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Let us consider a linear equation

(∗) a1x1 + . . .+ akxk = b,

where a1, . . . , ak, b ∈ Z. We call the equation (∗) invariant if both s =
a1 + . . .+ ak = 0 and b = 0, and noninvariant otherwise. We say that a set
A is (∗)-free if it contains no nontrivial solution to (∗) and define r(n) as
the size of the largest (∗)-free set contained in [n] = {1, . . . , n}.

The behavior of r(n) has been extensively studied for many cases of
invariant linear equations. The two best known examples are the equation
x + y = 2z, when r(n) is the size of the largest set without arithmetic
progression of length three contained in [n] (see [6]), and the equation x1 +
x2 = y1 + y2, when r(n) becomes the size of the largest Sidon subset of [n]
(see [3], [7], [8]).

Much less is known about the behavior of r(n) for noninvariant linear
equations, maybe apart from sum-free sets (see for example [1], [2], [5], [10]).
The main contribution to this subject was made by Ruzsa [9] who studied
properties of sets without solutions to a fixed noninvariant linear equation.
Following his paper let us define

Λ(∗) = sup{d(A) : A ⊆ N, A is (∗)-free},
Λ(∗) = sup{d(A) : A ⊆ N, A is (∗)-free},
λ(∗) = lim sup

n→∞
r(n)/n,

λ(∗) = lim inf
n→∞

r(n)/n,

where d(A),d(A) denote the upper and lower density of the set A. Some-
times, we write just Λ,Λ, λ, λ instead of Λ(∗), Λ(∗), λ(∗), λ(∗).
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The aim of this paper is to answer the following questions posed in
Ruzsa’s paper [9].

1. Does there exist an absolute constant C such that for every noninvari-
ant linear equation we have

CΛ ≥ λ?
2. Let ε > 0 be an arbitrary number. Is it possible to find a noninvariant

equation with s 6= 0 and λ < ε?
3. Is it true that for every noninvariant linear equation we have

Λ = Λ = Λ?

4. For an integer m > 1, let %(m) denote the maximal cardinality of a
(∗)-free set A ⊆ Zm. Put

% = sup %(m)/m.

Is it true that always

λ = λ = max
(
%,
s+ − s−
s+

)
,

where s+ =
∑
ai>0 ai, s

− =
∑
ai<0 ai (we may assume that s+ > 0 and

s+ ≥ s−)?

Notation. In this note [n] = {1, . . . , n} and [u,w] = {u ≤ n ≤ w : n ∈
N}. We also set Ak = {ak : a ∈ A} and hA = {a1+. . .+ah : a1, . . . , ah ∈ A}.
We use gcd{A} to denote the greatest common divisor of the elements of the
set A, and set s± A = {s± a : a ∈ A}. Finally, A(n) denotes the counting
function of A, i.e. A(n) = |A ∩ [n]|.

In order to deal with the first question we use the following result of
Łuczak and Schoen [5].

Theorem A. If A ⊆ N and there is no solution to the equation y =
x1 + . . .+ xk, then

d(A) ≤ 1/ρ(k − 1),
where ρ(k) = min{m ∈ N : m does not divide k}.

Now we can answer the first from Ruzsa’s questions in the negative.

Theorem 1. There is no an absolute constant C such that

CΛ ≥ λ
for every linear equation. Moreover , for every ε > 0 there is an equation
such that Λ < ε and λ > 1− ε.

P r o o f. It is enough to prove that there exists a sequence of equations
(e1), (e2), . . . such that

λ(en)→ 1 and Λ(en)→ 0 as n→∞.
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For a natural number n set kn = n!+1. Then, for every n, we have ρ(kn) > n.
Furthermore, denote by (en) the equation

y = x1 + . . .+ xkn .

Thus, it follows from Theorem A that for every n ∈ N,

Λ(en) ≤ 1/ρ(kn) < 1/n,

and so Λ(en)→ 0 as n→∞.
On the other hand, for every m ∈ N the set {dm/kne+1, . . . ,m} contains

no solutions to the equation (en), so

λ(en) ≥ (kn − 1)/kn.

Consequently, λ(en) → 1 as n → ∞, which completes the proof of Theo-
rem 1.

In order to solve the second problem we make use of the following theo-
rem of Lev [4].

Theorem B. Assume that A ⊆ [n] and

|A| ≥ n− 1
k

+ 2.

Then there are integers d ≤ k − 1, h ≤ 2k − 1 and m such that

{md, (m+ 1)d, . . . , (m+ n− 1)d} ⊆ hA.
Furthermore, d = gcd{A − minA} and h can be chosen to be the largest
multiple of d less than or equal to 2k − 1.

Ruzsa [9] showed that λ may not be bounded from below by a positive
absolute constant. For every ε > 0 he gave an example of a noninvariant
linear equation with s = 0 and λ < ε and asked: Is it possible that s 6= 0? We
prove a more general result, which for a suitable choice of k and l provides
an example of a noninvariant equation with s 6= 0 and arbitrarily small λ.

Theorem 2. Suppose that k, l ∈ N and k > l. If A ⊆ {1, . . . , n} contains
no solution to the equation x1 + . . .+ xk = y1 + . . .+ yl, then

|A| ≤ max
(

2(k − l)n
l

,

⌈
n

ρ(k − l)
⌉)

.

P r o o f. Suppose that the assertion does not hold, so in particular |A| >
2(k − l)n/l. Obviously, we can assume 2(k − l)/l < 1. Thus, it follows from
Theorem B that there exists a ∈ N such that

{a, a+ d, . . . , a+ (n− 1)d} ⊆ bl/(k − l)cA,
where d = gcd{A−minA}. Furthermore, for some b ∈ N we have

{b, b+ d, . . . , b+ (k − l)(n− 1)d} ⊆ lA.
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Note that, since |A| > dn/ρ(k − l)e, we must have d < ρ(k − l), and so
k − l ≡ 0 (mod d) by the definition of the function ρ.

Let x ∈ A be an arbitrary number with x < n. Then

x(k − l) ≤ (k − l)(n− 1)d.

Hence

b+ x(k − l) ∈ {b, b+ d, . . . , b+ (k − l)(n− 1)d} ⊆ lA.
Thus, there exist x1, . . . , xl, y1, . . . , yl ∈ A such that

b = x1 + . . .+ xl and b+ x(k − l) = y1 + . . .+ yl.

Hence, we arrive at

x1 + . . .+ xl + x(k − l) = y1 + . . .+ yl,

which is a contradiction.

For any fixed t ∈ N, set k = (2t + 3)t! and l = (2t + 2)t!, which implies
ρ(k− l) > t. Thus, Theorem 2 gives λ < 1/t for the equation x1 + . . .+xk =
y1 + . . .+ yl.

Finally, we show that for the equation x1 + x2 = ky, where k ≥ 10,
neither Λ = Λ = Λ, nor λ = max

(
%, s

+−s−
s+

)
, which answers the third and

the fourth question of Ruzsa. As a matter of fact, we prove that one can
have Λ < Λ < λ.

Let us make first the following elementary observation.

Fact. Let A be a set of positive integers with no solution to the equation
x1 + x2 = ky, where k is fixed positive integer. Then Λ ≤ 1/2.

P r o o f. Every set A ∈ N with d(A) > 1/2 contains in its sum-set A+A
each natural number from some point on. Thus, the sets A+A and Ak may
not be disjoint.

Example 1. For a given k > 2 define

S =
( ∞⋃
n=0

[
k2n

2n
+ 1,

k2n+1

2n+1

])
∩ N.

It is clear that there is no solution to the equation x1 +x2 = ky in the set S
and d(S) = k(k − 2)/(k2 − 2), so Λ ≥ k(k − 2)/(k2 − 2). The next theorem
shows that, in fact, Λ = k(k − 2)/(k2 − 2).

Theorem 3. If A ⊆ N contains no solutions to the equation x1+x2 = ky,
where k ≥ 10, then

d(A) ≤ k(k − 2)
k2 − 2

.
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P r o o f. Assume d = d(A) ≥ k(k − 2)/(k2 − 2). For a given ε with
1/k3 > ε > 0 choose nε so that A(i) < (d + ε)i for every i > nε. Let n
be such that n > knε and (d− ε)n < A(n). Furthermore set m = minA.

First, assume

A ∩
[

4n
k2 − 2

,
2(k2 − 2k − 2)n

k(k2 − 2)

]
6= ∅.

For each y0 ∈ A∩ [4n/(k2−2), n/k] and x < ky0, either x 6∈ A or ky0−x 6∈ A,
so

A(n) ≤ ky0

2
+ (n− ky0) ≤ k2 − 2k − 2

k2 − 2
n < (d− ε)n,

which contradicts the choice of n. The case

A ∩
[
n

k
,

2(k2 − 2k − 2)n
k(k2 − 2)

]
6= ∅

can be dealt with in a similar way.
Now suppose

A ∩
[

4n
k2 − 2

,
2(k2 − 2k − 2)n

k(k2 − 2)

]
= ∅.

Set

A1 = A ∩
[

2n
k2 +

m

k
,

4n
k(k2 − 2)

)
,

A2 = A ∩
(

2(k2 − 2k − 2)n
k(k2 − 2)

,
2n
k

]
,

and assume that neither of these sets is empty, otherwise the proof follows
the same lines. Observe (A1k−m)∩A = ∅ and (A1k−m) ⊆ [2n/k, n]. Since
A has no solutions to the equation x1 + x2 = ky we get

|A ∩ [ks− n, n]| ≤ n− ks/2,
where s = minA2. Moreover, since k ≥ 10, we have kmaxA1 ≤ ks − n.
These yield

|A ∩ [2n/k, n]| ≤ n− 2n/k − |A1| − n+ ks/2,

so that
A(n) ≤ (d + ε)2n/k2 + |A1|+ |A2|+ ks/2− 2n/k − |A1|+O(1)

≤ (d + ε)2n/k2 + n− 2n/k +O(1).

Thus,
(d− ε)n ≤ A(n) ≤ (d + ε)2n/k2 + n− 2n/k +O(1),

which gives

d ≤ k(k − 2)
k2 − 2

.
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Example 2. Let n ∈ N and set

T =
([

8n
k(k4 − 2k2 − 4)

+ 1,
4n

k4 − 2k2 − 4

]

∪
[

4(k2 − 2)n
k(k4 − 2k2 − 4)

+ 1,
2(k2 − 2)n
k4 − 2k2 − 4

]
∪
[

2n
k

+ 1, n
])
∩ N.

It is not difficult to see that x1 + x2 = ky with x1, x2, y ∈ T is not possible.
Moreover

|T | =
(
k(k − 2)
k2 − 2

+
8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)

)
n+O(1),

so

λ ≥ k(k − 2)
k2 − 2

+
8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
.

(In fact, it is shown in [11] that the lower bound above is the actual value
of λ for the equation x1 + x2 = ky.)

Since s+ = k and s− = 2 we have (s+ − s−)/s+ = 1− 2/k. On the other
hand, using the same argument as in the proof of the Fact one can show
that for every set A ⊆ Zm with no solutions to the equation x1 + x2 = ky,
we have |A| ≤ m/2, thus % ≤ 1/2. Finally, we obtain

λ ≥ k(k − 2)
k2 − 2

+
8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
> 1− 2

k
= max

(
%,
s+ − s−
s+

)
.
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