit-

able denominator D[c2N(1+m)L] according to Lemma 4 the coefficients f
(µ)
h−λ

are algebraic integers and their houses are bounded by exp(c5(N (1+m)L)).
Siegel’s lemma (cf. Hilfssatz 31 in Schneider [12]) yields the assertion.

Lemma 6. Let ν be as in Lemma 5 and βh denote the Taylor coefficients
of R(z, f(z)) as in the proof. Then

(i) |βh| ≤ exp(c6(h+N (1+m)L)) ≤ exp(c7(h+ νL)).
(ii) |βν | ≥ exp(−c8νL).

(iii) Suppose that k ∈ N satisfies dk ≥ c9ν
L with ν,N,L as above and

a suitable constant c9 ∈ R+ depending only on f and α. Then there exist
constants c10, c11 ∈ R+ depending only on f and α such that

−c10νd
k ≤ log |R(T k(α), f(T k(α)))| ≤ −c11νd

k,

where T k(α) denotes the kth iterate of T at the point α.

P r o o f. From (5) we get

βh =
min{h,N}∑

λ=0

∑

|µ|≤N
rλ,µf

(µ)
h−λ.

This representation together with Lemma 5 and the inequality |fi,j | ≤
exp(γ0(j + 1)) (notice that the functions f1, . . . , fm are analytic in a neigh-

borhood of 0), hence |f (µ)
h | ≤ exp(γ1(|µ|+ h)) with γ0, γ1 ∈ R+, implies the

first estimate of Lemma 6.
For D, L, c4 as above and ν as in Lemma 5 we get (recall ν ≥ c4N1+m)

D[γ2(N+νL)]βν ∈ OK
and

βν ≤ exp(γ3(N (1+m)L + νL +N)) ≤ exp(γ4ν
L).

By a Liouville estimate we obtain the second part.
We now come to the last part of Lemma 6. By Lemma 5 we write

R(T k(α), f(T k(α))) = βν(T k(α))ν
(

1 +
∞∑

h=1

βh+ν

βν
(T k(α))h

)

and by the assumption on k and the first two parts of Lemma 6 we get
∣∣∣∣
∞∑

h=1

βh+ν

βν
(T k(α))h

∣∣∣∣ ≤
∞∑

h=1

exp(c7(νL + h) + c8ν
L − γ5hd

k)

≤
∞∑

h=1

exp(γ6ν
L − γ7hd

k) <
1
2
.
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Now the assertion follows from |T k(α)|ν = exp(−γ8νd
k) and exp(−c8νL) ≤

|βν | ≤ exp(2c7νL).

Lemma 7. Let S,U1, . . . , Ud ∈ C satisfy Sd +U1S
d−1 + . . .+Ud = 0 and

−X1 ≤ log |S| ≤ −X2, log |Ui| ≤ Y (1 ≤ i ≤ d)

for X1, X2, Y ∈ R+. Then there exists j ∈ {1, . . . , d} such that

−dX1 − Y − log d ≤ log |Uj | ≤ −X2 + Y + log d.

P r o o f. This is Lemma 4.2.3 of Wass [17].

Remark. The examples Sd + Ud = 0 and Sd + U1S
d−1 = 0 show that

the bounds for |Uj | cannot be improved.

The proof of Theorem 1 depends on the following result from elimination
theory, which can be found in Töpfer [13, Theorem 1] with slight modifica-
tions.

Lemma 8. Suppose ω ∈ Cm and K is an algebraic number field. Then
there exists a constant c12 = c12(ω,K) ∈ R+ with the following prop-
erty : If there exist increasing functions ψ1, ψ2, Λ : N → R+, real numbers
Φ2 ≥ Φ1 ≥ c12, positive integers k0 < k1, m0 ∈ {0, . . . ,m} and polynomials
(Qk)k0≤k≤k1 ∈ OK[ y ] such that the following assumptions are satisfied :

(i) 1 ≤ ψ1(k+ 1)/ψ2(k) ≤ Λ(k) and ψ2(k) ≥ c12(logH(Qk) + degy Qk)
for k ∈ {k0, . . . , k1},

(ii) the polynomials (Qk)k0≤k≤k1 satisfy , for k ∈ {k0, . . . , k1},
(a) degy Qk ≤ Φ1,
(b) logH(Qk) ≤ Φ2,
(c) −ψ1(k) ≤ log |Qk(ω)| ≤ −ψ2(k),

(iii) ψ2(k1) ≥ c12Λ(k1)m0−1Φm0−1
1 max{ψ1(k0), Φ2},

then trdegQQ(ω) ≥ m0.

3. Construction of an auxiliary function. Since the case β = 1 (i.e.
n1 = . . . = nm = 1) was treated by Nishioka [10] we can assume β > 1.

The proof is rather long, so we give a short sketch of the main steps.
In the first step we show how the powers of f(α) can be reduced by using
the functional equations. In the second step we consider R(T k(α), f(T k(α)))
for a polynomial R and construct by induction a polynomial Rk, with de-
grees and height depending only on the degrees and height of R and on
d, β, dy(P ) and k, such that |Rk(α, f(α))| has almost the same analytic
bounds as |R(T k(α), f(T k(α)))|. In the last step we use this polynomial Rk
to construct a suitable sequence of polynomials Qk ∈ OK[ y ] satisfying the
assumptions of Lemma 8 and prove Theorem 1 by Lemma 8.
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For a real number a we define a+ := max{a, 0} = 1
2 (a+ |a|).

Let K be an algebraic number field containing α, the coefficients of
f1, . . . , fm (cf. the assumption of Theorem 1 and Lemma 4) and the co-
efficients of the polynomials a, P0,1, . . . , Pnm−1,m. Without loss of generality
we can assume a ∈ OK[z] and P0,1, . . . , Pnm−1,m ∈ OK[z, y ].

In what follows let k ∈ N be fixed. Under the conditions of Theorem 1
on α, d and f we put for abbreviation

τκ := αd
κ

, ϕi,κ := fi(αd
κ

) and ϕκ := (f1(αd
κ

), . . . , fm(αd
κ

)).

For j = 1, . . . ,m let Pnj ,j := a and we define the following notations:

dz(P ) := max{degz(P0,1), . . . , degz(Pnm,m)},
dy(P ) := max{degy(P0,1), . . . , degy(Pnm,m)},
L(P ) := max{L(P0,1), . . . , L(Pnm,m)}.

Lemma 9. Suppose that k ∈ N and λ ∈ N0. Then for all j = 1, . . . ,m we
have

(a(τk−1)fj(τk))λ =
nj−1∑

i=0

P
(k)
i,λ,j(τk−1, ϕk−1)(a(τk−1)fj(τk))i

with polynomials P (k)
i,λ,j ∈ OK[z, y ] satisfying

dz(P
(k)
i,λ,j) ≤ (λ− i)+dz(P ),

dy(P (k)
i,λ,j) ≤ (λ− i)+dy(P ),

L(P (k)
i,λ,j) ≤ 2(λ−nj)+L(P )(λ−i)+ .

P r o o f. For λ ∈ {0, . . . , nj − 1} we choose P (k)
i,λ,j = δi,λ, where δi,k is the

Kronecker symbol, and the assertions are obvious.
Let now λ = nj + l for l ∈ N0. We show the assertion by induction on l.

This is obvious for l = 0 because of (2) and

(a(τk−1)fj(τk))nj =
nj−1∑

i=0

Pi,j(τk−1, ϕk−1)a(τk−1)nj−1−i(a(τk−1)fj(τk))i,

with P
(k)
i,nj ,j

(z, y ) := Pi,j(z, y )a(z)nj−1−i.
In the induction step the assertion follows from

(a(τk−1)fj(τk))nj+l+1 = (a(τk−1)fj(τk))nj+l(a(τk−1)fj(τk))

=
nj−1∑

i=0

P
(k)
i,nj+l,j(τk−1, ϕk−1)(a(τk−1)fj(τk))i+1
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=
nj−2∑

i=0

P
(k)
i,nj+l,j(τk−1, ϕk−1)(a(τk−1)fj(τk))i+1

+ P
(k)
nj−1,nj+l,j(τk−1, ϕk−1)(a(τk−1)fj(τk))nj

=
nj−2∑

i=0

P
(k)
i,nj+l,j(τk−1, ϕk−1)(a(τk−1)fj(τk))i+1

+ P
(k)
nj−1,nj+l,j(τk−1, ϕk−1)

×
nj−1∑

i=0

P
(k)
i,nj ,j

(τk−1, ϕk−1)(a(τk−1)fj(τk))i

=
nj−1∑

i=0

P
(k)
i,nj+l+1,j(τk−1, ϕk−1)(a(τk−1)fj(τk))i.

So we get

P
(k)
i,nj+l+1,j(z, y ) := P

(k)
i−1,nj+l,j(z, y ) + P

(k)
nj−1,nj+l,j(z, y )P (k)

i,nj ,j
(z, y ),

where P (k)
−1,nj+l,j(z, y ) := 0.

By induction it follows that P (k)
i,nj+l+1,j ∈ OK[z, y ] and

dz(P
(k)
i,nj+l+1,j) ≤ (nj + l + 1− i)dz(P ),

dy(P (k)
i,nj+l+1,j) ≤ (nj + l + 1− i)dy(P ),

L(P (k)
i,nj+l+1,j) ≤ 2l+1L(P )nj+l+1−i.

In the reduction step we replace R(τk, ϕk) =: R0(τk, ϕk) for an arbitrary
polynomial R ∈ OK[z, y ] inductively by Rl(τk−l, ϕk−l) and finally get a
polynomial Rk with almost the same bounds for |Rk(α, f(α))|, the degrees
and the height of Rk as R0.

Lemma 10. Suppose k ∈ N and R ∈ OK[z, y ]. Then there exists a poly-
nomial

R∗(z, u, y ) :=
∑

µ∈M
R∗µ(z, u)yµ ∈ OK[z, u, y ]

with M := {0, 1, . . . , n1 − 1} × . . .× {0, 1, . . . , nk − 1} and

dyj (R
∗) ≤ nj − 1 (j = 1, . . . ,m),

dz(R∗µ) ≤ ddz(R) + dz(P )dy(R),

du(R∗µ) ≤ dy(P )dy(R),

L(R∗µ) ≤ L(R)L(P )dy(R)2dy(R)
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such that

a(τk−1)dy(R)
R(τk, ϕk) = R∗(τk−1, ϕk−1, a(τk−1)ϕk).

P r o o f. From the representation

R(z, y ) :=
dz(R)∑

i=0

∑

|j|≤dy(R)

Ri,jz
iyj

we get, by Lemma 9,

a(τk−1)dy(R)
R(τk, ϕk) =

dz(R)∑

i=0

∑

|j|≤dy(R)

Ri,jτ
i
ka(τk−1)dy(R)−|j|(a(τk−1)ϕk)j

=
∑

µ∈M
R∗µ(τk−1, ϕk−1)(a(τk−1)ϕk)µ,

where

R∗µ(z, u)

:=
dz(R)∑

i=0

∑

|j|≤dy(R)

Ri,jz
dia(z)dy(R)−|j|

P
(k)
µ1,j1,1(z, u) · . . . · P (k)

µm,jm,m
(z, u).

Now the bounds for the partial degrees dyj are obvious. From Lemma 9 we
get

dz(R∗µ) ≤ ddz(R) + dz(P )dy(R)

+ dz(P ) max
{ m∑

i=1

(ji − µi)+ − ji : |j| ≤ dy(R)
}

≤ ddz(R) + dz(P )dy(R)

and similarly we derive the upper bound for du. The length can be bounded
in an analogous way by

L(R∗µ) ≤ L(R)2max{∑m
i=1(ji−ni)+:|j|≤dy(R)}

L(P )dy(R)

≤ L(R)L(P )dy(R)2dy(R)
.

Lemma 11. Suppose that R∗ ∈ OK[z, u, y ] is the polynomial in Lemma
10. Then there exist polynomials U1, . . . , Uβ ∈ OK[z, u] such that

R∗β + U1R
∗β−1 + . . .+ Uβ = 0

at the point (z0, u0, y0
) := (τk−1, ϕk−1, a(τk−1)ϕk) and

dz(Ul) ≤ βddz(R) + βdz(P )(dy(R) + |n|),
du(Ul) ≤ βdy(P )(dy(R) + |n|),
L(Ul) ≤ exp(c13(dz(R) + dy(R)))H(R)β .
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P r o o f. With R∗(z, u, y ) :=
∑
µ∈M R∗µ(z, u)yµ as in Lemma 10 we put

for ν ∈M ,

R∗(τk−1, ϕk−1, a(τk−1)ϕk)(a(τk−1)ϕk)ν

=
∑

µ∈M
R∗µ(τk−1, ϕk−1)(a(τk−1)ϕk)µ+ν

=
∑

λ∈M
Rλ,ν(τk−1, ϕk−1)(a(τk−1)ϕk)λ,

with (cf. Lemma 9)

Rλ,ν(z, u) :=
∑

µ∈M
R∗µ(z, u)P (k)

λ1,µ1+ν1,1(z, u) · . . . · P (k)
λm,µm+νm,m(z, u).

The degrees and length of Rλ,ν can be bounded by Lemmas 9 and 10:

dz(Rλ,ν) ≤ max
µ∈M

{
dz(R∗µ) +

m∑

j=1

dz(P
(k)
λj ,µj+νj ,j)

}

≤ ddz(R) + dz(P )dy(R) + dz(P ) max
µ∈M

{ m∑

j=1

(µj + νj − λj)+

}

≤ ddz(R) + dz(P )(dy(R) + |n|+ |ν| − |λ|).
Similarly

du(Rλ,ν) ≤ dy(P )(dy(R) + |n|+ |ν| − |λ|),
L(Rλ,ν) ≤ L(R)L(P )dy(R)+|n|+|ν|−|λ|2dy(R)+|ν| ≤ γ1L(R)γ

dy(R)
2 ,

where the constants γ1, γ2 ∈ R+ depend only on P and n.
Thus the system of β linear equations with β unknowns,
∑

λ∈M
{Rλ,ν(τk−1, ϕk−1)− δλ,νR∗(τk−1, ϕk−1, a(τk−1)ϕk)}ωλ = 0,

where

δλ,ν :=
{

1 if λ = ν,
0 else

is the generalized Kronecker symbol, has for ω := (ωλ)λ∈M a nontrivial
solution

ωλ := (a(τk−1)ϕk)λ.

Hence the determinant of the matrix of coefficients must vanish at the point
(z0, u0, y0

) := (τk−1, ϕk−1, a(τk−1)ϕk), and the expansion of the determinant
with respect to the powers of R∗(τk−1, ϕk−1, a(τk−1)ϕk) implies
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0 = det(Rλ,ν − δλ,νR∗)λ,ν∈M = ±(R∗β + U1R
∗β−1 + . . .+ Uβ)

with polynomials Ul ∈ OK[z, u ].
Since the polynomials Ul are sums of products of the form

Rλ1,σ(λ1) · . . . ·Rλs,σ(λs),

where λ1, . . . , λs ∈ M are pairwise distinct and σ := (σ1, . . . , σm) is a per-
mutation of {0, . . . , n1 − 1} × . . . × {0, . . . , nm − 1}, for l ∈ {1, . . . , β} we
get

du(Ul) ≤ max
σ

{∑

λ∈M
du(Rλ,σ(λ))

}
≤ βdy(P )(dy(R) + |n|)

because ∑

λ∈M
(|λ| − |σ(λ)|) = 0.

By analogy we obtain

dz(Ul) ≤ max
σ

{∑

λ∈M
dz(Rλ,σ(λ))

}
≤ βddz(R) + βdz(P )(dy(R) + |n|).

The length of Ul can be bounded by

L(Ul) ≤ β! max{L(Rλ,ν) : λ, ν ∈M}β ,
with

L(Rλ,ν) ≤ exp(c13(dz(R) + dy(R)))H(R).
Lemma 11 is proved.

Now the necessary tools for the reduction step from R0 to Rk are com-
plete, and we prove for j = 0, . . . , k the existence of polynomials Rj ∈
OK[z, y ] such that for j = 0,

(6)
dz(R0) := d1,0, dy(R0) := d2,0, logH(R0) := H0,

exp(−ψ1(0)) ≤ |R0(τk, ϕk)| ≤ exp(−ψ2(0)),

and for j ≥ 1:

dy(Rj) =: d2,j ≤ βdy(P )(d2,j−1 + |n|),(7)

dz(Rj) =: d1,j ≤ βdd1,j−1 + βdz(P )(d2,j−1 + |n|),(8)

logH(Rj) =: Hj ≤ βHj−1 + c14(d1,j−1 + d2,j−1).(9)

Here the constant c14 > 0 depends only on f and α and

(10) exp(−ψ1(j)) ≤ |Rj(τk−j , ϕk−j)| ≤ exp(−ψ2(j)).

The functions ψ1, ψ2 satisfy for j ≥ 1 the following recurrence equalities:

ψ1(j) := βψ1(j − 1) + βHj−1 + c15(d1,j−1 + dk−jd2,j−1) + log β,(11)

ψ2(j) := ψ2(j − 1)− βHj−1 − c16(d1,j−1 + d2,j−1)− log β(12)
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provided that

(13) ψ2(0) ≥ c17β
k(H0 + dk(d1,0 + d2,0)),

where c15, c16, c17 ∈ R+ are suitable constants depending only on f and α.

The existence of the polynomials will be proved in the next section. First
we will derive upper bounds for d1,j , d2,j , Hj and ψ1(j) and a lower bound
for ψ2(j).

Obviously (7) implies

d2,j ≤ γ0(βdy(P ))j(d2,0 + |n|) ≤ c18(βdy(P ))jd2,0,

and for d1,j we get inductively (note that d > dy(P ) by the condition of
Theorem 1)

d1,j ≤ (βd)jd1,0 + βdz(P )
j−1∑

i=0

(βd)i(d2,j−i−1 + |n|) ≤ c19(βd)j(d1,0 + d2,0).

For Hj , the logarithm of the height of Rj , we get in a similar way

Hj ≤ βjH0 + γ1

j−1∑

i=0

βi(d1,j−i−1 + d2,j−i−1) ≤ βjH0 + c20(d1,0 + d2,0)(βd)j .

Now we can easily deduce from (11) and the above estimates that

ψ1(k) = βkψ1(0)(14)

+
k−1∑

i=0

βi{βHk−i−1 + c15(d1,k−i−1 + did2,k−i−1) + log β}

≤ βkψ1(0) + kβkH0 + c21(βd)k(d1,0 + d2,0).

In a similar way (cf. (13)) we can derive a lower bound for ψ2(k):

ψ2(k) = ψ2(0)−
k−1∑

i=0

{βHk−i−1 + c16(d1,k−i−1 + d2,k−i−1) + log β}(15)

≥ ψ2(0)− c22β
k(H0 + dk(d1,0 + d2,0)).

Now we prove by induction on j = 0, . . . , k the existence of a sequence
of polynomials Rj ∈ OK[z, y ] satisfying the conditions (6)–(10). For j = 0,
this is a consequence of Lemmas 5 and 6 with R0 := R and

(16)
d1,0, d2,0 ≤ N, H0 ≤ c3N (m+1)L,

ψ1(0) := c10νd
k, ψ2(0) := c11νd

k

provided that dk ≥ c9ν
L for a suitable constant c9 > 0. Now suppose that

the assertions are true for j − 1 (j ∈ {1, . . . , k}). We apply Lemmas 10
and 11 with R replaced by Rj−1. This yields the existence of polynomials
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U1, . . . , Uβ ∈ OK[z, u] with

dz(Ul) ≤ βdd1,j−1 + βdz(P )(d2,j−1 + |n|),
du(Ul) ≤ βdy(P )(d2,j−1 + |n|),

logH(Ul) ≤ γ1(d1,j−1 + d2,j−1) + βHj−1

for l = 1, . . . , β such that

R∗βj−1 + U1R
∗β−1
j−1 + . . .+ Uβ = 0

for (z0, u0, y0
) := (τk−j , ϕk−j , a(τk−j)ϕk−(j−1)). Here R∗j−1 ∈ OK[z, u, y ] is

defined analogously to Lemma 10 by

a(τk−j)d2,j−1Rj−1(τk−(j−1), ϕk−(j−1))

= R∗j−1(τk−j , ϕk−j , a(τk−j)ϕk−(j−1)).

The induction hypothesis together with the fact that −γ2d
k ≤ log |a(τk)| ≤

γ3 for k ∈ N0, implies

−ψ1(j − 1)− γ4d
k−jd2,j−1 ≤ log |R∗j−1(τk−j , ϕk−j , a(τk−j)ϕk−(j−1))|

≤ − ψ2(j − 1) + γ5d2,j−1.

For l = 1, . . . , β we obtain by a standard estimate together with Lemma 11,

|Ul(τk−j , ϕk−j)| ≤ L(Ul) max{1, |τk−j |, |ϕ1,k−j |, . . . , |ϕm,k−j |}dz(Ul)+du(Ul)

≤ exp(βHj−1 + γ6(d1,j−1 + d2,j−1)),

where the constant γ6 ∈ R+ depends only on f and α.
By (13) and (16) we see that

ψ2(j − 1)− (βHj−1 + γ7(d1,j−1 + d2,j−1) + log β) > 0

and by Lemma 7 we get the existence of l0 ∈ {1, . . . , β} such that

log |Ul0(τk−j , ϕk−j)| ≤ − ψ2(j − 1) + γ8d2,j−1 + βHj−1

+ γ9(d1,j−1 + d2,j−1) + log β

≤ − ψ2(j − 1) + βHj−1 + c16(d1,j−1 + d2,j−1) + log β

= − ψ2(j)

and

log |Ul0(τk−j , ϕk−j)|
≥ − βψ1(j − 1)− γ10βd

k−jd2,j−1 − βHj−1

− γ11(d1,j−1 + d2,j−1)− log β

≥ − βψ1(j − 1)− βHj−1 − c15(d1,j−1 + βdk−jd2,j−1)− log β

= − ψ1(j).
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Thus we put Rj(z, y ) := Ul0(z, y ) ∈ OK[z, y ] and see that (6)–(10) are
proved for the polynomial Rj .

4. Proof of Theorem 1. Now the necessary tools for the proof of
Theorem 1 are complete. From the preceding section with j = k we know
that for k,N ∈ N sufficiently large with

dk ≥ c9νL,(17)

νdk ≥ c23β
k(N (1+m)L + dkN)(18)

for sufficiently large constants c9, c23 > 0, there exist polynomials Rk ∈
OK[z, y ] with

dz(Rk) ≤ c24(βd)kN,(19)

dy(Rk) ≤ c18(βdy(P ))kN,(20)

logH(Rk) ≤ c25(βd)kN,(21)

−c26(βd)kν ≤ log |R(α, f(α))| ≤ −c27d
kν.(22)

The estimates for the degrees (19) and (20) are obvious from (16) and the
above estimates. The upper bound for the height (21) of Rk and a lower
bound for the right-hand side of (22) could be derived from (18) and (15).

With (14) and (16) it follows from (18) that

ψ1(k) ≤ γ1β
kdkν + γ2kβ

k(N (1+m)L + dkN) ≤ γ1β
kdkν + γ3kd

kν

and this gives the left-hand inequality of (22); note that β ≥ 2.
In order to use Lemma 8 we define the polynomials (Qk)k0≤k≤k1 ∈ OK[ y ]

by

Qk(y ) := Ddz(Rk)Rk(α, y ),

where D ∈ N is a denominator of α.
Because of (18) and (19) and the condition dy(P ) < d we obtain, for

k ∈ N,

dy(Qk) ≤ c18(βdy(P ))kN,

logH(Qk) ≤ c28(βd)kN,

log |Qk( f(α))| ≤ − c29d
kν + c30(βd)kN ≤ −c31νd

k,

log |Qk( f(α))| ≥ − c32ν(βd)k.

Now for N ∈ N we define a number M ≥ N by ν := c4M
m+1 and for

positive integers k0 ≤ k ≤ k1, where k0 < k1 will be specified later, we
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define the following functions:

(23)

Φ1 := c18(βdy(P ))k1M, Φ2 := c28(βd)k1M,

ψ1(k) := c32ν(βd)k, ψ2(k) := c31νd
k,

Λ(k) :=
ψ1(k + 1)
ψ2(k)

=
c32dβ

c31
βk.

With a sufficiently large constant γ4 ∈ R+ we define, for ν = c4M
1+m,

k0 :=
[

(1 +m)L logM
log d

+ γ4

]
.

Then (17) and condition (i) of Lemma 8 are obviously fulfilled for all k ≥ k0.
For M ≥ N large enough we have to find a positive integer k1 = k1(M)

> k0 such that the inequalities (ii) and (iii) of Lemma 8 are satisfied, where
the condition (iii) is equivalent to the following two inequalities:

(
d

β2(m0−1)dy(P )m0−1

)k1

≥ c33M
m0−1(dβ)k0 ,(24)

Mm+1−m0 ≥ c34(β2(m0−1)+1dy(P )m0−1)k1(25)

with ineffective constants c33, c34 ∈ R+.

Remark. In the inequality (24) we see that the condition d > dy(P ) is
necessary to obtain nontrivial results.

Since

m0 <
m− σL(m+ 1)(1 + σ)

σ + 1 + (L(m+ 1)(1 + σ) +m)(2σ + log dy(P )/ log d)
+ 1

with σ := log β/log d, the inequality

((m0 − 1) log(β2dy(P )) + log β)((m0 − 1) + L(m+ 1)(1 + σ))

< (m+ 1−m0)(log d− (m0 − 1) log(β2dy(P )))

holds. So we can find γ ∈ R+ satisfying

m+ 1−m0 > γ((m0 − 1) log(β2dy(P )) + log β),

(m0 − 1) + L(m+ 1)(1 + σ) < γ(log d− (m0 − 1) log(β2dy(P ))).

Now we choose N ∈ N and thereby M large enough, define k1 by k1 :=
[γ logM ] and show that the conditions k0 < k1 and (18) are fulfilled.

Without loss of generality, we may assume that m0 ≥ 1 and see that

γ >
(m0 − 1) + L(m+ 1)(1 + σ)

log d− (m0 − 1) log(β2dy(P ))
≥ L(m+ 1)

log d
,

which shows k0 < k1.
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To see that (18) is fulfilled, we show that νdk ≥ γ5β
kdkM and νdk ≥

γ6β
kML(m+1) is valid for k0 ≤ k ≤ k1.
As m0 ≥ 1 we get

γ <
m+ 1−m0

(m0 − 1) log(β2dy(P )) + log β
≤ m

log β
,

and the inequality νdk ≥ γ5β
kdkM is obvious.

A similar argument leads to νdk ≥ γ6β
kML(m+1) ≥ 1. From the condi-

tion d > βL we obtain, for k ≥ k0,

k(log d− log β) >
(1 +m)L

log d
logM(log d− log β) > (L− 1)(m+ 1) logM,

hence (
d

β

)k
≥
(
d

β

)k0

≥ γ7M
(L−1)(m+1).

Now we can finish the proof of Theorem 1. We have shown that the
conditions (17) and (18) are satisfied with this choice of parameters, if N ∈ N
is large enough with respect to a constant depending only on α and f . We
get

k1(log d− (m0 − 1) log(β2dy(P )))

≥ ((m0 − 1) + L(m+ 1)(1 + σ)) logM + c,

(m+ 1−m0) logM ≥ k1((m0 − 1) log(β2dy(P )) + log β) + c,

for a suitable constant c > 0. This implies the inequalities (24) and (25),
hence the condition (iii) of Lemma 8 and thereby the assertion of Theo-
rem 1.

5. Proof of the algebraic independence of the functions consid-
ered in Corollary 3. Let

fn(z) :=
∞∏

j=0

(1− zdj )nj .

By induction on k we prove that for {i1, . . . , ik} ⊂ {1, . . . ,m}, where i1, . . .
. . . , ik are pairwise distinct, the functions fni1 , . . . , fnik are algebraically
independent over C(z). We follow the proof of Proposition 6 in [10].

For abbreviation we put for j = 1, . . . , k and a positive integer ν ∈ N
fnij (z) := ϕj and fnij (zd

ν

) := ϕ
(ν)
j .

Assume that ϕ1 is algebraic over C(z). Then by Theorem 1.3 of [11] it is
a rational function. Let ϕ1 = a(z)/b(z), where a(z) and b(z) are relatively
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prime polynomials. By the functional equation we obtain

a(z)b(zd)ni1 = (1− z)a(zd)ni1 b(z).

Since a and b are relatively prime polynomials, we get a(zd)ni1 | a(z), hence
a ∈ C∗ and

(1− z)ani1−1b(z) = b(zd)ni1 .

If dni1 > 2 or deg b ≥ 2, we get a contradiction by comparing the degrees. In
the remaining case it is enough to assume b(z) = αz+β; then by considering
the equation (1 − z)b(z) = b(z2) we see α = β = 0 and again we obtain a
contradiction.

Assume now that the assertion is true for k−1, but {fni1 (z), . . . , fnik (z)}
=: {ϕ1, . . . , ϕk} are algebraically dependent over C(z). By D(ν) and D

(ν)
κ

we denote the degrees of the following field extensions:

D(ν) := [C(z)(ϕ(ν)
1 , . . . , ϕ

(ν)
k ) : C(z)(ϕ1, . . . , ϕk)],

D(ν)
κ := [C(z)(ϕ(ν)

1 , . . . , ϕ̂
(ν)
κ , . . . , ϕ

(ν)
k ) : C(z)(ϕ1, . . . , ϕ̂κ, . . . , ϕk)],

where (ϕ1, . . . , ϕ̂κ, . . . , ϕk) := (ϕ1, . . . , ϕκ−1, ϕκ+1, . . . , ϕk).
In a first step we show that for arbitrary positive integers n and ν,

[C(z)(fn(zd
ν

)) : C(z)(fn(z))] = nν ;

but this is trivial by induction, since the polynomial P (y) := (1 − z)yn −
fn(z) ∈ C(z, fn(z))[y] is irreducible. (Note that fn(z) is not an algebraic
function.)

Now we are able to prove

D(ν)
κ =

( k∏

λ=1, λ 6=κ
niλ

)ν
=
( k∏

λ=1

niλ

)ν
n−νiκ .

We prove this formula for simplicity just for k = κ = 3, but the general case
follows similarly.

Since by assumption ϕ1 and ϕ2 are algebraically independent, we see by
the functional equation that ϕ(ν)

1 and ϕ(ν)
2 are also algebraically independent.

Hence C(z)(ϕ(ν)
1 ) and C(z)(ϕ(ν)

2 ) are regular field extensions (cf. Weil [18]),
which are linearly disjoint by [18, Theorem I.6]. The assumption now follows
from [18, Proposition I.14].

Let dκ be the degree of ϕκ over C(z)(ϕ1, . . . , ϕ̂κ, . . . , ϕk), then we get

d
(ν)
κ ≤ dκ, where d(ν)

κ denotes the degree of ϕ(ν)
κ over C(z)(ϕ(ν)

1 , . . . , ϕ̂
(ν)
κ , . . .

. . . , ϕ
(ν)
k ). Finally we obtain by a standard formula

D(ν)dκ = d(ν)
κ D(ν)

κ .
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Let µ, κ ∈ {1, . . . , k} and niµ < niκ . By the above formulas we get
(
niκ
niµ

)ν
=
D

(ν)
µ

D
(ν)
κ

=
dµ

d
(ν)
µ

· d
(ν)
κ

dκ
≤ dµ.

Since niµ < niκ , this is a contradiction as ν tends to infinity. Thus the
algebraic independence of the functions fn1 , . . . , fnm is proved.
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