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A note on a result of Bateman and Chowla
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1. Introduction. In 1961, answering a problem proposed by N. J. Fine,
Besicovitch [2] constructed an example of a non-trivial real continuous func-
tion f on [0, 1] which is not odd with respect to the point 1/2 and with the
property that

(1)
n∑
a=1

f

(
a

n

)
= 0 for each n ∈ N.

His proof consisted in the definition of the required function in inductive
stages on small subintervals of [0, 1] and, in modern terminology, is rather
akin to the construction of a complicated fractal function.

Bateman and Chowla [1], in 1963, pointed out that the more explicit
functions

(2) f1(θ) =
∞∑
n=1

λ(n)
n

cos 2πnθ

where λ denotes the Liouville function and

(3) f2(θ) =
∞∑
n=1

µ(n)
n

cos 2πnθ

where µ denotes the Möbius function also share the above properties of
Besicovitch’s function. The continuity of these two functions follows from
the uniform convergence of the series involved, which is a classical result of
Davenport [3]. The other properties including (1) are then comparatively
trivial to demonstrate.

From a heuristic point of view, it is by no means clear from their paper
why one might expect, a priori, functions such as (2) or (3) to be associated
with Fine’s problem.

In this paper, we show that a class of functions, which includes Dav-
enport’s function (3), arises naturally as formal infinite limits of a finite
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minimizing problem involving sums of type (1). We then show that each
member of this class provides in fact a solution to Fine’s problem. To do
this, we prove a Davenport-type uniform convergence result of the series
involved using Vaughan’s identity, and one interesting outcome of our work
is that the function

(4) f(θ) =
∞∑
n=1

µ(n)
σ(n)

cos 2πnθ,

where σ is the usual sum of divisors function, is in a sense a more natural
solution to the original problem than is (3). Our main result is thus the
following.

Theorem 1. Let h(n) be any positive multiplicative function with

h(p) = 1 +O

(
log p
p

)
for primes p.

Then f(x) defined by

f(x) =
∞∑

k=1

h(k)
µ(k)
k

cos 2πkx

is a non-trivial function, continuous on [0, 1], which satisfies f(x) = f(1−x)
and has the property that

n∑
a=1

f(a/n) = 0 for each n ∈ N.

2. A finite minimizing problem and its solution. For any real
function f , continuous on [0, 1], define its deviation D(n) = Df (n), of order
n, by

D(n) =
1
n

n∑
a=1

f

(
a

n

)
−

1\
0

f(x) dx for any n ∈ N.

Clearly Df (n) = Dg(n) if f and g differ by a constant. For even trigono-
metric polynomials

(5) f(x) = fN (x) =
∑

k≤N

c(k)
k

cos 2πkx

we see that, for any fixed N ∈ N and c(k) ∈ R,

(6) D(n) =
1
n

n∑
a=1

f

(
a

n

)
=
∑

k≤N
n|k

c(k)
k
.
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We consider the problem of determining a function of the form (5) which
minimizes the weighted l2-norm ‖DN‖ of the deviations D(n) defined by

(7) ‖DN‖2 =
∑

n≤N
αnD

2(n) =
∑

n≤N

αn
n2

( ∑

h≤N/n

c(hn)
h

)2

subject to the normalizing condition c(1) = 1 and where αn are any given
positive numbers.

Theorem 2. For N ∈ N define a class SN of real trigonometric polyno-
mials of order N by

SN =
{
f : f(x) =

∑

k≤N

c(k)
k

cos 2πkx, c(k) ∈ R, c(1) = 1
}
.

Then for any real positive αn and any f ∈ SN ,

‖DN‖2 ≥ 1∑
n≤N µ2(n)/αn

with equality for the polynomial f ∈ SN with

c(k)
k

=
1∑

n≤N µ2(n)/αn

( ∑

n≤N/k
(n,k)=1

µ2(n)
αnk

)
µ(k) for each k, 1 ≤ k ≤ N.

P r o o f. The condition c(1) = 1 can be expressed as

∑

h,n
hn≤N

c(hn)µ(n)
hn

=
∑

l≤N

c(l)
l

∑

n|l
µ(n) = 1

and hence
∑

n≤N

µ(n)

α
1/2
n

· α
1/2
n

n

∑

h≤N/n

c(hn)
h

= 1.

We apply the Cauchy–Schwarz inequality to this condition in a manner rem-
iniscent of Turán’s proof of Selberg’s Upper Bound Sieve (see Halberstam–
Richert [4], p. 121) to obtain

∑

n≤N

µ2(n)
αn

∑

n≤N

αn
n2

( ∑

h≤N/n

c(hn)
h

)2

≥ 1,

i.e. that

‖DN‖2 ≥ 1∑
n≤N µ2(n)/αn

,
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with equality when

µ(n)

α
1/2
n

= C
α

1/2
n

n

∑

h≤N/n

c(hn)
h

for some C 6= 0 and all n ≤ N . By Möbius inversion,

c(k)
k

=
1
C

∑

h≤N/k

µ(h)µ(hk)
αhk

=
1
C

( ∑

h≤N/k
(h,k)=1

µ2(h)
αhk

)
µ(k).

The condition c(1) = 1 forces the choice C =
∑
h≤N µ

2(h)/αh, and this
completes the proof of Theorem 2.

Now suppose that the positive weights αn are multiplicative functions of
n with

(8) αp = 1 +O

(
log p
p

)
.

We shall determine the formal limit of the minimizing polynomial in The-
orem 2 as N → ∞ by calculating the limit of c(k)/k as N → ∞ for each
fixed k. Clearly

c(k)
k

=
(∑

n≤N/k, (n,k)=1 µ
2(n)/αn∑

n≤N µ2(n)/αn

)
µ(k)
αk

.

Writing β(n) = 1/αn, we have for Re s > 1,

∞∑
n=1

(n,k)=1

µ2(n)β(n)
ns

=
∏
p

(
1 +

β(p)
ps

)∏

p|k

(
1 +

β(p)
ps

)−1

(9)

= F (s)G(s, k), say.

Writing β(p) = 1 + R(p), where by hypothesis R(p) = O((log p)/p), we
obtain

F (s) =
ζ(s)
ζ(2s)

∏
p

(
1 +

R(p)
ps + 1

)

and hence F (s) is analytic in a region which includes Re s ≥ 1 except for a
simple pole at s = 1 with residue

1
ζ(2)

∏
p

(
1 +

R(p)
p+ 1

)
.

Therefore by the Wiener–Ikehara Theorem, or indeed by more elementary
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means, it follows from (9) that

lim
x→∞

1
x

∑

n≤x
(n,k)=1

µ2(n)β(n) =
1
ζ(2)

∏
p

(
1 +

R(p)
p+ 1

)∏

p|k

(
1 +

β(p)
p

)−1

.

A simple calculation then yields that, for fixed k ∈ N,

lim
N→∞

c(k) =
∏

p|k

(
αp +

1
p

)−1

µ(k).

Hence the formal limit of the minimizing polynomial is given by

(10) f(x) =
∞∑

k=1

∏

p|k

(
αp +

1
p

)−1
µ(k)
k

cos 2πkx.

Note that the choice αp = 1− 1/p, i.e. αk = φ(k)/k, yields Davenport’s
function (3) whilst the equal weights αk = 1 give the function (4) mentioned
in the introduction.

Remark. Although the condition (8) on αp is principally chosen here to
facilitate calculations in the application of Vaughan’s identity, in particular
it ensures that αp are not too small and hence the function

h(n) =
∏

p|n

(
αp +

1
p

)−1

satisfies h(n) � (log n)c for some c > 0; it is equally true that αp cannot
be too large since we can show that

∑∞
n=1 h(n)/n needs to be necessarily

divergent for the overall function f(x) to have all the desired properties.

3. Proof of Theorem 1. Our Theorem 3 proved below implies that∑

k≤y
µ(k)h(k) cos 2πkx� y/logλ y

uniformly in x, for any λ > 0. Writing

SN (x) =
∑

k≤N

µ(k)h(k)
k

cos 2πkx,

we deduce, by partial summation, that
SN+M (x)− SN (x)

=
( ∑

k≤N+M

µ(k)h(k) cos 2πkx
) 1
N +M

−
( ∑

k≤N
µ(k)h(k) cos 2πkx

) 1
N

+
N+M\
N

(∑

k≤t
µ(k)h(k) cos 2πkx

)dt
t2
.
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This implies, using Theorem 3 with λ > 1, that SN (x) converges uniformly
in x and hence that f(x) given by (10) is continuous. Integrating the series
term by term, we deduce that

1\
0

f(x) dx = 0

and, by Parseval’s identity,
1\
0

f2(x) dx =
1
2

∞∑

k=1

µ2(k)h2(k)
k2 ≥ 1

2

so that f(x) is non-trivial. In addition, setting g(k) = µ(k)h(k), we find that
for any n ∈ N,
n∑
a=1

f

(
a

n

)
=

n∑
a=1

( ∞∑

k=1

g(k)
k

cos
2πka
n

)

=
∞∑

k=1

g(k)
k

n∑
a=1

cos
2πka
n

= n

∞∑

k=1
n|k

g(k)
k

=
( ∞∑

h=1
(h,n)=1

g(h)
h

)
g(n).

Now for Re s > 1, observe that
∞∑

h=1
(h,n)=1

g(h)
hs

=
∏

p-n

(
1 +

g(p)
ps

)
=

1
ζ(s)

G(s)

where G(s) is analytic in a region which contains the point s = 1. Hence by
the continuity theorem for Dirichlet series, we see that for all n ∈ N,

∞∑

h=1
(h,n)=1

g(h)
h

= lim
s→1

G(s)
ζ(s)

= 0,

which implies that
∑n
a=1 f(a/n) = 0 for all n ∈ N, as required.

This completes the proof of Theorem 1. We now prove, as required,
Theorem 3.

Theorem 3. Let h(n) be any positive multiplicative function with

h(p) = 1 +O

(
log p
p

)
for primes p.

Then, for any λ > 0,

max
α∈[0,1]

∣∣∣
∑

n≤x
µ(n)h(n)e(nα)

∣∣∣�λ x/logλ x

where, as usual , e(nα) = exp(2πinα) and �λ indicates the Vinogradov
symbol with the implicit constant depending at most on λ.
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Remark. With a more judicious choice of the parameters involved, it
is easily seen that the hypothesis on h can be relaxed to

h(p) = 1 +O(1/p1/2)

and the bound obtained can be sharpened to

� x exp(−c0(log x)1/2).

We have refrained from doing this since we only need Theorem 3 as stated
and even so in fact only for some λ > 1.

P r o o f (of Theorem 3). Set g(n) = µ(n)h(n) and note that g(n)� logc n
for some fixed c ≥ 1. We need the following Siegel–Walfisz type result due
to Siebert [5], Satz 4.

Lemma 1. Let f(n) be a multiplicative function with
∑

p≤x
|f(p) + τ | � x1−ε

where ε > 0, τ ∈ N and |f(pa)| ≤ c1a
c2 with a ∈ N and c1, c2 > 0. Then for

any h > 0 and θ = θ(h) > 0,
∑

n≤x
n≡l (mod k)

f(n)� x exp(−θ(log x)1/2)

uniformly for k ≤ logh x.

Observe that g(n) satisfies the hypotheses of Lemma 1 with τ = 1. Note
also that the upper bound in Theorem 3 for α = 0 and α = 1 follows
immediately from this lemma so that we may assume henceforth that α ∈
(0, 1).

For any Q ∈ N, Dirichlet’s theorem implies that there exist a, q ∈ N with
(a, q) = 1 and q ≤ Q such that

∣∣∣∣α−
a

q

∣∣∣∣ ≤
1
qQ

.

Put Q = x(log x)−λ1 , δ = (log x)λ1 where λ1 satisfies

λ1 ≥ 2λ+ 2c+ 5,

c as in the upper bound for g(n). We define the major arcs to consist of those
α with corresponding q ≤ δ and the minor arcs those α with δ < q ≤ Q.

Write

Mn =
∑

m≤n
g(m)e(am/q)
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for each α ∈ (0, 1). A simple calculation involving partial summation yields

(11)
∣∣∣
∑

n≤x
g(n)e(nα)

∣∣∣ ≤
(

1 +
2πx
qQ

)
max
n≤x
|Mn|.

On the major arcs, writing

Mn =
q−1∑
r=0

e(ar/q)
∑

m≤n
m≡r (mod q)

g(m)

and using (11) and Lemma 1, one easily obtains∣∣∣
∑

n≤x
g(n)e(nα)

∣∣∣ ≤ max
n≤x

max
0≤r≤q−1

(q + 2πx/Q)
∣∣∣

∑

m≤n
m≡r (mod q)

g(m)
∣∣∣

� x exp(−θ(λ1)(log x)1/2)(log x)λ1 � x/logλ x.

On the minor arcs we have qQ > x and hence from (11), it suffices to show
that

max
n≤x
|Mn| �λ x/logλ x.

Since, trivially, Mn � n(log n)c, it suffices to prove that

MN � x/logλ x

for any N with x(log x)−λ1 ≤ N ≤ x.
Put u = N2/5. Vaughan’s identity [6] yields the decomposition

MN = S0 + S1 − S2 − S3

where

S0 =
∑

n≤u
g(n)e(na/q),

S1 =
∑

d≤u
µ(d)

∑

r≤N/d

∑

n≤N/(dr)
g(n)e(drna/q),

S2 =
∑

d≤u
µ(d)

∑

n≤u

∑

r≤N/(dn)

g(n)e(drna/q),

S3 =
∑

u≤m≤N/u
τ(m)

∑

u<n≤N/m
g(n)e(mna/q).

Trivially, we have, for any ε > 0,

S0 � u(log x)c � x2/5+ε.

To estimate S1, writing rn = k, we see that

S1 =
∑

d≤u
µ(d)

∑

k≤N/d
e(dka/q)

∑

n|k
g(n)
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and hence

S1 �
∑

d≤u

∑

k≤N/d

∣∣∣
∑

n|k
g(n)

∣∣∣.

Using |∑n|k g(n)| = ∏p|k |1− h(p)|, we deduce that

∑

k≤N/d

∣∣∣
∑

n|k
g(n)

∣∣∣ ≤
∑

k≤N/d

∣∣∣
∑

n|k
g(n)

∣∣∣
(
N

dk

)1/2

�
(
N

d

)1/2

and hence

S1 � N1/2u1/2 � x7/10.

For the estimation of S2 and S3, we need Lemma 2.2 of Vaughan [6]
which we state here in two parts.

Lemma 2. (i) For N1, N2 ∈ Z and N2 ≥ N1,
∣∣∣∣
N2∑

n=N1

e

(
na

q

)∣∣∣∣ ≤ min
(
N2 −N1 + 1,

1
|sin(πa/q)|

)
.

(ii) If S ≥ 1 and (a, q) = 1 then

∑

n≤S
min

(
N

n
,

1
|sin(πna/q)|

)
�
(
N

q
+ S + q

)
log(2qS).

Put dn = k in the expression for S2 to obtain

S2 =
∑

k≤u2

∑

r≤N/k

(∑

d≤u

∑

n≤u
dn=k

µ(d)g(n)
)
e(kra/q)

� (log x)c
∑

k≤u2

τ(k)
∣∣∣
∑

r≤N/k
e(kra/q)

∣∣∣.

Splitting the k-sum according to τ(k) > T and τ(k) ≤ T and applying
Lemma 2 with the choice of T = (log x)λ+4+c yields S2 � x/logλ x. We
write S3 as

S3 =
K∑

j=0

∑

m∈Ij
τ(m)

∑

u<n≤N/m
g(n)e(mna/q)

where K is defined by 2Ku ≤ N/u < 2K+1u, Ij = (2ju, 2j+1u] for each
0 ≤ j ≤ K − 1 and IK = (2Ku,N/u]. Hence

S3 =
K∑

j=0

Uj



148 P. Codecà and M. Nair

where, putting Yj = 2ju and using the Cauchy–Schwarz inequality, we ob-
tain

|Uj |2 ≤
∑

m∈Ij
τ2(m)

∑

m∈Ij

∣∣∣
∑

u<n≤N/m
g(n)e(mna/q)

∣∣∣
2

� Yj(log x)2c+3
∑
n1,n2

u<ni≤N/Yj

∣∣∣
∑

Yj<m≤2Yj
m≤min(N/n1,N/n2)

e(m(n1 − n2)a/q)
∣∣∣

which by Lemma 2 yields

|Uj | � Y
1/2
j x1/2(log x)c+3/2 + x/(log x)λ+1.

So finally,

S3 =
K∑

j=0

Uj � x/logλ x.

This completes the proof of Theorem 3.

References

[1] P. T. Bateman and S. Chowla, Some special trigonometric series related to the
distribution of prime numbers, J. London Math. Soc. 38 (1963), 372–374.

[2] A. S. Bes icov i tch, Problem on continuity, ibid. 36 (1961), 388–392.
[3] H. Davenport, On some infinite series involving arithmetic functions (II), Quart.

J. Math. (Oxford) 8 (1937), 313–320.
[4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
[5] H. S iebert, Einige Analoga zum Satz von Siegel–Walfisz , in: Zahlentheorie (Tagung,

Math. Forschungsinst., Oberwolfach, 1970), Bibliographisches Inst., Mannheim, 1971,
173–184.

[6] R. C. Vaughan, The Hardy–Littlewood Method , 2nd ed., Cambridge Tracts in Math.
125, Cambridge Univ. Press, Cambridge, 1997.

Dipartimento di Matematica
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