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Existence of a non-entire twist for a class of L-functions

by

G. Molteni (Milano)

1. Settings and results. Given an integer d ≥ 1, we consider the class
Cd of functions with the following properties:

• (Arithmetical conditions) If f ∈ Cd, then

f(s) =
∏
p

d∏

j=1

(1− αj(p)p−s)−1

where |αj(p)| ≤ 1 for all j, p. As a consequence of this hypothesis f has a
Dirichlet series representation f(s) =

∑
n ann

−s that is absolutely conver-
gent for σ > 1.
• (Analytical conditions) For all integers q ≥ 1 and all primitive char-

acters χ mod q, the twisted function (f ⊗ χ)(s) :=
∑
n χ(n)ann−s has con-

tinuation to C as a meromorphic function with at most a pole at s = 1;
moreover, (s − 1)m(f ⊗ χ)(s) is an entire function of finite order for some
integer m, and f ⊗ χ satisfies a functional equation of type

(f ⊗ χ)(1− s) = qd(s−1/2)Φfχ(s)(f ⊗ χ)(s)

where f(s) :=
∑
n ann

−s, Φfχ(s) is an holomorphic function in σ > 0 and
satisfies the estimate |Φfχ(s)| < c(σ, χ)|t|B(σ,χ) for |t| ≥ 1 on each vertical
line σ + it, for some constants c(σ, χ), B(σ, χ) > 0. Moreover, we assume
that there exists σ̃ > 0 such that c(σ, χ) = c(σ) and B(σ, χ) = B(σ) for
σ > σ̃.
• In addition, for f ∈ C1 we assume that Φfχ(s) � |t|σ uniformly for

|t| > 1 and σ sufficiently large.

Remark 1. The above conditions are inspired by the work of Duke and
Iwaniec [1].

Remark 2. With these hypotheses, Cd′ ⊆ Cd when d′ ≤ d, so the really
interesting parameter associated with f ∈ Cd is d(f) := min{d′ : f ∈ Cd′};
in the following we will assume that d(f) = d whenever we write f ∈ Cd.
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Remark 3. The third condition is compatible with our knowledge of C1
and is necessary in a technical point of Section 2.

Remark 4. The set
⋃

d Cd has a lot of algebraic structure provided by
the product and the Rankin–Selberg convolution: in fact, let f ∈ Cd and
g ∈ Cd′ ; then the identity (fg)⊗χ = (f ⊗χ)(g⊗χ) shows that fg ∈ Cd+d′ .
Moreover, if we assume that f ⊗ g satisfies the analytical conditions, then
f ⊗ g ∈ Cdd′ .

It is not completely trivial to show that the usual Dirichlet L-functions
L(s, κ) are in C1, the non-trivial part being the existence of a χ-uniform
estimate for f ⊗ χ = L(s, κχ); we prove this in the appendix.

Likewise, it can be proved that the normalized L-functions associated
with holomorphic newforms for the Hecke group Γ0(N) with multiplier κ
are in C2: in this case we know that the twisted function L ⊗ χ is again a
normalized L-function associated with a newform for a Γ0(Ñ) and a new
multiplier, so in this case f ⊗ χ is always an entire function (see Theorem
4.3.12 in [4]).

Moreover, let L be a normalized function associated with a holomor-
phic newform for SL2(Z) and let L(s, symm) be the m-symmetric function
generated by L, introduced by Serre in connection with the Sato–Tate con-
jecture. For m ≥ 1 the Langlands program implies that L(s, symm) ∈ Cm+1

and that the twist L(s, symm)⊗ χ is entire for all χ. For small values of m
these conjectures are consequences of important results proved in the liter-
ature. In particular they are true for m = 1 (case already quoted) and for
m = 2 (from Shimura [8]). They are “almost” true for m = 3, 4, 5 too, in
the sense that for those values of m the functional equation and the mero-
morphic continuation to C have been established (Shahidi [6, 7]), but that
the singularities are reduced at most to a pole at s = 1 is not yet proved.

Definition. We say that f ∈ Cd has the ∗-property when f ⊗ χ is an
entire function for all primitive χ (hence f is entire as well, since f = f ⊗χ0

with q = 1).

The previous remarks show that there are elements with the ∗-property
in Cd for d = 2, 3 (see Remark 2) and conjecturally for every d ≥ 2, but
not every element of Cd has the ∗-property, as the function ζ2(s) shows.
However, there is strong evidence, but no proof, that the elements of Cd
with d ≥ 2 have the ∗-property if they are not a product or Rankin–Selberg
convolution of functions in some Cd′ (see Remark 4). The main result of this
paper is that the restriction to d ≥ 2 is in fact a necessary condition for the
∗-property.

Theorem. Let f ∈ C1 have the ∗-property. Then f is the constant func-
tion f(s) = 1.
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The class Cd appears to be related to the Selberg class Sd (see [5] and [3])
but there are some important differences. Firstly, in Cd the kernel Φfχ of the
functional equation is not necessarily a product of Γ -factors; secondly, in Cd
we assume a “well-behaviour” of f⊗χ that probably holds in Sd as well, but
f⊗χ does not necessarily belong to Sd. Finally, in our arithmetical definition
d is always an integer, while in the Selberg setting every positive real value
is in principle possible for d, as a consequence of a different (analytical)
definition. In all the known cases the two definitions provide the same result:
this reveals that there are deep aspects of the theory that are not yet well
understood. Kaczorowski and Perelli [3] have proved that the Dirichlet L-
functions L(s, κ) and their shifts are the only elements of S1, so it is natural
to conjecture that these functions exhaust C1 as well. We are not able to
prove this conjecture at present; however, our Theorem agrees with this
conjecture.

The Theorem is a consequence of the following two lemmas.

Lemma 1. Let f(s) =
∑
n ann

−s ∈ C1 and g(s) =
∑
n bnn

−s ∈ Cd for
some d ≥ 2, and assume that f and g have the ∗-property. Then

∑

x/2<n<x

anbnη
2(n/x)�A x

−A ∀A > 0

with an arbitrary positive function η ∈ C∞0 ([1/2, 1]).

Lemma 2. Let
∑
k hkx

k =
∏u
j=1(1−βjx)−1 with 0 < |βj | ≤ 1 for any j.

Assume that |βj | = 1 for some j and let mi = #{j : βj = βi with |βi| = 1},
M = max {mi}. Then hk = Ω(kM−1); in particular hk = Ω(1).

For the proof of Lemma 1 we follow, with some non-trivial simplifications,
the approach used by Duke and Iwaniec [1] to treat a similar problem.
Section 2 is devoted to the proof of this lemma.

Lemma 2 is an easy consequence of explicit computations of linear alge-
bra (see Section 3).

Proof of the Theorem. If we assume the lemmas, the proof of the Theorem
is simple; in fact Lemma 1 implies

(1) |anbn| < c(A)n−A ∀A > 0.

We write f(s) =
∏
p(1 − α(p)p−s)−1, g(s) =

∏
p

∏d
j=1(1 − βj(p)p−s)−1.

Given any prime p, we select a function g such that |βj(p)| = 1 for some j
(this is always possible, for example in C2 with g a normalized L-function
associated with a holomorphic newform for SL2(Z)). Then the sequence bpk
satisfies the hypothesis of Lemma 2, so there is a subsequence {bpkn} such
that |bpkn | > c for some positive constant c and every n. The complete
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multiplicativity of an and (1) give

|α(p)|knc = |apkn |c ≤ |apkn bpkn | ≤ c(A)p−knA,

so |α(p)| ≤ (c(A)/c)1/knp−A, and hence taking n→∞, for any p and A we
have |α(p)| ≤ p−A. Therefore α(p) = 0 for every p, and the result follows.

2. Proof of Lemma 1

2.1. Preliminary identities

Remark 5. Here and in the following section
T
σ>a

is the integral on the
vertical line with abscissa σ > a.

Let η be as in Lemma 1, Y (x) :=
∑
q η(q/

√
x) ∼ √x TR η(u) du, and

define

D(x) :=
∑
n

anbnη
2(n/x).

In order to analyze the asymptotic behaviour of D(x) and prove the lemma,
we begin by performing the same transformations as in Section 3 of [1],
with some little changes. In particular, the decomposition of arm is now
obvious by complete multiplicativity, and the other arithmetical functions
br(b), ct(c), dt(d), which are necessary for the decomposition of brn and to
relax the constraints (m, t) = 1 and (n, t) = 1 respectively, are now defined
by

brn =
∑

bn′=n, b|rd−1

br(b)bn′ , br(b) � rε,(2a)

∑

dn′=n, d|td
dt(d)bn′ =

{
bn if (n, t) = 1,
0 otherwise,

dt(d) � tε,(2b)

∑

cm′=m, c|t
ct(c)am′ =

{
am if (m, t) = 1,
0 otherwise,

ct(c) � tε.(2c)

The existence of br(b) for d = 2 is proved in [2], and the general case is
similar; the existence of ct(c) and dt(d) is granted by the Euler product (in
particular ct(c) = µ(c)ac, with µ the Möbius function).

The result of these transformations is the following identity, which is
analogous to (9) of [1]:

YD(x) =
∑
q,r,t

φ(qt)−1
∑

(b,qt)=1
b|rd−1

arbr(b)
∑

(cd,q)=1
c|t, d|td

ct(c)dt(d)(3)

×
∑∗

χmod q

∑
m,n

χ(cm)χ(bdn)ambnh
(
crm

x
,
bdrn

x
,
qrt√
x

)
,
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where h(x, y, z) := η(x)η(y)(η(z) − η(|x− y|/z)) has support in [1/2, 1] ×
[1/2, 1]× (0, 1] and

∑∗ is a sum over the primitive characters only.
Now we adapt to our case the argument in Section 4 of [1], but we avoid

using the Kloosterman sums.
Let

%1 := cr/x, %2 := bdr/x, z := qrt/
√
x, h(u, v) := h(%1u, %2v, z)

and

∆(χ) :=
∑
m,n

χ(m)χ(n)ambnh(m,n).

Then h(u, v) is a smooth function with compact support that is zero in
{|u| < 1/(2%1)} × {|v| < 1/(2%2)}, hence

ȟ(s1, s2) :=
∞\
0

∞\
0

h(u, v)u−s1v−s2 du dv

is entire in C× C.
Moreover, the equality ȟ(s1, s2) = %s1−1

1 %s2−1
2 ȟ(s1, s2, z) holds with

(4) ȟ(s1, s2, z) :=
∞\
0

∞\
0

h(u, v, z)u−s1v−s2 du dv,

therefore

%−s11 %−s22 ȟ(1− s1, 1− s2, z) =
∞\
0

∞\
0

h(u, v)us1−1vs2−1 du dv.

The inverse of this Mellin integral gives

h(u, v) =
−1
4π2

\\
σ1,σ2>1

ȟ(1− s1, 1− s2, z)(%1u)−s1(%2v)−s2 ds1 ds2,

therefore

∆(χ) =
−1
4π2

\\
σ1,σ2>1

ȟ(1−s1, 1−s2, z)(f ⊗χ)(s1)(g⊗χ)(s2)%−s11 %−s22 ds1 ds2

for the uniform convergence of
∑
ann

−s and
∑
bnn
−s in σ > 1 + ε.

The functions f ⊗ χ and g ⊗ χ are entire by the ∗-property and have a
polynomial behaviour on the vertical strips by the hypothesis on the func-
tional equations. In the next subsection we prove that ȟ tends to zero on
the vertical lines more quickly than any power, so the changes s1 7→ 1− s1,
s2 7→ 1 − s2 and the subsequent applications of the Fubini and Cauchy
theorems give

∆(χ)=
−1
4π2

\\
σ1,σ2>1

ȟ(s1, s2, z)(f⊗χ)(1−s1)(g⊗χ)(1−s2)%s1−1
1 %s2−1

2 ds1 ds2.
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Now we introduce the functional equations and the Dirichlet series again,
thus getting

∆(χ) =
q−(1+d)/2

%1%2

∑
m,n

χ(m)χ(n)ambnHχ
(
m

q%1
,
n

qd%2
,
qrt√
x

)

where

(5) Hχ(u, v, z) :=
−1
4π2

\\
σ1,σ2>0

ȟ(s1, s2, z)Φfχ(s1)Φgχ(s2)u−s1v−s2 ds1 ds2.

In the definition of Hχ we can allow every positive value for σ1 and σ2 by
the hypothesis about Φfχ and Φgχ and the behaviour of ȟ on the vertical lines.
Substituting this expression in (3) we obtain the final equality

(6) YD(x) = x2
∑

rt<
√
x

ar
∑

b|rd−1

(b,t)=1

∑

c|t
d|td

br(b)ct(c)dt(d)
E

bcdr2 ,

where

E :=
∑
m,n,q

(bcdmn,q)=1

q−(1+d)/2

ϕ(qt)
ambn(7)

×
∑∗

χmod q

χ(cnbdm)Hχ
(
mx

crq
,
nx

bdrqd ,
qrt√
x

)
,

which is analogous to (10) of [1].

2.2. Estimate of Hχ
Remark 6. In this and the following sections ε is an arbitrary (small)

positive parameter not always with the same value.

We recall that h(u, v, z) = η(u)η(v)(η(z) − η(|u− v|/z)) has support in
[1/2, 1]× [1/2, 1]× (0, 1] and the definitions of ȟ(s1, s2, z) and Hχ(u, v, z) in
(4) and (5).

By partial integration we have, for all A,B ≥ 0,

ȟ(s1, s2, z) =
∞\
0

∞\
0

∂h(u, v, z)
∂Au∂Bv

× uA−s1

(s1 −A) . . . (s1 − 1)
· vB−s2

(s2 −B) . . . (s2 − 1)
du dv;

moreover, zA+B ∂h(u,v,z)
∂Au∂Bv

is uniformly bounded on its support, since it is a
polynomial expression in z, η(i)(u), η(j)(v), η(k)(|u − v|/z), so the former
relation gives the estimate

(8) ȟ(s1, s2, z)� z−A−B(1 + |s1|)−A(1 + |s2|)−B ∀A,B ≥ 0
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where the implied constant depends only on A,B, σ1, σ2. Hence (8) is uni-
form on the vertical lines. Therefore

Hχ � u−σ1v−σ2z−A−B
\\

σ1,σ2>0

|Φfχ(s1)|
(1 + |s1|)A ·

|Φgχ(s2)|
(1 + |s2|)B dt1 dt2,

the estimate being independent of the character χ if σ1 and σ2 are suffi-
ciently large. Moreover, we have supposed that Φfχ(s1)� |t|σ1 and Φfχ(s2)�
|t|B(σ2) for |t| > 1 and σi large, so

Hχ � u−σ1v−σ2z−A−B
∞\
−∞

∞\
−∞

(1 + |t1|)σ1−A(1 + |t2|)B(σ2)−B dt1 dt2,

where by (8) we have supposed A and B sufficiently large to assure the
convergence of the integral. Choosing A = σ1 +1+ε and B = B(σ2)+1+ε,
we have

Hχ �σ1,σ2 u
−σ1v−σ2z−σ1−B(σ2)−2−ε

= u−(σ1−B(σ2)−2−ε)/2v−σ2(uz2)−(σ1+B(σ2)+2+ε)/2

for all σ1, σ2 large, therefore

Hχ �A,D u−Av−D(uz2)−B̃

for all A,D > 0 large, for some B̃ = B̃(A,D) > 0. Hence

(9) Hχ
(
mx

crq
,
nx

bdrqd ,
qrt√
x

)
�A,D

(
crq

mx

)A(
bdrqd

nx

)D(
mx

crq
· q

2r2t2

x

)−B̃
.

In view of the support of h, Hχ(u, v, z) is zero when z > 1, so we can greatly
simplify the estimate (9) by assuming 0 < z ≤ 1, i.e., q ≤ Q :=

√
x/(rt). In

fact
crq

mx
≤ cr

mx
· x

1/2

rt
≤ x−1/2

m

by (2c),

bdrqd

nx
≤ b

rd−1 ·
d

td
· x

(d−2)/2

n
≤ x(d−2)/2

n

by (2a) and (2b), and

mx

crq
· q

2r2t2

x
≥ 1

by (2c). Thus (9) becomes

Hχ
(
mx

crq
,
nx

bdrqd ,
qrt√
x

)
�A,D

x−A/2+(d−2)D/2

mAnD
∀A,D > 0.
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Finally, with a suitable choice of D = D(A) we have

(10) Hχ
(
mx

crq
,
nx

bdrqd ,
qrt√
x

)
�A

x−A

mAnA
∀A > 0,

uniformly in χ.

2.3. Estimate of E. Estimate (10) is so strong that we can bound E
trivially, using the uniformity in χ and taking the absolute values in (7),
thus getting

(11) E �A

∑

q≤Q

q(1−d)/2

ϕ(qt)

∑
m

|am|
mA

∑
n

|bn|
nA

x−A �A
x−A

t1−ε
∀A > 1,

where the q-series is convergent since we have assumed d ≥ 2, and the same
holds for the m and n-series when A > 1.

2.4. Proof of Lemma 1. The bound in (11), the trivial estimates ar, br(b)
� rε, ct(c), dt(d)� tε and b, c, d ≥ 1 give, when introduced in (6),

YD(x)�A x
2−A ∑

rt≤√x

rεtε

r2t

∑

b|rd−1

c|t, d|td

1�A x
2−A ∑

rt≤√x

rεtε

r2t

�A x
2+ε−A ∀A > 1.

This completes the proof of Lemma 1, since Y � √x.

3. Some explicit formulas

3.1. Proof of Lemma 2. Writing

∑

k

hkx
k =

u∏

j=1

(1− βjx)−1,

we have

(12) hk =
∑

a1+...+au=k
ai≥0

βa1
1 . . . βauu .

Let s1, . . . , su be the elementary symmetric polynomials in the βj . Then
the identity (1 − s1x + . . . + (−1)usuxu)

∑
k hkx

k = 1 gives the recursive
relations

(13)

{
hk − s1hk−1 + s2hk−2 + . . .+ (−1)usuhk−u = 0 if k > 0,
h0 = 1,
hk = 0 if k < 0.

The recursion can be solved in this way: denoting by vn the column vector
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(hn, hn−1, . . . , hn−u+1)t, (13) is equivalent to v0 = (1, 0, . . . , 0)t and vn =
Avn−1, i.e., vn = Anv0 with

A :=
(
s1 −s2 s3 . . . (−1)usu

Iu−1 0

)
,

where Iu−1 is the identity matrix of order u− 1.
It is known that β1, . . . , βu are the eigenvalues of A having wj :=

(βu−1
j , βu−2

j , . . . , 1)t as eigenvectors, so A is diagonalizable if we suppose
βi 6= βj for all i 6= j; in this case we set M := (w1, . . . , wu) so that G :=
M−1AM is diagonal, G = diag(β1, . . . , βu). Hence vn = MGnM−1v0 and
if V (c1, . . . , cu) denotes the Vandermonde determinant

∏
1≤i<j≤u(ci − cj),

it follows that

(14) hk =
u∑

j=1

βk+u−1
j (−1)j+1V (β1,

j
∨. . . , βu)

V (β1, . . . , βu)
=

u∑

j=1

βk+u−1
j∏

i6=j(βi − βj)
.

In the general case suppose β1, . . . , βl distinct and let mi = #{j : βj = βi}
for i = 1, . . . , l. Then (12) can be written as

hk =
∑

a1+...+al=k
ai≥0

βa1
1 . . . βall

( ∑
c1+...+cm1=a1

ci≥0

1
)
. . .
( ∑
c1+...+cml=al

ci≥0

1
)
.

But
∑
c1+...+cm=a, ci≥0 1 =

(
a+m−1
m−1

)
=: Pm(a) is a polynomial in a of degree

m− 1 and akβa =
(
β d
dβ

)k
βa, so that the former equality becomes

(15) hk = Pm1

(
β1

∂

∂β1

)
. . . Pml

(
βl

∂

∂βl

) ∑

a1+...+al=k
ai≥0

βa1
1 . . . βall .

We substitute (14) in (15) obtaining

(16) hk = Pm1

(
β1

∂

∂β1

)
. . . Pml

(
βl

∂

∂βl

) l∑

j=1

βk+l−1
j∏

i 6=j(βi − βj)
,

which finally gives the relation

(17) hk =
l∑

j=1

pj(k)βkj ,

where each pj(k) is a polynomial of degree ≤ mj − 1 in the k variable.
We prove that ∂kpj = mj − 1; it is sufficient to prove that the coefficient

of km1−1βk1 in (16) is not zero. But this coefficient is
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βl−1
1 Pm2

(
β2

∂

∂β2

)
. . . Pml

(
βl

∂

∂βl

)
1∏l

i=2(βi − β1)

= βl−1
1

l∏

i=2

Pmi

(
βi

∂

∂βi

)
1

βi − β1
=

l∏

i=2

Pmi

(
xi

∂

∂xi

)
1

xi − 1

=
l∏

i=2

−1
(1− xi)mi ,

where xi := βi/β1 6= 1 by hypothesis, and hence this expression is obviously
non-zero.

Now we can prove Lemma 2. The terms with |βj | < 1 in (17) are o(1),
the others βj are of absolute value 1 by the hypothesis of Lemma 2. Let M
be the maximum multiplicity of the terms with absolute value 1; then we
know that in (17) there are terms of order kM−1. Collecting these terms we
have

hk = kM−1
( l∑

j=1

rje
ikθj +O(1/k)

)
,

for some real θj with θi 6= θj for i 6= j, and rj 6= 0. Lemma 2 follows if
we prove that Rk :=

∑l
j=1 rje

ikθj 6→ 0 as k → ∞. By contradiction let us
assume that Rk → 0. Then Rke

−ikθ1 → 0 as well, and by the Cesàro mean
value we have

o(1) =
1
N

N∑

k=1

Rke
−ikθ1 =

l∑

j=1

rj
1
N

N∑

k=1

eik(θj−θ1) = r1 +O(1/N),

a contradiction.

3.2. A remarkable relation. We show here the deduction of an interest-
ing formula, identity (18) below, for the p-component of the coefficients of
Lf (s, symm), where f is a holomorphic newform for SL2(Z). This formula is
not necessary for the proof of our Theorem, but in some sense it completes
the topics presented in the previous section. If we introduce the polynomials

Du(N) :=

∣∣∣∣∣∣∣∣∣∣∣∣

βN1 βN2 . . . βNu
βu−2

1 βu−2
2 . . . βu−2

u

βu−3
1 βu−3

2 . . . βu−3
u

...
...

...
β1 β2 . . . βu
1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣

,

identity (14) can be formulated as hk = Du(k + u− 1)/Du(u− 1).
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Now we suppose that u = m+1 and {βj}uj=1 ≡ {zm−2j}mj=0 with |z| = 1:
this happens when we consider the m-symmetric power of an L-function
associated with a normalized newform for SL2(Z), with (1−zp−s)(1−zp−s)
the decomposition of its local polynomials. In this case

Dm+1(N) =

∣∣∣∣∣∣∣∣∣∣∣∣

zmN z(m−2)N . . . zmN

zm(m−1) z(m−2)(m−1) . . . zm(m−1)

zm(m−2) z(m−2)(m−2) . . . zm(m−2)

...
...

...
zm zm−2 . . . zm

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣

.

From long and not completely elementary calculations involving the Gauss
polynomials, which we do not report here, it is possible to verify that

Dm+1(N) =
(m−1∏

j=1

(zj − zj)m−j
)(m−1∏

j=0

(zN−j − zN−j)
)
.

Setting z =: eiθ, one gets

(18) hk =
m∏

j=1

sin(k + j)θ
sin jθ

.

For m = 1, (18) is the well known trigonometric expression for the p-part of
the coefficients of Lf (s).

Appendix. Writing f(s) = L(s, κ) with κ a primitive character mod-
ulo q0, we want prove that f ∈ C1, so we have to study the functional
equation of f ⊗ χ where χ is a primitive character modulo q. Let υ be the
character modulo q1 (q1 | q0q) that induces κχ. Then the identity f ⊗ χ =
L(s, υ)

∏
p|q0q(1−υ(p)p−s) holds. It follows that f⊗χ satisfies the functional

equation

f ⊗ χ(1− s)

= i−νυευq
(2s−1)/2
1 π−(2s−1)/2 Γ ((s+ νυ)/2)

Γ ((1− s+ νυ)/2)

∏

p|q0q

1− υ(p)ps−1

1− υ(p)p−s
f ⊗ χ(s)

where νυ is the parity of υ and ευ = τ(υ)/
√
q1 (phase of the Gauss sum).

We write the functional equation selecting the following components:

f ⊗ χ(1− s) = q(2s−1)/2αυΨνυ (s)Ψ̃(κ, χ, s)f ⊗ χ(s),

where

αυ := i−νυευ,

Ψνυ (s) :=
(
q0

π

)(2s−1)/2
Γ ((s+ νυ)/2)

Γ ((1− s+ νυ)/2)
,
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Ψ̃(κ, χ, s) :=
(
q1

q0q

)(2s−1)/2 ∏

p|q0q

1− υ(p)ps−1

1− υ(p)p−s
.

Here |αυ| = 1, Ψνυ (s) is a holomorphic function in σ > 0 that depends only
on the parity of υ, with a |t|σ behaviour on the vertical lines by the Stirling
formula, and Ψ̃(κ, χ, s) is a holomorphic function in σ > 0, bounded on
the vertical strips but depending on the character χ. Verifying that f ∈ C1
means then proving that Ψ̃(κ, χ, s) is bounded uniformly in t and χ for large
and fixed σ; we prove this for σ > 0. In fact

|Ψ̃(κ, χ, s)| ≤
(
q1

q0q

)(2σ−1)/2 ∏

p|q0q
p - q1

1 + pσ−1

1− p−σ(19)

≤
(

1
M

)(2σ−1)/2 ∏

p|M

1 + pσ−1

1− p−σ

since (1 + pσ−1)/(1− p−σ) > 1 and M := q0q/q1 is an integer. If we assume
σ ≥ 1, (19) implies that

(20) |Ψ̃(κ, χ, s)| ≤
(

1
M

)(2σ−1)/2 ∏

p|M
pσ−1

∏

p|M

1 + p1−σ

1− p−σ ≤
c(ε)

M1/2−ε ,

where we have used (1 + p1−σ)/(1 − p−σ) ≤ 4 for all p. Estimate (20) is
particularly interesting because it is uniform in the character κ also.

The bound (20) holds in σ > 1, and it is sufficient to prove that L(s, κ) ∈
C1, but we further observe that an estimate uniform in χ but not in κ is still
possible for 0 < σ; in fact, we will prove that M | MCD(q2

0 , q
2), thus from

(19) we have

|Ψ̃(κ, χ, s)| ≤ max(1, q1−2σ
0 )

∏

p|q0

1 + pσ−1

1− p−σ ,

which is independent of χ.
For a proof of M |MCD(q2

0 , q
2), let q0 =

∏
p p

ap , q =
∏
p p

bp , q1 =
∏
p p

cp

be the p-parts of the moduli and κ =
∏
p κpap , χ =

∏
p χpbp and υ =

∏
p υpcp

be the p-parts of the characters. Then κpap , χpbp and υpcp are primitive and
υpcp induces κpapχpbp . We prove that if ap 6= bp, then cp = max(ap, bp).
In fact let ap < bp and by contradiction cp < bp. Then κpap is a character
modulo pap so κpapυpcp is a character modulo max(pap , pcp) < pbp , hence it
induces a character mod pbp that cannot be primitive. This is a contradiction
since χpbp is the induced character. It follows that



Non-entire twist for a class of L-functions 65

M =
∏
p

pappbp

pcp
=
∏

p|q0

pappbp

pcp

∏

p - q0

pbp

pcp
=
∏

p|q0
pap+bp−cp ,

but ap 6= bp implies ap + bp− cp = min(ap, bp) and ap = bp implies ap + bp−
cp ≤ 2ap, hence M | q2

0 . In a similar way we prove that M | q2.
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