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1. Introduction. Suppose that m and n are positive integers, τ =
(τ1, . . . , τm) ∈ Rm+ is a vector of strictly positive numbers, and Q ⊂ Zn is an
infinite set of integer vectors. Let X denote a general point in Rmn, which
we will write in the form X = (x1, . . . ,xm), with xi ∈ Rn, i = 1, . . . ,m, and
define the set

WQ(m,n; τ)

= {X ∈ Rmn : ‖xi · q‖ < |q|−τi , 1 ≤ i ≤ m, for infinitely many q ∈ Q}
(where, for any z ∈ R, ‖z‖ denotes the distance from z to the nearest
integer). In the special case τ = τ(τ) = (τ, . . . , τ), for τ > 0, and Q = Zn,
the set WZn(m,n; τ(τ)) has been studied by many authors; in particular,
its Hausdorff dimension has been obtained. Jarńık [8] and Besicovitch [1]
showed that if τ > 1, then dimWZ(1, 1; τ(τ)) = 2/(1 + τ) (dim denotes
Hausdorff dimension). Later Jarńık [9] and Eggleston [7] showed that if
τ > 1/m, then dimWZ(m, 1; τ(τ)) = (m+1)/(1+τ). Furthermore, Eggleston
obtained the dimension of WQ(m, 1; τ(τ)) for certain infinite sets Q ⊂ Z and
Bovey and Dodson [3] obtained the dimension of WQ(m,n; τ(τ)) for certain
Q ∈ Zn. These results were extended to arbitrary infinite sets Q ⊂ Z by
Borosh and Fraenkel [2] and to arbitrary Q ⊂ Zn by Rynne [10].

To state their results we need the following definition. Suppose that
Q ⊂ Zn is an arbitrary infinite set and let

ν(Q) = inf
{
ν ∈ R :

∑

q∈Q
|q|−ν <∞

}
.

Clearly, 0 ≤ ν(Q) ≤ n. It is shown in [10] that if τ ≥ ν(Q)/m, then

dimWQ(m,n; τ(τ)) = m(n− 1) +
m+ ν(Q)

1 + τ
.
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This result was extended in [11] to the set WQ(m, 1; τ) for general τ. Such
an extension also exists for m = 2 and n = 1 for the simultaneous approxi-
mation of real numbers by algebraic numbers of bounded degree [6]. In the
present paper we will obtain the Hausdorff dimension of WQ(m,n; τ) for
general n.

Without loss of generality we will suppose throughout that τ1 ≥ . . .
≥ τm. Let σ(τ) =

∑m
i=1 τi, and define the number

DQ(m,n; τ) = m(n− 1) + min
1≤k≤m

{
m+ ν(Q) +

∑m
i=k(τk − τi)

1 + τk

}
.

Theorem 1.1. If σ(τ) ≥ ν(Q), then

dimWQ(m,n; τ) = DQ(m,n; τ).

If σ(τ) ≤ ν(Q), then dimWQ(m,n; τ) = mn.

Remark 1.2. It will be shown at the end of the proof of Theorem 1.1
that if σ(τ) = ν(Q) then DQ(m,n; τ) = mn so the results in the two cases
in the theorem are consistent.

The above problem can be generalized in the manner considered in [4].
Let ψ = (ψ1, . . . , ψm) be a collection of non-negative functions on Zn (the
functions ψi need only be defined on Q, but for simplicity we ignore this).
Now define the set

WQ(m,n;ψ)

= {X ∈ Rmn : ‖xi · q‖ < ψi(q), 1 ≤ i ≤ m, for infinitely many q ∈ Q}.
Under a further assumption on the limiting behaviour of the functions ψi
we can obtain the dimension of WQ(m,n;ψ). Suppose that the limits

λ(ψi) = lim
|q|→∞

− logψi(q)
log |q| , i = 1, . . . ,m,

exist and are positive, and put τ(ψ) := (λ(ψ1), . . . , λ(ψm)). Then from The-
orem 1.1 we obtain the following result.

Corollary 1.3. If σ(τ(ψ)) ≥ ν(Q), then

dimWQ(m,n;ψ) = DQ(m,n; τ(ψ)).

If σ(τ(ψ)) ≤ ν(Q), then dimWQ(m,n;ψ) = mn.

P r o o f. From the hypotheses on the functions ψi we have, for any ε > 0
and each i = 1, . . . ,m,

|q|−λ(ψi)−ε ≤ ψi(q) ≤ |q|−λ(ψi)+ε,

for all sufficiently large |q| ∈ Q. Thus, letting ε = (ε, . . . , ε), it follows that

WQ(m,n; τ(ψ) + ε) ⊂WQ(m,n;ψ) ⊂WQ(m,n; τ(ψ)− ε).
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Now, letting ε → 0, the result follows from these inclusions and the con-
tinuity with respect to τ of the dimension result in Theorem 1.1 (see Re-
mark 1.2).

2. Proof of Theorem 1.1. To fix our notation we first recall the (stan-
dard) definition of the Hausdorff dimension of an arbitrary set E ⊂ Rr,
for any positive integer r. Let I be a countable collection of bounded sets
I ⊂ Rr. For any % > 0, the %-volume of the collection I is defined to be

V%(I) =
∑

I∈I
d(I)%,

where d(I) = sup{|x− y|2 : x,y ∈ I} is the diameter of I and | · |2 denotes
the usual Euclidean norm in Rr. For every η > 0 define

m%(η,E) = inf V%(I),

where the infimum is taken over all countable collections, I, of sets I with
diameter d(I) ≤ η, that cover E. Now define the %-dimensional Hausdorff
outer measure of E to be

m%(E) = sup
η>0

m%(η,E).

The Hausdorff dimension of E is defined to be

dimE = inf{% : m%(E) = 0}.
We also require some further notation. For any finite set A we let |A|

denote the cardinality of A. The notation a � b (respectively a � b) will
denote an inequality of the form a ≤ cb (respectively a ≥ cb), where c > 0
is a constant which depends at most on m, n, ν(Q), τ and δ (which will be
introduced below); similarly, c1, c2, . . . will denote positive constants which
depend at most on m, n, ν(Q), τ and δ. If a� b� a then we write a ≈ b.
A set of the form B = {x ∈ Rr : |x − b|2 ≤ d/2}, for any r ≥ 1, is said to
be a ball of diameter d and centre b. If α > 0 is a real number then αB will
denote the ball with centre b and diameter αd. Let Un denote the unit cube

Un = {x ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . , n},
and let U (= Umn) be the Cartesian product U =×m

i=1 Un ⊂ Rmn.
We can now begin the proof of the theorem. Since WQ(m,n; τ) is in-

variant under translations by integer vectors it suffices to consider the set
WQ(m,n; τ)∩U . The proof is in two parts—we obtain, separately, an upper
bound and a lower bound for dimWQ(m,n; τ) ∩ U . The proof of the upper
bound dimWQ(m,n; τ) ∩ U ≤ DQ(m,n; τ), for σ(τ) ≥ ν(Q), is relatively
straightforward and follows from combining the corresponding arguments in
[10] and in [11] (the bound dimWQ(m,n; τ) ≤ mn is trivial). For brevity we
will omit the details.
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To prove the reverse inequality for dimWQ(m,n; τ) ∩ U we first require
some lemmas. Suppose, for now, that ν = ν(Q) > 0 and σ(τ) > ν, and let
δ > 0 be an arbitrarily small number satisfying

(1) 0 < δ < min{ν, σ(τ)− ν, 1}
(the cases where the above assumptions do not hold will be dealt with at
the end of the proof). Some other restrictions will be imposed on δ below,
but essentially δ is a fixed “sufficiently small” number. Since the case n = 1
was dealt with in [11] we will also suppose that n ≥ 2.

We also suppose that the series
∑

q∈Q |q|−ν is divergent. If this assump-
tion does not hold we replace ν with ν − ε, ε > 0, throughout the following
argument to obtain

dimWQ(m,n; τ) ≥ m(n− 1) + min
1≤k≤m

{
m+ ν − ε+

∑m
i=k(τk − τi)

1 + τk

}
,

which yields the result since ε > 0 is arbitrary.

Lemma 2.1 (Lemma 2.1 of [10]). For any integer k0 > 0 there exists an
integer k > k0 such that

(2)
∑

q∈Q
2k≤|q|<2k+1

1 ≥ 2kν/k2.

From now on, N will always denote an integer of the form 2k, where k is
such that (2) holds. By Lemma 2.1 there are infinitely many such integers.
Thus, writing

Q(N) = {q ∈ Q : N ≤ |q| < 2N},
we have

|Q(N)| ≥ Nν−δ/2,

for all sufficiently large N (of the above form). Now, for any vector q ∈
Q(N), let [q] ⊂ Q denote the set of all those vectors q′ ∈ Q(N) which
are linearly dependent on q. Clearly the relation of linear dependence is an
equivalence relation on the set Q(N) and we let [Q(N)] denote the corre-
sponding set of equivalence classes [q].

Lemma 2.2 (Lemma 2.2 of [10]). There exists a number α, with δ ≤ α ≤
ν, and a subset Q̃ ⊂ Q such that , for infinitely many N ,

|[Q̃(N)]| ≈ Nα−δ,(3)

|[q]| ≈ Nν−α,(4)

for all equivalence classes [q] ∈ [Q̃(N)]. Thus

(5) |Q̃(N)| ≈ Nν−δ.



Simultaneous Diophantine approximation 25

It should be noted that the number α here was denoted by γ in [10].
We now suppose that ν − α > 0. The case where this does not hold will be
discussed at the end of the proof.

Lemma 2.3 (Lemma 1 of [11]). The following result holds for almost all
collections in the set {τ ∈ Rm+ : σ(τ) ≥ ν} (here, “almost all” is with respect
to Lebesgue measure in Rm). There exists an integer K = K(τ), 1 ≤ K ≤ m,
and a number δ0 = δ0(τ) > 0 such that for any δ ∈ (0, δ0) there exists a
collection of numbers τ̃ = τ̃(δ) = (τ̃1(δ), . . . , τ̃m(δ)) ∈ Rm+ , with the following
properties:

(τ1) τi − δ/m = τ̃i ≥ τi+1 + δ/m for each i = K + 1, . . . ,m;
(τ2) τK − 2δ/m ≥ τ̃1 = . . . = τ̃K ≥ τK+1 + δ/m;
(τ3)

∑m
i=1 τ̃i = ν.

In particular , τ̃1 ≥ . . . ≥ τ̃m.

Remark 2.4. If K = m then condition (τ1) and the second inequality
in condition (τ2) are to be ignored. We adopt the convention that any ar-
guments relating to situations which cannot occur for a particular choice of
numbers are to be ignored in that particular case.

Let G denote the set of collections τ for which the conclusions of Lemma
2.3 hold. By the continuity argument following the proof of Lemma 1 in
[11], we need only prove the required lower bound for dimWQ(m,n; τ) for
all τ ∈ G. Thus from now on we consider a fixed τ ∈ G and write σ for σ(τ).

We now require some further notation. For any q ∈ Zn, t ∈ Z, let
H(q, t) ⊂ Rn denote the (n−1)-dimensional hyperplane {x ∈ Rn : x·q+t =
0}. If t ∈ Zm, let H(q, t) =×m

i=1H(q, ti) ⊂ Rmn. The next lemma is an
adaptation of Lemma 4 in [2], Lemma 2.3 of [10] and Lemma 2 of [11].

Lemma 2.5. For any number L with 0 < L < 1, there exist arbitrarily
large integers N such that , for every ball C ⊂ U with diameter L, and every
equivalence class [q] ∈ [Q̃(N)], there is a set S = S(C, [q]), consisting of
pairs (q, t), q ∈ [q] and t ∈ Zm, with the properties:

(i) for all (q, t) ∈ S, H(q, t) ∩ 1
2C 6= ∅,

(ii) for all distinct pairs (q1, t1), (q2, t2) ∈ S, there is an integer i for
which

(6) |H(q1, t1i )−H(q2, t2i )|2 ≥ c1N−1−τ̃i+α/m−δ/m;

(iii) the number of pairs (q, t) in S satisfies

(7) |S| � Lmχ([q])� LmNm+ν−α−δ/2,

where χ([q]) =
∑

q∈[q] φ(|q|)m and φ is the Euler function;
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(iv) for any set I ⊂ C with d(I) > N−1+δ, let SI denote the set of pairs
(q, t) ∈ S for which H(q, t) ∩ I 6= ∅. Then

|SI | � d(I)mχ([q]).

P r o o f. The proof of Lemma 2.3 in [10] is based on the results in Lemma
4 of [2]. The present lemma can be proved in a similar manner, but based
on the results in Lemma 2 of [11] (which in turn was based on the proof of
Lemma 4 in [2]). We will omit the details.

We now suppose that L and C ⊂ U , with d(C) = L, are fixed, and
choose N so that Lemma 2.5 holds. We now wish to construct a collection
of balls in C lying “close” to the planes H(q, t), (q, t) ∈ S([q]), where
S([q]) is the set constructed in Lemma 2.5 (to simplify the notation slightly
we have suppressed the dependence of S on C). To ensure that the balls
from different such collections do not intersect we need the following rather
complicated construction.

For any equivalence class [q] ∈ [Q̃(N)] let

E([q]) =
⋃

(q,t)∈S([q])

(
H(q, t) ∩ 3

4C
)
.

Since the planes H(q, t), with (q, t) ∈ S([q]), pass through the ball 1
2C, the

m(n − 1)-dimensional Lebesgue measure (which we denote by µm(n−1)) of
the set H(q, t)∩ 3

4C satisfies µm(n−1)
(
H(q, t)∩ 3

4C
)� Lm(n−1), and hence

by (7),

(8) µm(n−1)(E([q]))� Lmnχ([q])� LmnNm+ν−α−δ.

Now, for any p ∈ Q̃(N), p 6∈ [q] and any pair (q, t) ∈ S([q]), let

F (p; q, t) =
{
X ∈ H(q, t) ∩ 3

4C : ‖xi · p‖ < 8nN−τ̃i−δ/m, i = 1, . . . ,m
}
.

Let
F ([q]) =

⋃

p∈Q̃(N)
p 6∈[q]

⋃

(q,t)∈S([q])

F (p; q, t).

Lemma 2.6 (Lemma 2.4 of [10]). For any [q] ∈ Q̃(N),

µm(n−1)(F ([q]))
µm(n−1)(E([q]))

� L−mnN−δ.

P r o o f. For any p 6= 0 and any η ≥ 0, let

Ap(η) = {x ∈ Un : ‖x · p‖ ≤ η}.
It is shown in [5] or [12] that if p and p′ are linearly independent integer
vectors then, for any η, η′ > 0,

(9) µn(Ap(η) ∩Ap′(η′)) = 4ηη′.
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Now, by definition,

F ([q]) ⊂
⋃

p∈Q̃(N)
p 6∈[q]

⋃

q∈[q]

m×
i=1

(Ap(N−τ̃i−δ/m) ∩Aq(0)),

so

µm(n−1)(F ([q])) ≤
∑

p∈Q̃(N)
p 6∈[q]

∑

q∈[q]

m∏

i=1

µn−1(Ap(N−τ̃i−δ/m) ∩Aq(0)).

For each η > 0, the set Ap(N−τ̃i−δ/m)∩Aq(η) is an n-dimensional “thicken-
ing” of the set Ap(N−τ̃i−δ/m)∩Aq(0) (which consists of portions of (n−1)-
dimensional planes) with “thickness” 2η|q|−1

2 . Thus

µn−1(Ap(N−τ̃i−δ/m) ∩Aq(0)) = lim
η→0

µn(Ap(N−τ̃i−δ/m) ∩Aq(η))/2η|q|−1
2

� N1−τ̃i−δ/m,

by (9). Hence by (τ3), (4) and (5),

µm(n−1)(F ([q]))�
∑

p∈Q̃(N)
p 6∈[q]

∑

q∈[q]

m∏

i=1

N1−τ̃i−δ/m

� Nν−δNν−αNm−ν−δ = Nm+ν−α−2δ,

so the result follows from (8).

Now, it follows from Lemma 2.6 that for N sufficiently large we can
choose a collection B0([q]) of pairwise disjoint balls B ⊂ 3

4C, in Rmn, with
diameter n−1(2N)−(1+τ1), whose centres Z lie on E([q])\F ([q]), and satisfy

(10) |Z − Z ′|2 ≥ 4N−(1+τ1) if Z 6= Z ′,

and such that

(11) |B0([q])| � µm(n−1)(E([q]))
(N−(1+τ1))m(n−1)

� Lmnχ([q])Nm(n−1)(1+τ1)

(by (8)). Since each B ∈ B0([q]) has diameter n−1(2N)−(1+τ1), and lies on
some plane H(q, t), with q ∈ [q], it follows that if X = (x1, . . . ,xm) ∈ B
then for each i = 1, . . . ,m,

‖xi · q‖ ≤ n−1(2N)−(1+τ1)|q|2 < (2N)−τ1 ≤ |q|−τi

(using |q|2 < 2nN for all q ∈ Q̃(N)), so B has the property:

(12) if X ∈ B then there exists q ∈ [q] such that ‖xi · q‖ < |q|−τi ,
i = 1, . . . ,m.
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Now choose an arbitrary ball B0∈B0([q]), with centre Z0 =(z0
1, . . . , z

0
m).

For each vector r ∈ Zm, with

(13) r1 = 0, |ri| < (8n)−12−τ1Nτ1−τi , i = 2, . . . ,m,

let Br(B0) be the ball with diameter n−1(2N)−(1+τ1) and centre Zr =
(zr

1, . . . , z
r
m), where

zr
i = z0

i + ri4N−(1+τ1)q/|q|2, i = 1, . . . ,m,

(note that the unit vector q/|q|2 is orthogonal to the plane H(q, t) in Rn,
for any t ∈ R). We let B(B0) denote the collection B(B0) =

⋃
rB

r(B0)
(where the union is over all vectors r satisfying (13)). If N is sufficiently
large, then each ball B ∈ B(B0) satisfies B ⊂ C and property (12) (by a
similar calculation to the above, using (13)). Furthermore, (if c1Nα/m ≥ 4)
from (6) and the above construction, if the balls B1, B2 in B0([q]) lie on
different planes H(q, t) then the centres Z, Z ′ of any two balls B ∈ B(B1),
B′ ∈ B(B2), satisfy

(14) |zi − z′i|2 ≥ N−1−τ̃i−δ/m, for some i,

(again using |q|2 < 2nN for all q ∈ Q̃(N), and also τ1 − δ/m ≥ τ̃i + δ/m
for all i).

Repeating this process for all B0 ∈ B0([q]) we obtain the collection

B([q]) =
⋃

B0∈B0([q])

B(B0).

Each B ∈ B([q]) has the property (12), and it follows from (14) that all the
balls in B([q]) are disjoint, and so, from (11) and the number of vectors r
satisfying (13), we have

|B([q])| � Lmnχ([q])Nm(n−1)(1+τ1)
m∏

i=1

Nτ1−τi(15)

� Lmnχ([q])Nm(n−1)(1+τ1)+γ ,

where γ =
∑m
i=1(τ1 − τi) = mτ1 − σ.

Repeating the above constructions for each [q] ∈ [Q̃(N)] we obtain the
collection

B =
⋃

[q]∈[Q̃(N)]

B([q]).

If [q] 6= [q′] and B ∈ B([q]), B′ ∈ B([q′]) then it follows from the definition
of the sets F (p; q, t) and the above construction that the centres of these
balls, Z and Z ′ respectively, satisfy (14). Hence, in particular, all the balls
in the collection B are disjoint.

Using these constructions we can now prove the following lemma, which
is similar to Lemmas 2.5 and 2.6 of [10], or Lemma 3 of [11]. For the reader’s
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convenience we summarize here certain relationships between the various
numbers we have introduced above:

ν =
m∑

i=1

τ̃i, σ =
m∑

i=1

τi, γ =
m∑

i=1

(τ1 − τi) = mτ1 − σ.

Lemma 2.7. For any number L with 0 < L < 1, there exist arbitrarily
large integers N such that for any ball C ⊂ U with diameter L there is a
collection B of disjoint balls B ⊂ C, such that :

(i) each B ∈ B has diameter n−1(2N)−(1+τ1) and the centres of any
two balls in B are at least a distance 4N−(1+τ1) apart ;

(ii) for each B ∈ B, (12) holds for some [q] ∈ [Q̃(N)];
(iii) |B| ≥ c2LmnX(N)Nm(n−1)(1+τ1)+γ , where

X(N) =
∑

[q]∈[Q̃(N)]

χ([q])� Nm+ν−3δ/2;

(iv) if I is a set in Rmn with d(I) ≥ n−1N−(1+τ1), which intersects h of
the balls B in B, then:

(a) suppose that N−(1+τk) < d(I) ≤ N−(1+τk+1), for some k with 1 ≤
k ≤ m− 1:

• if k < K, then

(16) h ≤ c3d(I)mn−kN (mn−k)(1+τ1)+
∑k
i=1(τ1−τi);

• if k = K, then

h ≤ c3d(I)mn−kN (mn−k)(1+τ1)+
∑k
i=1(τ1−τi)(17)

+ c3d(I)mnNm(n−1)(1+τ1)+m+ν+γ+δ;

• if k > K, then

(18) h ≤ c3d(I)mnNm(n−1)(1+τ1)+m+ν+γ+δ;

(b) if N−(1+τm) < d(I) ≤ N−1+δ, then

(19) h ≤ c3d(I)mnNm(n−1)(1+τ1)+m+ν+γ ;

(c) if N−1+δ < d(I), then

(20) h ≤ c3d(I)mnX(N)Nm(n−1)(1+τ1)+γ .

P r o o f. It is clear that the collection of balls B constructed above has
the properties (i) and (ii) for N sufficiently large (the estimate on the dis-
tance between the centres of the balls in B follows from (10) and (14)). The
estimate for |B| in (iii) follows from (15) and the definition of B, while the
estimate for X(N) follows from (3) and (7). We now prove (iv).

For any [q] ∈ [Q̃(N)] and any pair (q, t) ∈ S([q]), let B(q, t) be the
set of all balls B ∈ B([q]) which belong to any collection B(B0) for which
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the centre of B0 lies on the plane H(q, t) (i.e., B(q, t) is the set of all balls
B ∈ B(q, t) which lie “close” to the plane H(q, t)). It follows from the above
constructions that if (q, t) 6= (q′, t′) and B ∈ B(q, t), B′ ∈ B(q′, t′) then
their centres Z, Z ′ satisfy (14).

Now suppose that d(I) satisfies the inequalities in case (a) for some
k, 1 ≤ k ≤ m − 1. We begin by estimating the number h(q, t) of balls
B ∈ B(q, t) which can intersect I. Since the balls B ∈ B(q, t) have diameters
n−1(2N)−(1+τ1), their centres are a distance at least N−(1+τ1) apart, and
they all lie “close” to the m(n−1)-dimensional plane H(q, t), it follows from
the geometry of the situation and the construction of the collection B(q, t)
that the number h(q, t) of balls B ∈ B(q, t) which can intersect I satisfies

h(q, t)�
(

d(I)
N−(1+τ1)

)n(m−k) k∏

i=1

Nτ1−τi
(

d(I)
N−(1+τ1)

)n−1

(21)

≤ d(I)mn−kN (mn−k)(1+τ1)+
∑k
i=1(τ1−τi).

Now, if k < K then by (τ2), (14) and the above construction, if N is
sufficiently large, I can intersect balls from at most one collection B(q, t)
with (q, t) ∈ ⋃[q]∈[Q̃(N)] S([q]). Thus (16) follows from (21). Next, if k > K

then by (τ1), (τ2), (14) and the above construction, if N is sufficiently large
the number of collections B(q, t) which contain balls intersecting I is

(22) �
k∏

i=1

d(I)
N−1−τ̃i−δ/m = d(I)kNk+

∑k
i=1 τ̃i+kδ/m.

Therefore, in this case it follows from (21) and (22) that the total number
of balls intersecting I is � d(I)mnN ζ , where

ζ = k +
k∑

i=1

τ̃i + kδ/m+ (mn− k)(1 + τ1) +
k∑

i=1

(τ1 − τi)

= m(n− 1)(1 + τ1) +m+
m∑

i=1

τ̃i −
m∑

i=k+1

τ̃i +
m∑

i=1

(τ1 − τi)

+
m∑

i=k+1

τi + kδ/m

= m(n− 1)(1 + τ1) +m+ ν + γ +
m∑

i=k+1

(τi − τ̃i) + (kδ)/m

≤ m(n− 1)(1 + τ1) +m+ γ + ν + δ

(using (τ2) and (τ3)). This proves (18). Finally (in case (a)), suppose that
k = K. Then, using the above arguments, if d(I) < N−1−τ̃K−δ/m we obtain
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the estimate (16), while if d(I) ≥ N−1−τ̃K−δ/m we obtain the estimate (18).
Adding these estimates yields (17), which completes the proof of case (a).

Next, consider case (b). For a fixed equivalence class [q] ∈ [Q̃(N)], it
follows from (6) that the number of collections B(q, t) with (q, t) ∈ S([q]),
which have at least one ball intersecting the set I, is

�
m∏

i=1

d(I)
N−1−τ̃i+α/m−δ/m = d(I)mNm+ν−α+δ,

and the number of balls B in each such collection B(q, t) is

(23) �
(

d(I)
N−(1+τ1)

)m(n−1) m∏

i=1

Nτ1−τi = d(I)m(n−1)Nm(n−1)(1+τ1)+γ .

Hence the number of balls corresponding to a single equivalence class which
intersect I is

� d(I)mnNm+ν−α+δ+m(n−1)(1+τ1)+γ .

The number of possible equivalence classes is� Nα−δ which, together with
the above estimate, gives (19).

Finally, in case (c) it follows from (iv) of Lemma 2.5 that the number of
collections B(q, t) with (q, t) ∈ S([q]), which have at least one ball inter-
secting the set I is� d(I)mχ([q]). Using the estimate (23) for the number of
balls in each such collection and summing over the set of equivalence classes
[q] ∈ [Q̃(N)] yields (20). This completes the proof of Lemma 2.7.

Now, it will be shown that if δ > 0 is sufficiently small then we have
dimWQ(m,n; τ) ≥ % := DQ(m,n; τ) − 4δ. On letting δ → 0 this yields the
required lower bound for dimWQ(m,n; τ), which will complete the proof,
subject to the additional conditions imposed above.

Choose N0 > 0 sufficiently large that

(24) 4c3N
−(σ−ν)−δ(1+τ1)
0 ≤ c2

(this is possible since σ > ν). Let F be any countable family of sets I in Rn
of positive diameter d(I) ≤ 1

2n
−1(2N0)−(1+τ1) with

(25) V%(F) =
∑

I∈F
d(I)% < 1.

We will show that the family F cannot cover the set WQ(m,n; τ) ∩ U and
hence, by definition, m%(WQ(m,n; τ)) > 0, which proves dimWQ(m,n; τ)
≥ %. To do this we construct a sequence of sets U ⊃ J0 ⊃ J1 ⊃ . . . ,
where Jj ⊂ Rmn is the union of Mj > 0 pairwise disjoint balls and integers
N0 < N1 < . . . , such that for j ≥ 1, the following conditions are satisfied:
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(i)j Jj intersects no I ∈ F with d(I) > 1
2n
−1(2Nj)−(1+τ1);

(ii)j each ball of Jj has diameter n−1(2Nj)−(1+τ1) and their centres are
at least a distance 4N−(1+τ1)

j apart;

(iii)j if X ∈ Jj , there is a q ∈ Q̃(Nj) such that ‖xi · q‖ < |q|−τi , for
i = 1, . . . ,m;

(iv)j Mj ≥ 4c3c−1
2 2mn(1+τ1)N

−(σ−ν)+mn(1+τ1)−δ(1+τ1)
j (we suppose that

δ is sufficiently small that the exponent of Nj here is positive).

Supposing that such sequences exist, let

J∞ =
∞⋂

j=0

Jj .

Since the sequence Jj , j = 0, 1, . . . , is a decreasing sequence of non-empty
closed bounded sets in Rmn, J∞ is non-empty. By (i)j , J∞ does not intersect
any set I ∈ F , while by (iii)j , J∞ ⊂ WQ(m,n; τ). Thus, F does not cover
WQ(m,n; τ).

The construction is by induction. Let J0 be the ball of diameter 1 and
centre

(
1
2 , . . . ,

1
2

)
, and let N0 be as above. Now suppose that J0, J1, . . . , Jj−1,

N0, N1, . . . , Nj−1 have already been constructed satisfying the above condi-
tions, for some j ≥ 1. We will construct Jj and Nj . Let D be a ball of Jj−1

and let C = 1
4D. Applying Lemma 2.7 to C we choose Nj = N such that

N−1+δ
j < n−1(2Nj−1)−(1+τ1), and we obtain the corresponding collection of

balls B = B(D). Let

Gj =
⋃

D∈Jj−1

B(D),

and let

F1,k
j = {I ∈ F : N−(1+τk)

j < d(I) ≤ N−(1+τk+1)
j }, k = 1, . . . ,m− 1,

F2
j = {I ∈ F : N−(1+τm)

j < d(I) ≤ N−1+δ
j },

F3
j = {I ∈ F : N−1+δ

j < d(I) ≤ N−(1+τ1)
j−1 }.

Taking Hj to be the set of balls in Gj which intersect a set I ∈ ⋃k F1,k
j ∪

F2
j ∪F3

j , we define Jj to be the union of the balls in the collection Gj \ Hj .
Thus, we have Jj ⊂ Jj−1 and (i)j holds (because d(I) ≤ 1

2n
−1(2N0)−(1+τ1),

I ∈ F , if j = 1, and because of (i)j−1 if j > 1). Also, (ii)j and (iii)j follow
from (i) and (ii) of Lemma 2.7. It remains to consider (iv)j .

If I ∈ ⋃k F1,k
j ∪ F2

j ∪ F3
j , then I cannot intersect balls in B(D) for two

distinct balls D ∈ Jj−1 (because of (ii)j−1, if j > 1). Therefore, by part (iv)
of Lemma 2.7,
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c−1
3 |Hj | ≤

K∑

k=1

∑

I∈F1,k
j

d(I)mn−kN (mn−k)(1+τ1)+
∑k
i=1(τ1−τi)

j(26)

+
m−1∑

k=K

∑

I∈F1,k
j

d(I)mnNm(n−1)(1+τ1)+m+ν+γ+δ
j

+
∑

I∈F2
j

d(I)mnNm(n−1)(1+τ1)+m+ν+γ
j

+
∑

I∈F3
j

d(I)mnX(Nj)N
m(n−1)(1+τ1)+γ
j .

We now estimate the various sums in (26). First we consider the integers
k such that 1 ≤ k ≤ K, and suppose that mn − k − % ≤ 0. Then, by the
definition of F1,k

j , we have

d(I)mn−k = d(I)%d(I)mn−k−% ≤ d(I)%N−(mn−k−%)(1+τk)
j ,

and so, using (25), we obtain
∑

I∈F1,k
j

d(I)mn−kN (mn−k)(1+τ1)+
∑k
i=1(τ1−τi)

j � Nζ
j ,

where

ζ = −(mn− k − %)(1 + τk) + (mn− k)(1 + τ1) +
k∑

i=1

(τ1 − τi).

Now, by the definition of DQ(m,n; τ),

−(mn− k − %)(1 + τk) ≤ − (m− k)(1 + τk) +m+ ν

+
m∑

i=k

(τk − τi)− 4δ(1 + τk)

= k + ν −
m∑

i=k+1

τi − 4δ(1 + τk),

so

ζ ≤ m(n− 1)(1 + τ1) +m+ ν + γ − 4δ(1 + τk).

If mn− k − % > 0 similar calculations yield

ζ = −(mn− k − %)(1 + τk+1) + (mn− k)(1 + τ1) +
k∑

i=1

(τ1 − τi),

and
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−(mn− k − %)(1 + τk+1)

≤ −(m− k)(1 + τk+1) +m+ ν +
m∑

i=k+1

(τk+1 − τi)− 4δ(1 + τk+1)

= k + ν −
m∑

i=k+1

τi − 4δ(1 + τk+1),

so

ζ ≤ m(n− 1)(1 + τ1) +m+ ν + γ − 4δ(1 + τk+1).

Next we consider k such that K ≤ k ≤ m− 1. In this case we use

(27) mn− % ≥ mτ1 − ν −
∑m
i=1(τ1 − τi)

1 + τ1
+ 4δ =

σ − ν
1 + τ1

+ 4δ > 4δ > 0

(since σ > ν), to obtain the estimate
∑

I∈F1,k
j

d(I)mnNm(n−1)(1+τ1)+m+ν+γ+δ
j � N ζ

j ,

where

ζ = −(mn− %)(1 + τk+1) +m(n− 1)(1 + τ1) +m+ ν + γ + δ

< m(n− 1)(1 + τ1) +m+ ν + γ − 3δ,

for δ sufficiently small.
For the summation over F2

j in (26) we again use (27) to obtain a similar
estimate with

ζ = −(mn− %)(1− δ) +m(n− 1)(1 + τ1) +m+ ν + γ + δ

< m(n− 1)(1 + τ1) +m+ ν + γ − 3δ,

for δ sufficiently small.
Finally, for the summation over F3

j in (26) we obtain (using (27))
∑

I∈F3
j

d(I)mnX(Nj)N
m(n−1)(1+τ1)+γ
j

≤ N−(mn−%)(1+τ1)
j−1 X(Nj)N

m(n−1)(1+τ1)+γ
j

≤ N−(σ−ν)−δ(1+τ1)
j−1 X(Nj)N

m(n−1)(1+τ1)+γ
j .

Combining the above estimates, we obtain

(28) |Hj | ≤ 2c3N
−(σ−ν)−δ(1+τ1)
j−1 X(Nj)N

m(n−1)(1+τ1)+γ
j ,

for sufficiently large Nj (using the estimate X(N) � Nm+ν−3δ/2 in Lem-
ma 2.7).
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Now suppose that j = 1. By (iii) of Lemma 2.7 (with d(C) = 1), together
with (24) and (28),

|G1| ≥ c2X(N1)Nm(n−1)(1+τ1)+γ
1 ≥ 2|H1|.

Hence,

M1 ≥ |G1| − |H1| ≥ c22−1X(N1)Nm(n−1)(1+τ1)+γ
1 ,

so (iv)1 holds for sufficiently large N1.
Next suppose that j > 1. Then, by (iii) of Lemma 2.7, (ii)j−1, (iv)j−1

and (28),

|Gj | ≥Mj−1c2(2Nj−1)−mn(1+τ1)X(Nj)N
m(n−1)(1+τ1)+γ
j(29)

≥ 4c3N
−(σ−ν)−δ(1+τ1)
j−1 X(Nj)N

m(n−1)(1+τ1)+γ
j ≥ 2|Hj |.

Thus, Mj ≥ |Gj | − |Hj | ≥ 1
2 |Gj |, and it follows from (29) that (iv)j holds

for sufficiently large Nj if δ is sufficiently small. This completes the proof of
the theorem under the various particular assumptions made in the course of
the argument, viz., ν > α > 0 and σ > ν.

We now remove these assumptions. Firstly, we note that the cases when
ν = α > 0 and when ν = 0 (with σ > ν), can be dealt with by a similar
method to that described in the final paragraph of [10]. Next, when σ = ν
(for any ν ≥ 0) the estimate dimWQ(m,n; τ) ≥ DQ(m,n; τ) follows from
the result just proved by using the continuity argument following Lemma 1
in [11] (elements τ ∈ G have σ > ν, but any τ for which σ = ν lies on the
boundary of G).

Now suppose that σ ≤ ν. Then, for each k with 1 ≤ k ≤ m,

m+ ν +
∑m
i=k(τk − τi)

1 + τk
≥ m+

∑m
i=1 τi +

∑m
i=k(τk − τi)

1 + τk

=
m+

∑k−1
i=1 τi +

∑m
i=k τk

1 + τk

≥ m+
∑m
i=1 τk

1 + τk
= m,

and hence, by the definition, DQ(m,n; τ) ≥ mn. Furthermore, if σ = ν then
for k = 1,

m+ ν +
∑m
i=1(τ1 − τi)

1 + τ1
=
m+

∑m
i=1 τ1

1 + τ1
= m,

so, together with the previous estimates, this shows that in this case
dimWQ(m,n; τ) = DQ(m,n; τ) = mn.

Now suppose that σ < ν. Then, by increasing the components of the
vector τ appropriately, we can construct a vector τ such that σ(τ) = ν, and
hence, since WQ(m,n; τ) ⊂WQ(m,n; τ), the above result for the case σ = ν



36 B. P. Rynne and H. Dickinson

gives
dimWQ(m,n; τ) ≥ dimWQ(m,n; τ) = mn,

which finally completes the proof of the theorem.
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