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1. Introduction. In 1974, N. Levinson showed that at least 1/3 of the
zeros of the Riemann ζ-function are on the critical line ([19]). Today it is
known (Conrey, [6]) that at least 40.77% of the zeros of ζ(s) are on the
critical line and at least 40.1% are on the critical line and are simple. In
[16] and [17], Hilano showed that Levinson’s original result is also valid for
Dirichlet L-series.

This paper is a shortened version of parts of the dissertation [3], the
full details of which may be found at http://www.math.uni-frankfurt.de/
˜pbauer/diss.ps. We shall prove a mean value theorem for Dirichlet L-series
and use this for proving some corollaries concerning the distribution of the
zeros of L-series—amongst other results we improve the above mentioned
bounds for Dirichlet L-series.

2. Notation, statement and comparison of results. Throughout
this paper we will use the following notations. Let T be sufficiently large, χ
a primitive Dirichlet character and q its modulus. Let

L := log
qT

2π

and A, B be complex constants satisfying A 6= B, 0 < |A|, |B| < A for an
arbitrary but fixed bound A.

Using these notations our mean value theorem is

Theorem 1. Let 1/2 ≤ c < 1 and 1 ≤ q = o(log T ). Let P1 and P2 be
polynomials with P1(0) = P2(0) = 0. Choose a mollifier

By(s, Pj , χ) :=
∑

n≤y

χ(n)µ(n)
ns

Pj

(
1− logn

log y

)
.
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Define

M :=
1
iT

c+iT\
c+i

L

(
s+

A

L , χ
)
By(s, P1, χ)

× L
(

1− s− B

L , χ
)
By(1− s, P2, χ) ds.

Then for every pair (θ1, θ2) where 0 < θ1 ≤ θ2 < 1/2, there is a δ =
δ(θ1, θ2) > 0 with the property that for every θ ∈ [θ1, θ2] and y = T θ,

M = θ · e
B−A − 1
B −A

1\
0

(
1
θ
P ′1(t)−AP1(t)

)(
1
θ
P ′2(t) +BP2(t)

)
dt

+ P1(1)P2(1) +OA(T−δ).

The implicit constant in the error term is independent of the parameters θ,
A, B, the character χ and its modulus q.

This theorem may be compared to results for ζ(s) ([8], [6]) or for Dirichlet
series associated with holomorphic cusp forms ([13]).

Some applications of our theorem are as follows. Let

N(T, χ) := #{s : L(s, χ) = 0, where 0 < σ < 1, 0 < t < T},
N0(T, χ) := #{s : L(s, χ) = 0, where σ = 1/2, 0 < t < T},
N0,s(T, χ) := #{s : L(s, χ) = 0, L′(s, χ) 6= 0, where σ = 1/2, 0 < t < T},

and let

α(χ) = lim inf
T→∞

N0(T, χ)
N(T, χ)

and αs(χ) = lim inf
T→∞

N0,s(T, χ)
N(T, χ)

denote the proportions of zeros and simple zeros on the critical line. Then
we can show

Corollary 1. For any Dirichlet character χ,

α(χ) > 0.365815 and αs(χ) > 0.356269.

There is no need to restrict ourselves to primitive characters here because
L-series to non-primitive characters share the same non-trivial zeros as the
L-series to the corresponding primitive character.

Our bounds are weaker than the above mentioned bounds ([6]) known
for ζ(s) = L(s, χ0) where χ0 is the (principal) character mod 1: α(χ0) >
0.4088 and αs(χ0) > 0.4013, slightly improved in [2] to α(χ0) > 0.4089 and
αs(χ0) > 0.4021.

We obtain some further results concerning the multiplicity of the zeros
and improve the results known for arbitrary Dirichlet characters ([16]).

The functional equation for L(s, χ) with a primitive character χ is

H(s, χ)L(s, χ) = εχH(1− s, χ)L(1− s, χ)
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where

H(s, χ) =
(
π

q

)(s+a)/2

Γ

(
s+ a

2

)
, where a =

{
0 if χ(−1) = 1,
1 if χ(−1) = −1,

and

εχ =
1

iaq1/2

q∑
ν=1

χ(ν)e
(
ν

q

)
.

Here |εχ| = 1. Thus, if we choose a complex number Eχ satisfying E2
χ = εχ,

we have E−2
χ = εχ. Set

ξ(s, χ) := EχH(s, χ)L(s, χ).

Then the functional equation can be restated as

ξ(s, χ) = ξ(1− s, χ).

If we define

N (m)(T, χ) := #{s : ξ(m)(s, χ) = 0, where 0 < σ < 1, 0 < t < T},
N

(m)
0 (T, χ) := #{s : ξ(m)(s, χ) = 0, where σ = 1/2, 0 < t < T},

N
(m)
0,s (T, χ) := #{s : ξ(m)(s, χ) = 0, ξ(m+1)(s, χ) 6= 0,

where σ = 1/2, 0 < t < T},
as well as

α(m)(χ) = lim inf
T→∞

N
(m)
0 (T, χ)

N (m)(T, χ)
and α(m)

s (χ) = lim inf
T→∞

N
(m)
0,s (T, χ)

N (m)(T, χ)
,

another consequence of Theorem 1 is

Corollary 2. For any Dirichlet character χ, there are lower bounds

α(1)(χ) > 0.847212, α(2)(χ) > 0.962736, α(3)(χ) > 0.990523,

α(4)(χ) > 0.995581, α(5)(χ) > 0.997573, α(6)(χ) > 0.998093,

and

α(1)
s (χ) > 0.787784, α(2)

s (χ) > 0.931659, α(3)
s (χ) > 0.966755,

α(4)
s (χ) > 0.979979, α(5)

s (χ) > 0.986488, α(6)
s (χ) > 0.990232.

Better bounds can be obtained for the special case of ζ(s) ([3]).
The bounds for simple zeros can, of course, be used to derive results

concerning the multiplicity of the zeros. Let α≥m(χ) denote the proportion
of zeros of L(s, χ) in the critical strip with multiplicity ≥ m, and let αdist(χ)
denote the proportion of distinct zeros of L(s, χ) in the critical strip. Com-
binatorial arguments as in [13] yield, for m ≥ 0,

α≥m+2(χ) ≤ m+ 2
2

(1− α(m)
s (χ))
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and for M ≥ 0

αdist(χ) ≥ 2−M
(
α(M)

s (χ) +
M−1∑
m=0

2M−1−mα(m)
s (χ)

)
.

Therefore for example,

α≥2(χ) < 0.643731, α≥3(χ) < 0.318324, . . . , α≥8(χ) < 0.039072

and

αdist(χ) > 0.613470.

Similar but weaker bounds are known for Dirichlet series associated with
holomorphic cusp forms ([13]), and, of course, better results may be obtained
by using the better bounds known for ζ(s).

The reason for the difference between our results and these results about
the Riemann ζ-function or Dirichlet series associated with holomorphic cusp
forms lies in the length of the mollifier By(s, Pj , χ) in Theorem 1. Concerning
ζ(s), a length of y = T θ with θ = 4/7− ε could be used in [6] while we are
restricted to θ = 1/2 − ε. In [13], on the other hand, θ had to be bounded
by 1/6.

The method we use to prove our theorem is similar to that used in [8]
or [6]. In the latter article the work of Deshouillers and Iwaniec on averages
of Kloosterman sums ([10], [11]) allowed the choice of the longer mollifier
in the case of the Riemann ζ-function. Because of characters appearing in
our formulas we have to use other arguments to bound our main error term.
We do this by using large sieve estimates. This idea originally appeared in
the context of ζ(s) in [7], but here we have to deal with a more complicated
situation. The disadvantage of our method is that we have to work with a
shorter mollifier.

The above corollaries may be proven by a straightforward modification
of the method used e.g. in [6] using our Theorem 1 instead of Theorem 4 in
[6]. It thus remains for us to show Theorem 1.

3. Proof of Theorem 1—the first part. The first steps of the proof
are only outlined because similar calculations were published elsewhere (e.g.
[8], [6]). All the details may be found in [3]. With the notations mentioned
in Section 2, let

M :=
1
i

c+iT\
c+i

L(s+ α, χ)By(s, P1, χ)L(1− s− β, χ)By(1− s, P2, χ) ds

where α = A/L and β = B/L. Using well known estimates, we can move
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the line of integration to σ = c′ := 1 + ε, ε > 0 fixed, and obtain

M =
1
i

c′+iT\
c′+i

L(s+ α, χ)L(1− s− β, χ)By(s, P1, χ)By(1− s, P2, χ) ds

+O(qT 1/3y log6 qT log2 y).

Next, we use the functional equation in the form

L(s, χ) = h(s, χ)L(1− s, χ),

where χ is a primitive Dirichlet character, and

h(s, χ) :=
εχ2s−1πsq1/2−s

cos π(s−a)
2 · Γ (s)

.

Lemma 1. Let c > 1/2 be fixed , T sufficiently large, r > 0, β = B/L
where |B| ≤ A, h(s, χ) as above,

Ec(r, T ) = T c−1/2 +
T c+1/2

|T − r|+ T 1/2
and τ(χ) =

q∑
n=1

χ(n)e
(
n

q

)
.

If r ≤ (qT )/(2π) then
c+iT\
c+i

h(1− s− β, χ)r−s ds

= 2πiτ(χ)eBq−1e

(
−r
q

)
+O

(
r−1q1/2 + r−cqc−1/2Ec

(
2πr
q
, T

))

and if r > (qT )/(2π) then
c+iT\
c+i

h(1− s− β, χ)r−s ds = O

(
r−cqc−1/2Ec

(
2π
q
, T

))
.

The implicit constants in the error terms are independent of q, r and B, but
may depend on A.

This lemma follows from Stirling’s formula using the saddle point method
(cf. e.g. [19], [15], [3]).

Lemma 2. Let Ec(r, T ) be defined as in Lemma 1, α = A/L, β = B/L
and η > 0 arbitrary , but fixed. Then

∑

h,k≤y

kη

h1+η

∞∑
n=1

∞∑
m=1

n−1−η−αm−1−η−βE1+η

(
2πnmh
qk

, T

)

� T 1/2+ηy1+η log T · log y.

Similar estimates have been proven e.g. in [22], [23] or [19].
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Using the functional equation and Lemmas 2 and 3, we obtain

M = 2πτ(χ)eBq−1N +O(q1+εT 1/2+εy1+ε),

where τ(χ) is the Gaussian sum, defined in Lemma 1, and

N =
∑

h,k≤y

χ(h)χ(k)b(h, P1)b(k, P2)
k

(1)

×
∑
n,m

nm≤(qTk)/(2πh)

χ(n)χ(m)
nαmβ

e

(
−nmh

qk

)
,

and where b(n, Pj) := µ(n)Pj(1− log n/log y) denotes the nth coefficient of
our mollifier By(s, Pj , χ).

Next, we need Perron’s formula:

Lemma 3. Let
∑
n,m a(n,m)/(nsms) be absolutely convergent for σ > 1

and let |a(n,m)| � Φ(nm) with some function Φ(N) that is strictly increas-
ing for large N . Let , for some k > 0,

∑
n,m

|a(n,m)|
nσmσ

� 1
(σ − 1)k

as σ → 1+.

Then, for 1 < c < 2, x ≥ 1 and any τ ≥ 1, we have

∑
n,m
nm≤τ

a(n,m) =
1

2πi

c+ix\
c−ix

∑
n,m

a(n,m)
nsms

· τ
s

s
ds

+O

(
τ c

x(c− 1)k
+
Φ(2τ)τ log 2τ

x
+ Φ(2τ)

)
.

This can be shown analogously to [21], Satz A.3.1.
Let c = 1 + η, η > 0 be fixed, and τ = (qTk)/(2πh). An application of

Lemma 3 yields

∑
n,m
nm≤τ

χ(n)χ(m)
nαmβ

e

(
−nmh

qk

)

=
1

2πi

c+ix\
c−ix

τ s

s

∞∑
n=1

∞∑
m=1

χ(n)χ(m)
ns+αms+β e

(
−nmh

qk

)
ds

+O

(
τ1+η

xη2 +
22A/Lτ1+2A/L log 2τ

x
+ (2τ)2A/L

)
.
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From this and (1) we deduce that

N =
1

2πi

∑

h,k≤y

χ(h)χ(k)b(h, P1)b(k, P2)
k

(2)

×
c+ix\
c−ix

τs

s

∞∑
n=1

∞∑
m=1

χ(n)χ(m)
ns+αms+β e

(
−nmh

qk

)
ds+ F1(x),

where

(3) F1(x)� x−1y1+η
(
qT

2π

)1+η

+ y log y.

We use Estermann’s method ([12]) to split our last expression for N into a
main term and an error term. Let ζ(s, x), 0 < x ≤ 1, denote the Hurwitz
ζ-function, and let H = h/(h, k) and K = k/(h, k). For the two innermost
sums in (2), one obtains

(4)
∞∑
n=1
m=1

χ(n)χ(m)
ns+αms+β e

(
−nmh

qk

)
= (qK)−2s−α−βD(s),

where

D(s) :=
∑

1≤ν,µ≤qK
χ(ν)χ(µ)e

(
−νµh
qk

)
ζ

(
s+ α,

ν

qK

)
ζ

(
s+ β,

µ

qK

)
.

This representation is valid for all σ > 0. Because ζ(s, x) − ζ(s) is regular
for 0 < x ≤ 1 in the whole complex plane, the same is true for

D∗(s) :=
∑

1≤ν,µ≤qK
χ(ν)χ(µ)e

(
−νµH
qK

)

×
(
ζ

(
s+ α,

ν

qK

)
− ζ(s+ α)

)(
ζ

(
s+ β,

µ

qK

)
− ζ(s+ β)

)
.

Using
∑

1≤ν≤qK
χ(ν)e

(
− νµ
qK

)
=
∑

1≤j≤q
χ(j)e

(
−jµH
qK

) ∑

0≤r≤K−1

e

(
−rµH

K

)
,

q∑

j=1

χ(j)e
(
−nj
q

)
= χ(−n)τ(χ),

and

L(s, χ) =
1
q

q∑

j=1

χ(j)ζ
(
s,
j

q

)
for σ > 0, 0 < x ≤ 1,
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we get
∑

1≤µ≤qK
χ(µ)ζ

(
s+ β,

µ

qK

) ∑

1≤ν≤qK
χ(ν)e

(
−νµH
qK

)

= Kτ(χ)χ(K)χ(−H)qs+βL(s+ β, χ0),

where χ0 denotes the principal character modulo q. In an analogous manner
we get

∑

1≤ν≤qK
χ(ν)

∑

1≤µ≤qK
χ(µ)e

(
−νµH
qK

)
= Kτ(χ)χ(K)χ(−H)ϕ(q)

and thus D∗(s) = D(s)− E1(s)− E2(s) + E3(s), where

E1(s) = Kqs+βτ(χ)χ(K)χ(−H)L(s+ β, χ0)ζ(s+ α),

E2(s) = Kqs+ατ(χ)χ(K)χ(−H)L(s+ α, χ0)ζ(s+ β),

E3(s) = Kϕ(q)τ(χ)χ(K)χ(−H)ζ(s+ α)ζ(s+ β).

If Rc(x) denotes the closed rectangle with vertices at c ± ix and 1/2 ± ix
and if Γc(x) denotes the path along the upper, left and lower part of Rc(x),
using (2) and (4), we obtain

N =
1

2πi

∑

h,k≤y

χ(h)χ(k)b(h, P1)b(k, P2)
k

\
Rc(x)

τ s(E1 + E2 − E3)(s)
s(qK)2s+α+β ds(5)

+ F1(x)−F2(x),

where F1(x) has been defined above, and where

F2(x) =
1

2πi

∑

h,k≤y

χ(h)χ(k)b(h, P1)b(k, P2)
k

\
Γc(x)

τsD(s)
s(qK)−2s−α−β ds.

Because A 6= B (which is equivalent to α 6= β), the residues at 1 − α and
1− β of the integral in (5) are given by

K−1+α−βq−1τ(χ)χ(−H)χ(K)L(1− α+ β, χ0)
τ1−α

1− α
+K−1−α+βq−1τ(χ)χ(−H)χ(K)L(1 + α− β, χ0)

τ1−β

1− β .

Hence

M = T
eB−A

1− αL(1− α+ β, χ0)S(−α, β, χ0)

+ T
1

1− βL(1 + α− β, χ0)S(−β, α, χ0)

+O(q−1/2(|F1(x)|+ |F2(x)|) + q1+εT 1/2+εy1+ε),



Zeros of Dirichlet L-series on the critical line 45

where

S(α, β, χ0) :=
∑

h,k≤y

b(h, P1)b(k, P2)
h1+αk1+β χ0

(
hk

(h, k)

)
(h, k)1+α+β .

4. Proof of Theorem 1—the main term. In order to get the main
term of the assertion of Theorem 1, we have to examine the sum S(α, β, χ0).
Let

F (d, s, χ) =
∏

p|d

(
1− χ(p)

ps

)
=
∑

e|d
µ(e)

χ(e)
es

.

As defined above, b(n, P ) = µ(n)P (1 − logn/log y), with a polynomial P
satisfying P (0) = 0. The Möbius inversion formula gives

S(α, β, χ0) =
∑

d≤y

F (d, 1 + α+ β, χ0)χ0(d)
d

×
∑

h≤y/d

b(hd, P1)χ0(h)
h1+α

∑

k≤y/d

b(kd, P2)χ0(k)
h1+β .

Defining

GP (d, z, χ0) :=
∑

n≤y/d
(n,d)=1

µ(n)
nz

χ0(n)P
(

1− lognd
log y

)
,

we get

S(α, β, χ0) =
∑

d≤y

µ(d)
d

χ0(d)F (d, 1 + α+ β, χ0)(6)

×GP1(d, 1 + α, χ0)GP2(d, 1 + β, χ0).

To obtain an asymptotic expression for this, we apply the following lemmas
which may be proven along the same lines as the corresponding results of
[22], [19], or [5]:

Lemma 4. Let GP (d, z, χ0), α, χ0 be as above. If d ≤ y and P is a
polynomial satisfying P (0) = 0, we have

GP (d, 1 + α, χ0)

=
q1+α

ϕ(q)
F (d, 1 + α, χ0)−1

(
αP

(
log y/d
log y

)
+ log−1yP ′

(
log y/d
log y

))

+O

(
F1(d, 1− δ, χ0)(log log y)3

(
q log−2 y +

(
y

d

)−δ
log−1 y

))
,

where F1(d, s, χ) =
∏
p|d(1 + χ(p)p−s).
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Lemma 5. Let f(p) = 1 + O(p−c), c > 0 and f(d) =
∏
p|d f(p). If χ0

denotes the principal character modulo q ≥ 1, we have, for ν ≥ 0,

∑

d≤y

µ2(d)
d

f(d) logν
y

d
= Pf · ϕ(q)

q
·L(2, χ0)−1 ·(ν+1)−1 logν+1 y+Oν(logν y)

where

Pf :=
∏
p

(
1 +

f(p)− χ0(p)
χ0(p)− p

)

is absolutely convergent. In the special case

f(p) = χ0(p)
1− χ0(p)p−1−α−β

(1− χ0(p)p−1−α)(1− χ0(p)p−1−β)
,

we have

Pf · L(2, χ0)−1 = 1 +O(L−1) if α, β � L−1.

Lemma 6. Let δ ≥ 0, δ′ ≥ 0 and δ+δ′ ≤ c < 1. Further let F1(d, s, χ) =∏
p|d(1 + χ(p)/ps) as above. Then for r = 1, 2, . . . , we have

∑

d≤y

µ2(d)
d1−δ F1(d, 1− δ′, χ0)r =

{
Oc,r(log y) if δ = 0,
Oc,r(yδ/δ) if δ > 0.

Using Lemma 4 and our last representation (6) of S(α, β, χ0), we get
terms of the form

∑

d≤y

µ2(d)
d

f(d)P
(

1− log d
log y

)
=
∑

ν≥0

aν log−ν y
∑

d≤y

µ2(d)
d

f(d) logν
y

d
.

By Lemma 5, this equals ϕ(q)
q log y

T1
0 P (t) dt + OP (1). Using Lemma 6 to

bound the error terms, we get

S(α, β, χ0) =
q1+α+β

ϕ(q)
· θL

1\
0

(
AP1(t) +

1
θ
P ′1(t)

)(
BP2(t) +

1
θ
P ′2(t)

)
dt

+O

(
q2 log q
ϕ(q)

(log log y)7 log−2 y

)
.

Since P1(0) = P2(0) = 0 the formula
T1
0(P ′1P2 + P1P

′
2)(t) dt = P1(1)P2(1)

holds, and we obtain

S(−α, β, χ0)− S(−β, α, χ0)

=
q

ϕ(q)
· B −AL · P1(1)P2(1) +O

(
q log q
ϕ(q)

L−2 log7 L
)
.
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Collecting our results, we obtain the following formula for the mean value
in question:

(7) M = T

(
eB−A − 1
B −A · θ

1\
0

(
−AP1(t) +

1
θ
P ′1(t)

)(
BP2(t) +

1
θ
P ′2(t)

)
dt

+P1(1)P2(1)
)

+O(TL−1 log q · log7 L+ q1/2+εT 1/2+εy1+ε + q−1/2(|F1(x)|+ |F2(x)|)).

5. Proof of Theorem 1—the error term. It remains to bound the
error terms. F1(x) has been bounded in (3). We shall see that it will be
convenient to choose x = Tn with some large absolute constant n. This will
yield F1(Tn) ∼ y log y = T θ · θ log T if T → ∞. The choice of x depends
on F2, and the estimation of this error term is the most critical step in the
proof of Theorem 1.

Using the notation of Section 3, we easily see that, with the path Γ1+η(x)
defined before equation (5),

(8) F2(x) =
\

Γ1+η(x)

∑

k≤y

χ(k)b(k, P2)
k1−s · H(s, k)

(
qT

2π

)s
ds

s
,

where

H(s, k) =
∑

h≤y

b(h, P1)
hs

∞∑
n=1

∞∑
m=1

χ(hnm)
ns+αms+β e

(
−nmh

qk

)

=
∞∑

j=1

j−sa(j)e
(
− j

qk

)
.

Here, the coefficients are given by

a(j) =
∑ b(h, P1)χ(hnm)

nαmβ
,

where the summation is over all n, m, h satisfying h < y and nmh = j.
Put J = j/(j, qk), Q = qk/(j, qk), and let

∑
χmod q denote a sum over all

characters modulo q. Using the Möbius inversion formula and

e

(
j

q

)
=

1
ϕ(q)

∑

χmod q

τ(χ)χ(j),

we obtain

e

(
− j

qk

)
=

∑

d|(j,qk)

∑

e|d
µ

(
d

e

)
ϕ

(
qk

e

)−1 ∑

ψmod qk/e

τ(ψ)ψ
(
−j
e

)
.
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This implies

(9) H(s, k) =
∑

d|qk

1
dsϕ(qk/d)

∑

ψmod qk/d

ψ(−1)τ(ψ)A(s, d, ψ),

where A(s, d, ψ) denotes the Dirichlet series

A(s, d, ψ)

=
∞∑

j=1

a(jd)ψ(j)j−s

=
∑

d1d2d3=d

( ∞∑
n=1

ψ(n)χ(nd1)
dα1n

s+α

)( ∞∑
m=1

(m,d1)=1

ψ(m)χ(md2)

dβ2m
s+β

)

×
( ∑

h≤y/d3
(m,d1d2)=1

ψ(h)χ(hd3)b(hd3, P1)
hs

)

= L(s+ α, ψχ)L(s+ β, ψχ)

×
∑

d1d2d3=d

χ(d1d2)F (d1, s+ β, ψχ)

dα1 d
β
2

∑

h≤y/d3
(h,d1d2)=1

b(hd2, P1)χ(hd3)ψ(h)
hs

.

The infinite series is convergent for σ > 1, therefore, by analytic continua-
tion, the last expression is valid for σ ≤ 1 as well.

Let τn = 1∗. . .∗1 denote the nth divisor function. Because of F (d, s, χ)�
τ2(d) and τn(d)τm(d) ≤ τnm(d),

(10) A(s, d, ψ)� τ6(d)|L(s+ α,ψχ)L(s+ β, ψχ)Ψ(s, ψ)|
where Ψ(s, ψ) =

∑
h≤y ψ(h)c(h)h−s represents a Dirichlet series with coef-

ficients c(h)� 1.
First we bound F2(x) on the horizontal parts of Γ1+η(x). Using

L(σ+ix, χ)� x1/6q1/2 log3 qx for x ≥ 2, σ ≥ 1/2 and all characters χ mod q
([18]) and Ψ(σ + ix, ψ) � ∑

h≤y h
−σ � y1−σ log y for σ > 0, we find that

for any ε > 0,

A(σ + ix, d, ψ)� τ6(d)[q, qk/d]1+εx1/3+εy1−σ log y.

Here, and in the sequel, [n,m] denotes the least common multiple of n and
m. Hence

H(σ + ix, k)� x1/3+εy1−σ log y
∑

d|qk

τ6(d)
dσϕ(qk/d)

[q, qk/d]1+ε
∑

ψmod qk/d

|τ(ψ)|

� x1/3+ε(qk)3/2+ετ7(q)τ7(k)y1−σ log y,

by (9) and the estimate for Gaussian sums |τ(ψ)| ≤
√
qk/d (cf. e.g. [9], §9).
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So, because of (8) the contribution of the horizontal parts s = σ ± ix of
Γ1+η(x) to the error term F2(x) is

1+η\
1/2

∑

k≤y

χ(k)b(k, P2)
k1−s H(s, k)

(
qT

2π

)s
dσ

s

� q3/2+ετ7(q)x1/3+εy log y

×
1+η\
1/2

y−σ
(
qT

2π

)σ∑

k≤y
k1/2+σ+ετ7(k)

dσ

(σ2 + x2)1/2

� q5/2+η+ετ7(q)x−2/3+εT 1+ηy3−η+ε logq y =: F21(x).

If we choose x = Tn with a large absolute constant n, this part of the error
term will become sufficiently small.

Next we bound F2(x) on the vertical part of Γ1+η(x), where σ = 1/2
and |t| ≤ x. If χ is a character mod q, let χ∗ denote the primitive character
modulo the conductor of χ satisfying χ(n) = χ0(n)χ∗(n) for all n, where χ0

denotes the principal character mod q (cf. e.g. [1], §8.9).
Using this notation and some well known estimates (e.g. [4]), we have

L(s, ψχ)� [q, κ]ε|L(s, (ψχ)∗)| for σ > 0, ε > 0 and any characters ψ mod κ
and χ mod q.

Applying this result, (9), and (10), we obtain

∑

k≤y

χ(k)b(k, P2)
k1−s H(s, k)

� 1
q1/2−ε

∑

k≤y

1
k1−ε

∑

d|qk

τ6(d)
dε

[
q,
qk

d

]ε

×
∑

ψmod qk/d

|L(s+ α, (ψχ)∗)L(s+ β, (ψχ)∗)Ψ(s, ψ)|,

and thus the contribution of the vertical part of Γ1+η(x) to F2(x) is

1/2+ix\
1/2−ix

∑

k≤y

χ(k)b(k, P2)
k1−s H(s, k)

(
qT

2π

)s
ds

s

� qεT 1/2
∑

k≤y
k−1+ε

∑

d|qk

τ6(d)
dε

[
q,
qk

d

]ε

×
∑

ψmod qk/d

x\
−x
|L(s+ α, (ψχ)∗)L(s+ β, (ψχ)∗)Ψ(s, ψ)| dt

|1/2 + it|
=: F22(x).
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Using Hölder’s inequality, we can split the innermost sum into three factors:

∑

ψmod qk/d

x\
−x
|L(s+ α, (ψχ)∗)L(s+ β, (ψχ)∗)Ψ(s, ψ)| dt

|1/2 + it|

≤
( ∑

ψmod qk/d

x\
−x
|L(1/2 + α+ it, (ψχ)∗)|4 dt

|1/2 + it|
)1/4

×
( ∑

ψmod qk/d

x\
−x
|L(1/2 + β + it, (ψχ)∗)|4 dt

|1/2 + it|
)1/4

×
( ∑

ψmod qk/d

x\
−x
|Ψ(1/2 + it, ψ)|2 dt

|1/2 + it|
)1/2

.

In order to deal with these terms, we make use of the following two lemmas
from the theory of the large sieve.

Lemma 7. If x ≥ 2 and |1/2− σ| � (log qx)−1, then

∑∗

χmod q

x\
−x
|L(s, χ)|4 dt

|1/2 + it| � ϕ(q)(log x · log4 qx).

This consequence of a mean value theorem of Montgomery ([20], Thm.
10.1) may be obtained by partial summation. In the same manner, but using
a result of Gallagher ([14], Thm. 2), we get

Lemma 8. Let χ denote a character mod q, and let

S(t, χ) =
∑

n≤y
anχ(n)n−it

with some arbitrary complex coefficients an. For x ≥ 2,

∑

χmod q

x\
−x
|S(t, χ)|2 dt

|1/2 + it| �
∑

n≤y
(q log x+ n)|an|2.

Applying Lemma 7 and using α, β � L and x = Tn with some suffi-
ciently large absolute constant n (e.g. n = 10), we obtain

∑

ψmod qk/d

x\
−x
|L(1/2 + α+ it, (ψχ)∗)|4 dt

|1/2 + it| � [q, qk/d] log5(x[q, qk/d]).

Analogously, applying Lemma 8 instead of Lemma 7, we obtain

∑

ψmodm

x\
−x
|Ψ(1/2 + it, ψ)|2 dt

|1/2 + it| �
∑

ν≤y

(m log x+ ν)|c(ν)|2
ν

� m log x · log y + y,
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where we have used the representation Ψ(s, ψ) =
∑
ν≤y ψ(ν)c(ν)ν−s. Col-

lecting our results, the error resulting from the vertical part of Γ1+η(x) is

F22(x)� qεT 1/2
∑

k≤y
k−1+ε

∑

d|qk
τ6(d)

(
qk

d

)ε

× (qk)1/2 log5/2(xqk)
(
y +

qk

d
log x · log y

)1/2

� q1+εT 1/2+εy1+ε.

If we use x = Tn, F1(x) ∼ y log y and F21 = o(1) as T →∞, the error term
in (7) becomes

� qTL−1 log q · log7 L+ q1/2+εT 1/2+εy1+ε.

Since y = T θ with θ ≤ θ2 < 1/2 this completes the proof of Theorem 1.
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