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On sets of natural numbers without solution
to a noninvariant linear equation

by

ToMASzZ SCHOEN (Kiel*)

Let us consider a linear equation
(*) a1xy + ...+ apxg :b,

where ay,...,ar,b € Z. We call the equation (x) invariant if both s =
a1+ ...+ ar =0and b=0, and noninvariant otherwise. We say that a set
A is (x)-free if it contains no nontrivial solution to () and define r(n) as
the size of the largest (x)-free set contained in [n] = {1,...,n}.

The behavior of r(n) has been extensively studied for many cases of
invariant linear equations. The two best known examples are the equation
x +y = 2z, when r(n) is the size of the largest set without arithmetic
progression of length three contained in [n] (see [6]), and the equation 1 +
T2 = Y1 + Y2, when r(n) becomes the size of the largest Sidon subset of [n]
(see 3], [7], [8])-

Much less is known about the behavior of r(n) for noninvariant linear
equations, maybe apart from sum-free sets (see for example [1], [2], [5], [10]).
The main contribution to this subject was made by Ruzsa [9] who studied
properties of sets without solutions to a fixed noninvariant linear equation.
Following his paper let us define

A(¥) = sup{d(A) : A CN, Ais (x)-free},
A(x) = sup{d(A4) : ACN, Ais (x)-free},
A(*) = limsupr(n)/n,
A(%)

n—oo

where d(A),d(A) denote the upper and lower density of the set A. Some-

times, we write just A, A4, \, X instead of A(x), A(¥), A(*), A(¥).

= liminfr(n)/n,

2000 Mathematics Subject Classification: 11B75, 11A99.
*On leave from Adam Mickiewicz University, Poznan, Poland.

[149]



150 T. Schoen

The aim of this paper is to answer the following questions posed in
Ruzsa’s paper [9].

1. Does there exist an absolute constant C' such that for every noninvari-
ant linear equation we have

CA>\?

2. Let € > 0 be an arbitrary number. Is it possible to find a noninvariant
equation with s # 0 and A < €7

3. Is it true that for every noninvariant linear equation we have

A=A=A?

4. For an integer m > 1, let p(m) denote the maximal cardinality of a

(x)-free set A C Z,,. Put
o = sup o(m)/m.

Is it true that always

~ st —s~
A=A =max (Qas_;'_>7
where st = 37 _gai, 57 = Y, _ga; (We may assume that sT > 0 and
st >s7)7
Notation. In this note [n] = {1,...,n} and [u,w] ={u <n<w:n €

N}. We also set Ak = {ak : a € A} and hA = {a1+...+ap : a1,...,a, € A}.
We use gcd{ A} to denote the greatest common divisor of the elements of the
set A, and set s+ A= {s+a:a¢€ A}. Finally, A(n) denotes the counting
function of A, i.e. A(n) =|AN[n]l.

In order to deal with the first question we use the following result of
Luczak and Schoen [5].

THEOREM A. If A C N and there is no solution to the equation y =
r1 + ...+ xk, then

d(4) < 1/p(k 1),
where p(k) = min{m € N : m does not divide k}. m
Now we can answer the first from Ruzsa’s questions in the negative.
THEOREM 1. There is no an absolute constant C' such that
CA> )\

for every ﬁnear equation. Moreover, for every ¢ > 0 there is an equation
such that A < e and A>1—¢.

Proof. It is enough to prove that there exists a sequence of equations
(e1),(e2),... such that

AMen) —1 and  A(e,) =0 asn — oo.



Noninvariant linear equations 151

For a natural number n set k,, = n!41. Then, for every n, we have p(k,) > n.
Furthermore, denote by (e,) the equation

y:xl—i-...—l-:rkn.
Thus, it follows from Theorem A that for every n € N,

Alen) <1/p(kn) < 1/n,
and so A(e,) — 0 as n — oo.

On the other hand, for every m € N the set {[m/k,]+1,...,m} contains
no solutions to the equation (e,), so

Aen) > (kn —1)/kp.

Consequently, A(e,) — 1 as n — oo, which completes the proof of Theo-
rem 1. m

In order to solve the second problem we make use of the following theo-
rem of Lev [4].

THEOREM B. Assume that A C [n]| and

n—1

1A > +2.

Then there are integers d < k — 1, h < 2k — 1 and m such that
{md,(m+1)d,...,(m+n—1)d} C hA.

Furthermore, d = gcd{A — min A} and h can be chosen to be the largest

multiple of d less than or equal to 2k — 1. m

Ruzsa [9] showed that A may not be bounded from below by a positive
absolute constant. For every ¢ > 0 he gave an example of a noninvariant
linear equation with s = 0 and A < € and asked: Is it possible that s # 0? We
prove a more general result, which for a suitable choice of k and [ provides
an example of a noninvariant equation with s # 0 and arbitrarily small .

THEOREM 2. Suppose that k,l € Nand k > 1. If A C{1,...,n} contains
no solution to the equation r1 + ...+ xx =y1 + ...+ yi, then

< (25 | )

Proof. Suppose that the assertion does not hold, so in particular |A| >
2(k —1)n/l. Obviously, we can assume 2(k — 1)/l < 1. Thus, it follows from
Theorem B that there exists a € N such that

{a,a+d,...,a+ (n—1)d} C [l/(k—1)]A,
where d = gcd{A — min A}. Furthermore, for some b € N we have

(b,b+d,....b+ (k—1)(n—1)d} CIA.
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Note that, since |A| > [n/p(k —1)], we must have d < p(k — 1), and so
k—1=0 (mod d) by the definition of the function p.
Let x € A be an arbitrary number with x < n. Then

(k=1 <(k—10)(n—1)d.

Hence

b+axz(k—1)e{bb+d,....b+ (k—1)(n—1)d} CIA.
Thus, there exist z1,...,x, y1,...,4 € A such that

b=x1+...4+x and b+axk—-0)=y1+...+y.
Hence, we arrive at

1+ +otrk—0D=y1+...+u,
which is a contradiction. m
For any fixed t € N, set k = (2t + 3)t! and | = (2t + 2)t!, which implies

p(k—1) > t. Thus, Theorem 2 gives A < 1/t for the equation z; +...+x} =

yi+...+y.
Finally, we show that for the equation x; + x2 = ky, where k > 10,

neither A = A = A, nor A\ = max (g, s:‘f _), which answers the third and
the fourth question of Ruzsa. As a matter of fact, we prove that one can
have A < A < \.

Let us make first the following elementary observation.

FACT. Let A be a set of positive integers with no solution to the equation
x1 + w9 = ky, where k is fived positive integer. Then A < 1/2.

Proof. Every set A € N with d(A) > 1/2 contains in its sum-set A + A
each natural number from some point on. Thus, the sets A+ A and Ak may
not be disjoint. m

EXAMPLE 1. For a given k > 2 define
o
k2n k2n+1
S = < U [2n+1,2nle D NN.
n=0

It is Elear that there is no solution to the equation x1 + x2 = ky in the set S
and d(S) = k(k —2)/(k* —2), so A > k(k — 2)/(k* — 2). The next theorem
shows that, in fact, A = k(k — 2)/(k? — 2).

THEOREM 3. If A C N contains no solutions to the equation r1+x2 = ky,
where k > 10, then

- k(k — 2)
d(4) < =5
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Proof. Assume d = d(A4) > k(k—2)/(k* —2). For a given & with
1/k% > € > 0 choose n. so that A( ) < (d+¢)i for every i > n.. Let n
be such that n > kn. and (d — ¢)n < A(n). Furthermore set m = min A.

First, assume

dn 2(k® — 2k — 2)n
A .
[k2—2’ k(k? —2) }#Q
For each yg € AN[4n/(k*—2),n/k] and x < kyo, either z & A or kyg—z ¢ A,
S0

k k%2 —2k—2 -
A(n) € 50+ (n = kyo) < 5 ——n < @ =),
which contradicts the choice of n. The case
n 2(k* — 2k —2)n
A i
[k:’ k(k? —2) } #0

can be dealt with in a similar way.
Now suppose

2 _ —
AN [ dn  2(k* — 2k 2)n} .

k2 —2’ k(k? —2)
Set

2n  m 4n
A =An K —
b [k2+ k’k(k2—2)>

(k? — 2k —2)n 2n
Ay =AnN —
2 ( k(k2—2) k|
and assume that neither of these sets is empty, otherwise the proof follows
the same lines. Observe (A1k—m)NA =0 and (A1k—m) C [2n/k,n]. Since
A has no solutions to the equation 1 + x2 = ky we get
AN [ks —n,n]| <n—ks/2,

where s = min As. Moreover, since k£ > 10, we have kmax A; < ks — n.
These yield

AN 2n/k,n]| <n—2n/k—|A1]| —n+ks/2,
so that
(d+¢e)2n/k* + |A1| + |As| + ks/2 — 2n/k — |A1| + O(1)
(d+e)2n/k? +n —2n/k+ O(1).
Thus,
(d—e)n < A(n) < (d+¢e)2n/k* +n —2n/k + O(1),
which gives
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ExaMPLE 2. Let n € N and set

T &n 1 4dn
O\ k(K —2k2 —4) kY —2k2 -4

4(k* —2)n 2(k* — 2)n 2n
1 2 .
U[k(k4—2k2—4)+ ok 4] Y% b))

It is not difficult to see that x1 + xo2 = ky with x1, x5,y € T is not possible.

Moreover
_ (kE=2) 8(k — 2)
|T‘_ < k2 —9 +k(k2_2)(k4_2k2_4)>n+0(1),

SO

k(k —2) N 8(k —2)

K22 " R(k®—2)(ki— 2k% —4)

(In fact, it is shown in [11] that the lower bound above is the actual value
of A for the equation x; + zo = ky.)

A>

Since st =k and s~ = 2 we have (s — s7)/sT™ = 1—2/k. On the other
hand, using the same argument as in the proof of the Fact one can show
that for every set A C Z,, with no solutions to the equation x; + z2 = ky,
we have |A| < m/2, thus ¢ < 1/2. Finally, we obtain

)\>k:(k:—2)+ 8(k — 2) o1 2 e st —s™
—_ = = X —_— .
2SR 0 T (k2 — 2)(k* — 2k% —4) k &t
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