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1. One of the great theorems of elementary plane geometry was es-
sentially only discovered in the twentieth century; namely, the theorem of
Morley that states that the trisectors of the angles of a triangle meet at the
vertices of an equilateral triangle (the “Morley triangle”). Here, it is nec-
essary to identify precisely the correct pairing of angle trisectors. It is the
proximal trisectors that are involved. For example, in Figure 1, the line AC0
making an angle A/3 with AC, and the line CA0 making an angle C/3 with
CA intersect at the point 0∗0; and similarly for ∗00, 00∗, with ∗00 0∗0 00∗
an equilateral triangle (the “canonical” Morley triangle). Of course, the line
making an angle (A + 2π)/3 with AC is an equally valid trisector of angle
A, as is the line making an angle (A + 4π)/3 with AC. So there are three
possible trisectors at each angle, yielding 27 intersection points. Surpris-
ingly, these lie six on each of three sets of three parallel lines, so that there
are an apparent 27 Morley triangles. However, 9 of them, which have been
called the Guy Faux triangles, are generated by trisectors of only two of
the three angles of the original triangle, leaving 18 genuine, pairwise homo-
thetic, Morley triangles. The underlying geometry has recently been well
described by John Conway, using his concept of extraversion, transforming
a triangle ABC into itself, leading to triangles with angles

A − iπ, B − jπ, C − kπ, where i + j + k = 0, or

iπ − A, jπ − B, kπ − C, where i + j + k = 2.

As we are concerned with trisection we work modulo 3, and the number of
distinct triples ijk which satisfy these relations is 2 · 3 · 3 = 18.
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The general situation is illustrated in Figure 4. The 18 trisecting lines
are labelled XY i, with X 6= Y ∈ {A,B,C}, i ∈ {0, 1, 2}, being the trisector
of angle X + 2πi adjacent to the edge XY of the triangle. Trisectors ABi,
BAj intersect at ij∗; BCj, CBk intersect at ∗jk, and CAk, ACi intersect
at i∗k. The vertices of triangle ijk are ∗jk, i∗k, ij∗, and each point is the
vertex of just two triangles, whose labels are found by replacing the ∗ by
those two values from {0, 1, 2} which make i+j+k ≡ 0 or 2 mod 3. The nine
Morley lines are labelled IJK, with I +J +K ≡ 1 mod 3 and a point lies on
a line just if i 6= I, j 6= J , k 6= K. E.g., the line 121 contains the six points
∗12, 0∗2, 00∗, ∗00, 2∗0, 21∗. The Guy Faux triangles are characterized by
having the ∗ in the same respective position in the vertices: for example,
the triangle with vertices 1∗2, 0∗0, 2∗1 (note that each of these points is a
vertex of two genuine Morley triangles, for instance, 1∗2 being a vertex of
the Morley triangles 102 and 122).

Fig. 1. The “canonical” Morley triangle, 000

The interest here lies in the arithmetic of the Morley triangle, and in
particular, the determination of those triangles of rational edges (“rational
triangles”) which possess a Morley triangle of rational edge. For example,
the isosceles triangle (286, 343, 343) has the canonical Morley triangle of
edge 294/5; and the triangle (748, 2197, 2401) has canonical Morley triangle
of edge 1001/5. We show that such triangles are either equilateral (in which
case six of the 18 Morley triangles are rational, and in fact congruent to
the original triangle), or belong to a one-parameter family of Pythagorean
triangles (in which case just two of the 18 Morley triangles are rational and
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equal in size), or else belong to a two-parameter family of triangles, with all
18 Morley triangles rational.

2. In Figure 1, let m denote the edge length of the Morley triangle of
the triangle ABC with edges a, b, c. Denote the radius of the circumcircle
of ABC by R, and the area of ABC by ∆. The following are well known
formulas (see, for example, [1, pp. 2, 3, 58, 50]):

a = 2R sin A, b = 2R sin B, c = 2R sinC, R = abc/(4∆),

16∆2 = (a + b + c)(b + c − a)(c + a − b)(a + b − c),

m = 8R sin A/3 sin B/3 sin C/3.(1)

Our convention is that when referring to an angle such as A/3, it may refer
to any one of the three trisectors of A (though in any particular set of
equations, the choice must be made consistently). The condition that the
trisectors A/3, B/3, C/3 do indeed give rise to a Morley triangle is

(2)
A

3
+

B

3
+

C

3
≡ ±π

3
mod 2π.

Theorem. If a rational edged triangle has a rational Morley triangle,
then either the original triangle is equilateral (and 6 of the 18 Morley trian-

gles are rational), or it is Pythagorean belonging to a one-parameter family

(and 2 of the 18 Morley triangles are rational), or it belongs to a two-

parameter family of triangles (and all 18 Morley triangles are rational).

P r o o f. For a set of trisectors A/3, B/3, C/3 satisfying (2), define

(3) u = 2R sin A/3, v = 2R sin B/3, w = 2R sin C/3.

Since R2 is rational from (1), u, v, w are algebraic numbers of degree at
most 3, satisfying the equations:

(4) u3 −3R2u+aR2 = 0, v3 −3R2v + bR2 = 0, w3 −3R2w+ cR2 = 0.

From (1), the associated Morley triangle edge length is given by

(5) m = 8R sin
A

3
sin

B

3
sin

C

3
=

uvw

R2

and since m ∈ Q by assumption, we have necessarily

(6) uvw ∈ Q.

We treat first the case where the triangle possesses a right angle, say
at C. Then R = ±c/2, and m = ±2c sin A/3 sin B/3, necessarily forcing
sin A/3 sin B/3 ∈ Q. Suppose u = 2R sin A/3 is a cubic irrational, so that
necessarily v is a cubic irrational. Then v = r/u, r ∈ Q, and (4) implies

r3

u3
− 3R2

r

u
+ bR2 = 0, that is, u3 − 3

r

b
u2 +

r3

bR2
= 0.
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But

u3 − 3R2u + aR2 = 0, implying that
3r

b
u2 − 3R2u +

(

aR2 − r3

bR2

)

= 0,

and u is at most quadratic, a contradiction. Thus neither u nor v can be
a cubic irrational. So both are at most quadratic, and the equations for
u,v at (4) each have at least one rational root, say u0, v0. Fix angles A, B
so that 2R sin A/3 = u0 and 2R sin B/3 = v0. Then sin A/3, sinB/3 ∈ Q.
However, the triplication formula cos A = (cos A/3)(1 − 4 sin2 A/3) implies
that cos A/3 = (cos A)/(1 − u2

0/R
2), and hence cos A 6= 0 implies that

cos A/3 ∈ Q. Similarly cos B/3 ∈ Q. Putting t = tan A/6 ∈ Q, it follows
that sin A/3 = 2t/(1 + t2), cos A/3 = (1 − t2)/(1 + t2). In turn,

cos A =
(1 − t2)(1 − 14t2 + t4)

(1 + t2)3
, sinA =

2t(3 − t2)(1 − 3t2)

(1 + t2)3
;

Fig. 2. The triangle (44,117,125), right-angled at C, has two rational Morley triangles,
110 and 111, each with edge length 120

and since A+B+C ≡ π mod 2π, we have cos B = ± sin A, etc. The triangle
up to scaling is thus parametrized by

{a, b, c} = {2t(3 − t2)(1 − 3t2), (1 − t2)(1 − 14t2 + t4), (1 + t2)3}
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and it is now straightforward to compute that the edges of the 18 Morley
triangles are the following:

− 4t(1 − t4) (twice), 2t(1−t4) ± 1

2
(1 + t2)(1 − 6t2 + t4)

√
3 (each twice),

2t(1 + t2)(1 − t2 ± 2t
√

3), −4t(1 + t2)(1 − t2 ± 2t
√

3),

(1 − t4)(2t ± (1 − t2)
√

3), −2(1 − t4)(2t ± (1 − t2)
√

3),

− 4t(1 − t4) ± 1

2
(1 + t2)3

√
3, 8t(1 − t4) ± (1 + t2)3

√
3.

Figure 2 illustrates the case t = 2.
We treat second the case where the triangle does not have a right angle,

and invoke the following lemma:

Lemma. Suppose that none of A,B,C equals ±π/2. If each of the equa-

tions (4) has a root in the same algebraic number field K, then all the roots

of each equation (4) lie in K.

P r o o f. Each of the equations (4) has a root in K, say u0, v0, w0 re-
spectively. Fix angles A,B,C so that 2R sin A/3 = u0, 2R sin B/3 = v0,
2R sin C/3 = w0. Using the triplication formula as in the Pythagorean
case shows that cos A/3 lies in K; similarly for cos B/3, cos C/3. From (2)
follows, on taking sine,

sin
A

3

(

cos
B

3
cos

C

3
− sin

B

3
sin

C

3

)

+ cos
A

3

(

sin
B

3
cos

C

3
+ cos

B

3
sin

C

3

)

= ±
√

3

2

and multiplying by R,

u0

2

(

cos
B

3
cos

C

3
− v0w0

4R2

)

+ cos
A

3

(

v0

2
cos

C

3
+

w0

2
cos

B

3

)

= ±R
√

3

2
.

The left hand side here is now in K, and consequently R
√

3 ∈ K. But

2R sin

(

A ± 2π

3

)

= 2R

(

−1

2
sin

A

3
±

√
3

2
cos

A

3

)

= −u0/2 ± R
√

3 cos A/3

and lies in K; so the conjugates of u0 all lie in K. Similarly, each equation
at (4) has three roots in K.

As in the first case, we suppose again that at least one of u, v,w, say
u, is a cubic irrational. From (6), at least one of v,w, say v, is a cubic
irrational. Just as above, the case of w rational is impossible, and so w
is either quadratic or cubic irrational. Suppose w is quadratic irrational.
Since uvw ∈ Q, we have Q(w) ⊆ Q(u, v), forcing the latter field to have
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degree 6 over Q. This in turn implies that Q(u, v) has degree 2 over Q(u).
Accordingly the cubic for v at (4) has a root in Q(u). Since the cubic for
w at (4) has one rational root, each of the equations at (4) has a root in
Q(u). By the Lemma in the case K = Q(u), each of the equations at (4)
splits over Q(u), so Q(u) = Q(v) contradicting our deduction that Q(u, v)
is quadratic over Q(u). Consequently, w is a cubic irrational. The three
conjugates of u correspond to the three choices of trisector of angle A, so
correspond to replacing A/3 by A/3, (A ± 2π)/3; similarly for v, w. Thus
the choice of trisectors (A + 2π)/3, (B + 2π)/3, (C + 2π)/3 (satisfying (2))
leads to a Morley triangle of edge m′ = u′v′w′/R2 with u′, v′, w′ conjugates
of u, v,w. But uvw ∈ Q, and so is fixed under conjugation, whence m = m′

and uvw = u′v′w′.

In this way

(7) sinA/3 sinB/3 sin C/3

= sin(A ± 2π)/3 sin(B ± 2π)/3 sin(C ± 2π)/3

(with signs respectively). If we use the identity

(8) 4 sin α/3 sin β/3 sin γ/3

= sin(δ − 2α/3) + sin(δ − 2β/3) + sin(δ − 2γ/3) − sin δ

where δ = α/3 + β/3 + γ/3, then (7) becomes

sin(D − 2A/3) + sin(D − 2B/3) + sin(D − 2C/3)

= sin(D − 2A/3 ± 2π/3) + sin(D − 2B/3 ± 2π/3) + sin(D − 2C/3 ± 2π/3)

(signs respectively), with D = A/3 + B/3 + C/3; equivalently, by the “dif-
ference of sine” identity,

(9) cos(D−2A/3±π/3)+cos(D−2B/3±π/3)+cos(D−2C/3±π/3) = 0

(signs respectively). Adding and subtracting the two equations at (9) gives

cos(D − 2A/3) + cos(D − 2B/3) + cos(D − 2C/3) = 0,

sin(D − 2A/3) + sin(D − 2B/3) + sin(D − 2C/3) = 0.

Then

1 = cos2(D − 2C/3) + sin2(D − 2C/3)

= 2 + 2 cos(D − 2A/3) cos(D − 2B/3) + 2 sin(D − 2A/3) sin(D − 2B/3)

= 2 + 2 cos(2A/3 − 2B/3).

Hence cos(2A/3 − 2B/3) = −1/2, forcing 2A/3 − 2B/3 ≡ ±2π/3 mod 2π.
So A ≡ B mod π, and by symmetry, A ≡ B ≡ C mod π; thus the triangle
is equilateral. The edges of the 18 Morley triangles may be computed as
having lengths −1 (with multiplicity 6), θ where θ3− 3θ2 +1 = 0 (each root
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Fig. 3. An equilateral triangle has six of its Morley triangles, 021, 120, 012, 210, 102, 201,
each congruent to the original triangle

with multiplicity 3), and φ where φ3 + 3φ2 − 6φ + 1 = 0 (each root with
multiplicity 1).

Suppose finally that u, v,w are at most quadratic irrationals. Then each
of the equations (4) has a rational root, and by the Lemma in the case
K = Q, each equation at (4) has 3 rational roots. Thus every trisector gives
rise to rational u, v, w and all 18 Morley triangles are rational.

It is straightforward in this latter case to parametrize all rational trian-
gles which have a rational Morley triangle. Note that such a triangle has the
property that sin A/3, sin B/3, sin C/3 (and R) are each rational multiples
of

√
3; and cos A/3, cos B/3, cos C/3 are rational. Now

tan2
A

6
=

1 − cos A/3

1 + cos A/3
∈ Q, and sin

A

3
=

2 tan A/6

1 + tan2 A/6

implies that tan A/6 is a rational multiple of
√

3; similarly for tan B/6,
tan C/6.
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Put tan A/6 = α/
√

3, tan B/6 = β/
√

3, tan C/6 = γ/
√

3 (accordingly,
α, β, γ ∈ Q), and substitute into the equation resulting from (2):

tan(A/6 + B/6 + C/6) = ±1/
√

3.

There results

(10) 3(α + β + γ) − αβγ = ε(βγ + γα + αβ − 3), ε = ±1,

and if we put

(11) (α, β, γ) =

(

r, s,
3(εt − 1)

t + 3ε

)

corresponding to tan(C + επ)/6 = t/
√

3, then (10) becomes

(12) 3(r + s + t) = rst.

(Note that the transformation (11) fails to be invertible for t precisely when
γ = 3ε, that is, tan C/6 = ±

√
3. But now C/6 ≡ ±π/3 mod π, so that

C ≡ 0 mod 2π, and the triangle is degenerate.)

Thus a rational triangle (neither equilateral nor Pythagorean) with ra-
tional Morley triangle gives rise to r, s, t ∈ Q satisfying (12). And conversely,
r, s, t ∈ Q satisfying (12) gives rise to the triangle with edge

a = 2R sin A = 2R sin
A

3

(

3 − 4 sin2
A

3

)

= 12R
√

3
α(α2 − 1)(α2 − 9)

(α2 + 3)3

(and similarly for b and c) possessing rational Morley triangles. In terms of
r, s, t (up to sign) this triangle is a rational scaling by 12R

√
3 of the triangle

with edges

(13)

{

r(r2 − 1)(r2 − 9)

(r2 + 3)3
,
s(s2 − 1)(s2 − 9)

(s2 + 3)3
,
t(t2 − 1)(t2 − 9)

(t2 + 3)3

}

.

The edges of the Morley triangles are straightforward to compute. For

2R sin
A

3
=

4α

α2 + 3
R
√

3, 2R sin

(

A + 2π

3

)

=
−α2 − 2α + 3

α2 + 3
R
√

3,

and

2R sin

(

A − 2π

3

)

=
α2 − 2α − 3

α2 + 3
R
√

3.

Put
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{A1, A2, A3} =

{

4α

α2 + 3
,
−α2 − 2α + 3

α2 + 3
,

α2 − 2α − 3

α2 + 3

}

,

{B1, B2, B3} =

{

4β

β2 + 3
,
−β2 − 2β + 3

β2 + 3
,

β2 − 2β − 3

β2 + 3

}

,

{C1, C2, C3} =

{

4γ

γ2 + 3
,
−γ2 − 2γ + 3

γ2 + 3
,

γ2 − 2γ − 3

γ2 + 3

}

.

Then the edges of the 18 Morley triangles of the triangle at (13) are given by

mijk = 3R
√

3AiBjCk, i + j + k 6≡ 1 mod 3,

with α, β, γ as at (11).

The family of triangles (13), subject to (12), is a two-parameter family,
and it is interesting to compute the smallest rational triangles represented
by the family. Normalizing so that the edges are integers with no common
divisor, the examples with edges at most 30000 are the following:

{286, 343, 343}, {506, 2197, 2197}, {748, 2197, 2401},
{1254, 2197, 2401}, {3289, 4802, 6859}, {4394, 4785, 6859},
{4394, 5797, 6859}, {4802, 6859, 7293}, {6630, 26411, 29791},
{6859, 6859, 10582}, {7889, 13718, 17493}, {11662, 19551, 28561},
{14858, 24167, 29791}, {20424, 24167, 29791}, {26411, 28652, 29791}.

For a given triangle ABC with edges a, b, c, it is possible to write down
the polynomial of degree 18 which gives as roots the edges of the 18 Morley
triangles; for this polynomial is simply

∏

(m − 8R sin A/3 sin B/3 sin C/3)
where the product is over the 18 possibilities for A/3, B/3, C/3 which
satisfy (2). Computation shows this to be a scalar multiple of the following
(note that the coefficients, as was to be expected, are symmetric functions
of a2, b2, c2):

M18 − 3M16 + 12hM15 + 3(1 − 2g)M14 + 12hM13(14)

− (1 − 6h2 + 18g2)M12 − 12h(1 + 4g)M11

− 3(15g2 − 2g + 33h2)M10 + 4h(1 − 27g2 − 41h2)M9

+ 3(18g3 − 3g2 + 6gh2 + 11h2)M8

+ 6h(15g2 − 2g + 29h2)M7

+ (81g4 + 270g2h2 + 321h4 − 4h2)M6

+ 12h(9g3 + 11gh2 − 2h2)M5 + 12h2(3g2 − 7h2)M4

− 48h3(3g2 + 5h2)M3 − 96gh4M2 + 64h6
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Fig. 4. The triangle (2401,2197,1254) and its 18 Morley triangles

where we set M = m/(3R
√

3) (m the Morley edge),

g = (a2 + b2 + c2)/(162R2) and h = 2∆
√

3/(243R2).

Corollary. Suppose that a2, b2, c2 are not all equal , and do not satisfy

a2 + b2 = c2. If the polynomial (14) has one rational root , then all 18 roots

are rational.

Finally, it has been observed that if H is the orthocentre (common point
of the altitudes) of the triangle ABC, then the 72 Morley triangles that arise
from the four triangles ABC, HBC, AHC, ABH are homothetic in pairs!
It is straightforward to show that, except in the Pythagorean and equilat-
eral cases already noted, if any one of these is rational, then so are all 72.
However, it must be observed that if ABC is rational, with a rational Mor-
ley triangle, then the triangles with H as vertex each contain one rational
edge, and two edges that are rational multiples of

√
3. Figure 4 illustrates

the triangle (2401,2197,1254) with its 18 Morley triangles. The lengths of
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all 72 Morley edges, scaled by a factor 360/91 to make them integers with
greatest common divisor 1, are exhibited in the following table:

ABC HCB CHA BAH

000 1197 305 976 160
002 −6237 −895 −2864 −198
101 5760 12980 1652 836
102 −7128 −19690 −2506 −4356
200 −2565 −7015 −1830 −3680
201 −10800 −13570 −3540 −874
011 8400 354 10384 209
012 −10395 −537 −15752 −1089
110 2280 4026 4697 19360
111 9600 7788 9086 4598
210 −4275 −4209 −10065 −20240
212 22275 12351 29535 25047
020 −3192 −488 −6344 −1040
021 −13440 −944 −12272 −247
120 −3648 −10736 −5551 −22880
122 19008 31504 16289 28314
221 28800 21712 23010 5681
222 −35640 −32936 −34905 −29601
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