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1. Introduction. In Ye [10] the author proved the following bounds
for an exponential sum. Let p be an odd prime and let b and ¢ be integers
relatively prime to p. Set ¢ = p®, a > 1, and k > 0. Define the exponential

sum
bx + ca
o= 3 (22e2)

x mod q q
where e(z) = €?™*. Then for 1 < m < p we have [10]

(m+1)p2+1 ifm>1,m|(p—1),and a =1,
(m + 1)¢*/? ifl<m<p—1anda>2,

1/2,,1/2 ifm=p—1anda>5

g bl <dP7a 1 p =
‘ o(q) m(Q7 76)’— pq1/2 ifm:p—la,nda:4,
pl/2q1/2 ifm=p—1anda=3,

q'/? ifm=p—1anda=2.

In this article we will prove certain identities between the above expo-
nential sum and hyper-Kloosterman sums, generalize the above estimation
for the exponential sum to other cases of m when a > 2, and establish new
bounds for hyper-Kloosterman sums. Write p” || n if p | n but p"**{n.

THEOREM 1. Let p be a prime, ¢ = p*, a > 2, and k an integer with
a <k < ¢(q) and ptk. We set h by p"| (k —1). Then for any b and c
relatively prime to p we have

(6(q) - )ffﬂlﬂ if pt(k—1),
+1)p~ if h>1 and a>3h+2,
‘Sk(% b,C)| < EZ( )1 p— 1) )mln(h aq/2 1) 1/2 ’L'; h>1 and 2’@,
(k’ 1,p— 1) min(h+1/2, a/2 1)q1/2 if h>1 and 2*&,
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when p > 2, and

(p(q) — k+1)p'="/2¢"2 if h>1 and a > 3h +5,
|Sk(g,b,¢)| < pm?n(h"'l’“p—l)ql/2 if h>1 and 2|a,
pmln(h+3/2,a/2—1)q1/2 Zf h>1 and 2"'@,

when p = 2.

When a > 3h+2 with p > 2 and when a > 3h+5 with p = 2, two bounds
are given in Theorem 1; the smaller bound applies. Loxton and Smith [5]
proved that

|Sk(q,b,¢)| < ¢"%dr—1(q)(4A, )"/

when b and ¢ are relatively prime to p, where di_1(g) is the number of
representations of ¢ as a product of k — 1 positive integers and A is the
discriminant of the derivative of the polynomial bx + cz*. After an improve-
ment by Loxton and Vaughan [6], Dabrowski and Fisher established in [1]
better bounds for exponential sums of this kind. Under the restriction of
p1k, which is the case we will deal with in this paper, their Theorem 1.8
implies the following estimates (see Section 4 for details).

THEOREM 2. Let p be a prime, a > 2, q = p®, k > 2, ptk, and p" || (k—1).
Then for any integers b and c relatively prime to p we have

‘Sk(q7 ba C)|

(k —1)q'/? if pt(k—1) and a > 2,
(k- )7h/2q1/2 if h>1 and a > 3h + 2,
( -1 P — )pmln(h,a/Q—l)ql/Q ’l,f h>1 and 2 | a,

(k’ —1,p— 1) min(h+l/2,a/2—1)ql/2 if h>1 and 2)[a7
when p > 2, and

(k= 1)pt="/2¢!/2 if h>1 and a > 3h + 5,
1Sk(g, b, )| < q pmin(htba/2=1gl/2 —4f > 1 and 2|a,
pmin(h+1/2,a/2—1)q1/2 ’Lf h>1 and 2+a’

when p = 2.

We note that the last two cases here for p > 2 and for p = 2 are the
same as in Theorem 1. In other cases Theorem 1 is effective for large k while
Theorem 2 gives better bounds for small k. In particular when p > 2 and
p1k(k — 1), we can combine these two theorems and get

k(g b, ¢)| < min(k - 1,¢(q) — k + 1)¢"/%.
This estimate becomes worse than trivial when ¢'/2 < k < o(q) —¢*/2. What
kind of non-trivial bounds one can get for k in this middle range is indeed
an interesting question. See Vaughan [8] for a history of estimation of this

exponential sum. The question of estimating this exponential sum for large
k was posed by Loxton and Vaughan [6].
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As in [10] our proof of Theorem 1 is based on certain identities between
the above exponential sum and hyper-Kloosterman sums (Theorem 3).
These identities are in turn deduced from generalized Davenport—Hasse
identities of Gauss sums (Theorem 5). Using the new bounds for hyper-
Kloosterman sums for prime power moduli obtained by Dabrowski and
Fisher [1] (see (19), (20), and an improved version in (1) and (2)), we then
prove Theorem 1.

We denote a hyper-Kloosterman sum by

K(g,m+1,z2) = Z e<m1+...+x7¢;+zx1...mm>

Z1,.,Tm mod g
(z1,p)=..=(@m,p)=1

for ¢ = p*, m > 1, and ptz. Define an exponential sum by

Hgmz)= 3 e<M>

z mod g q
(z,p)=1

The identities for hyper-Kloosterman sums are given in the following theo-
rem. Set e, =1 if p=1 (mod 4), and e, =i if p =3 (mod 4).

THEOREM 3. Let p be a prime, m > 1, ptm, a > 2, and q = p*. Then
for any integer z with ptz we have

g™ V/21(g,m, 2) if 2|a,

K(g,m+1,2) = gm—1ym=1
@ ) q<m—1>/252—1<m)1<q,m,z> if 2ta,
D

when p > 2, and

2 a
K(gm+1,2) =gm1/2 <m> I(g,m, 2)

when p = 2.

For the case of even a these identities were proved by Smith [7]. When
a =1 a similar identity is indeed the Diophantine manifestation of a geo-
metric isomorphism of sheaves in Katz [4], Theorem 9.2.3. In Section 3 we
will thus only consider the case of odd a > 3.

To see another application of our identities, we note that for any positive
integer n,

Ham o)) = 3 e

(m + ng(q))a + 2"+ )

x mod q q
(z,p)=1

- e<my +2(m + ncb(q))mmmym)
ymod q q

(y,p)=1
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where we set y = (m + n¢(q))ma (mod ¢), which is still relatively prime to
MM — a—1

p because ptm, a > 2, and p|¢(q). Since (m + ne(q))™m™ =1 — np
(mod ¢), we have

I(q,m+ng¢(q), z) = I(q,m, (1 —np*~)).

Applying this identity to the exponential sums on the right side in Theo-
rem 3, we can easily deduce the following identity for hyper-Kloosterman
sums.

COROLLARY. Let p be any prime, m and n any positive integer, pfm,
a>2, and q = p®. Then for any integer z relatively prime to p we have

¢""PK (g,m 4 1, 2(1 — np*™ )
if 2|la orif p=2,a>05, and 2{a,
qn<zﬁ(q)/2gz¢>(q)K(q7 m+1,2(1 —np® 1))
if p>2 and 2¢ta.

K(g,m+no(q)+1,2) =

This Corollary simplifies hyper-Kloosterman sums of prime power moduli
with larger m, ptm, to hyper-Kloosterman sums with m between 1 and
#(q) — 1. Consequently, the bounds for hyper-Kloosterman sums of prime
power moduli proved by Dabrowski and Fisher [1] (see (19) and (20) in
Section 4) can be rewritten and improved for large m when p{m. These
improved bounds may also be proved directly following their Theorem 1.8
and Example 1.17:

(1) [K(g;m+1,2)|

(r+1)g™/? if pf (r +1),
(r+ 1)p=h/2gm/? if h>1and a>3h+2,
(r+1,p — 1)pmintha/2=1) gm/2 if h>1and 2]a,

(r+1,p — 1)pmin(ht1/2.a/2=1)gm/2 if b > 1 and 214a,
when p > 2, and

(r + 1)pt—h/2gm/2 if h>1and a > 3h+5,
(2)  |K(g,m+1,z2)] < pminthtla/2=1)gm/2 if h > 1 and 2|a,
pmin(h+3/2,a/271)qm/2 if h>1 and 2+a’

when p = 2, where h is given by p" || (r + 1) and m = r (mod ¢(q)) with
1 <7< ¢(q) and pfr.

Using the Corollary and the identities in Theorem 3 backward, we can
further deduce new bounds for hyper-Kloosterman sums from the bounds
for the exponential sum Si(q, b, c). These new bounds are sharper than the
improved bounds of Dabrowski and Fisher in (1) and (2) when m = r
(mod ¢(q)) with r being less than and close to ¢(q) — a. Here in order to
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have

Z e(baz + cx¢(Q)_r> 0

x mod g q
plz

we need to assume that ¢(q) —r > a.

THEOREM 4. Let p be any prime. Assume that a > 2 when p > 2 and
a >4 when p =2. Set ¢ = p® and let m be any positive integer with ptm,
m=r (mod ¢(q)) and 1 <r < ¢(q) — a. Define h by p" || (r +1). Then for
any integer z relatively prime to p we have

|K(q,m+1,2)|
(¢(q) —r —1)g™/? if pt(r+1),
< ) (@lg) —r = 1)p~h/2qm/? if h>1 and a > 3h+2,
> (7‘ +1,p— l)pmm(h,a/Q—l)qm/Q Zf h>1 and 2 ’ a,

(T‘ + 1,p _ 1)pmin(h+1/2,a/271)qm/2 Zf h > 1 and Q’TCL,
when p > 2, and

(¢(q) —r — Dpt=h/2¢m/2 if h>1 and a > 3h + 5,
[K(q,m+1,2)| < q pmin(htta/z=1)gm/2 if h>1 and 2|a,
pmln(h+3/2,a/2—1)qm/2 if h>1 and 2*&,

when p = 2.

Estimation of hyper-Kloosterman sums for prime moduli was proved by
Deligne [2] and Katz [3]. It is interesting to see whether bounds like those
in Theorem 4 can be established for hyper-Kloosterman sums modulo p.

2. New Davenport—Hasse identities for Gauss sums. Let p be a
prime and m > 1 an integer with ptm. Let x be any ramified multiplicative
character on the p-adic field Q, with conductor exponent a(x) = a. Here
X is ramified if it is non-trivial on R, the group of invertible elements of
the ring of integers R, in Qp; for a ramified multiplicative character x its
conductor exponent, denoted by a(x), is the smallest positive integer a such
that x is trivial on 1 + p®R,,. Let ¢ be an additive character of QQ, whose
order is zero. Here the order of an additive character ¢, denoted by n(v), is
the largest integer n such that the character v is trivial on p™"R,,.

For any additive character ¢ we define the local e-factor as

X(p"(¢))p”(¢) if x is unramified,
e(x; ¢; dx) = S X H(z)p(z)dx if x is ramified,
p—a(0-n(9) RX

where dz is a Haar measure on Q, normalized by volume(R,,) = 1. Then the
new Davenport—Hasse identities for Gauss sums have the following form.
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THEOREM 5. Let p be a prime and m > 1 an integer with ptm. Let 1 be
a non-trivial additive character of Q, of order zero. Then for any ramified
multiplicative character x with conductor exponent a(x) = a > 2 we have

q(m_l)/QXm(m)g(Xm71/J,d$) Zf 2|(l7
g1l m (e (™ 1 i)
I B X<1—|—‘7_1y]2») dy; if 24a,

. 23
2<j<m pla-1)/2R,
pliGi-1)

when p > 2, and

(e(x; s d))™
g2 (m)e(x™, 1); da) g2le
qulf[(mfl)/zi]xm(m)f(xm)w; d$)

= [(m~+1)/4]
x( S X(1+u2+uv+v2)dudv> if 21a,
uweple—1/2R,
when p = 2, where ¢ = p“.
Proof. Following the computation in Ye [9] and [10] we have
(e(x, ¥;dx))™ = S X Ny o)+ ay) day . dTy,.
(¢ 1Ry)™
Change variables from z; to y; = x;/zq for i = 2,...,m. Since p{m, the

conductor exponent of x is still a. Consequently, the integral with respect
to z1 vanishes unless 1+y2+... 4y, € R Setting 2z = z1(1+y2+. .. +ym)
we get
(0 ¥ da))™ = ¢ e(x™, s da)
1 e m
" S \ (( ty2t ot Ym)
Y2 .. -Ym

Y2, Ym ERY
I4y2+...+ymERY

Denote the integral by I,,. Since a(x) = a > 2, for m > 3 we set
Ym = Yo(1 + u) where

Yo € (RS — (—(1+ 92+ ...+ Ym—1) + pR,)) /(1 + pl®TV/AR))

and u € pllat1)/2] R,,. The integral with respect to u vanishes unless 14y +
coiF Ymo1 — (m—1)yo € p[“/2]Rp. Therefore the variables in I,,, satisfy

(3) T+ys+ .4 Ym1 — (m— 1y, € plv/IR,.
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If pt(m — 1), then we get the case discussed in [10]. Setting y,, = (1 + y2 +
oo+ ym71)/(m — 1) +vy with Yy € p[a/Q]Rp we get

when p > 2, m > 3, and pfm(m — 1). When a is even, we can further
compute the integral in (4) to get

pla/2IR,

(5) I = q_1/2x<(min$m_1>lm_1

when p > 2, m > 3, pfm(m — 1), and 2] a.

Now we consider the case of p|(m — 1) and m > 4. Then from (3) we
know that 1 +y2 + ... + ym—1 € pRy; hence 1 +y2 + ... + ym—2 € R
and Y1 € —(1+y2 + ...+ Ym—2) + (m — Dy, + p[“/Q]R,p. Set ym_1 =
~(1+yo+ .o+ Ym2) + (m — 1)y, +y with y € pl*/2IR,. Then

_ (Mmym +y)™

= X J—
S ( y2~-ym2ym(1+y2+...—l—ym2—(m_1)ym_y)>
yep[a/leP
y27"-7ym—27ym€R;
1+ys+...+ym—2€R)

X dydys ... dym—_o dym.
When 2 | a, the integrand above equals

| o S
X y2~--ym—2(1+y2+---+ym—2_(m_l)ym)

1 1
X 1+ —+ .

Consequently, in order to have a non-zero integral with respect to y we must
have

1 1
— 4+ Epa/2R,
Ym 1+y2++ym—2_(m_1)ym P

which is equivalent to 1 4+ y2 + ... + Ym—2 — (M — 2)y,, € p“/QRp. Note
that pt(m — 2); hence we can set y,, = (L +y2+ ... 4+ Ym—2)/(m —2) + 2
with z € p®/ 2R,. Integrating with respect to y and substituting the above
expression of ¥, into

mmymfl
(- : )
Yoo Ymo(l+y2+ .o+ Ymo — (m—1)yy)
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we can see that the resulting expression is independent of z:

< mm > <(1+y2+...+ym2)m_2>
Nm—2m=2 )X Y2 Ym—2 '
Integrating with respect to z we get
(7) I = q1X<(minQ)m2>Im—2
when p> 2, m >4, pfm, p|(m—1),a > 2, and 2|a.

Now let us turn to the case of 2fa. Then the integral in (6) becomes

- | x(— m Y )
yeple- /2R Yo .. -ymf2(1 +ys+ ...+ Yn—2— (m — 1)ym)

Y2, Ym—2,Ym ERY
1+y2+..-+ym—2€R§

1 1
Xx|l+yl —+
X( y<ym 1+92+-"+ym2_(m_1)ym>
1

- _|_ 1
n y2 <m —1 4 _Ym I+ye+- Aym—2—(m—1)ym ))
me?n 1+y2+...+ymf2_(m_1)ym

X dydys ... dym—o dym.
Since we assume in this case that p > 2, the term (m — 1)/(2my2,) € pR,
and hence can be taken out of the above integrand. Setting y = z + u with
z € pla=V2R, /pletD/2R  and u € pl@TV/2R, we have y? € 22 + qR,.
Integrating with respect to u we get a non-zero result only if

1 1
o e p(a—l)/2R )
Ym 1+y2+'~~+ym72_(m_1)ym P

Because of this condition, the integrand in (8) can be simplified to
< )
-
Yo - Ym—2(L+ Y2+ -+ Ym—2 — (M — L)ym)
(o 1 ))
*x( Ity ym+1+y2—|—...+ym_2—(m—1)ym '
Then the integral with respect to y is non-zero only when
1 1

L e pletl/2R

ie., only when 1 +yo + ... + ym—2 — (m — 2)y,, € p(“+1)/2Rp. Integrate
with respect to y and set y, = (1 +y2 + ... + Yym—2)/(m — 2) + z with
z € plotl)/ 2R,. If we substitute this expression for y,,, we can see the
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integrand is indeed independent of z. Integrating with respect to z as before
we conclude that

mm
9 I =q¢ ‘x| ———— | In—
9) q x<(m_2)m_2) 2
when p > 2, m >4, pfm, p|(m—1), a > 2, and 2ta.
Using the same approach as above we can also get

(10) Iy = ¢ '?x(2?)
when p > 2, a > 2, and 2| a, and
2
(1) p=x@ | (145 )
pla—D/2R,

when p > 2, a > 2, and 2{a. Putting all these results from (4), (5), (7), (9),
(10), and (11) together we get the following expressions for I,,,:

Iy = g™ 2x(m™)
when p > 2, m > 2, pfm, a > 2, and 2|a, and

im m (j — Dy7
Iy = g~ "/Ply(m™) H S X<1+2.]> dy;
2<j<m  pla-1/2R, J
pliGi-1)

when p > 2, m > 2, ptm, a > 2, and 2{a. Theorem 5 in the case of p > 2
then follows.

We now consider the case of p = 2. Following the same approach as
above we set

T4y + ...+ ym,)™
I - S X<( Y2 Ym)

)dyg...dym
Y2..-Ym

Y2, Ym ERY
1+ya+...4+ym ERY

so that

(e(x, ¥5 da))™ = ¢ e(X™, ¥5 dw) L.
Since p = 2 and 2{m, we always have p| (m —1). For m > 5 we get the same
expression of I,, as in (6) which implies (7) when a is even. When « is odd,
we get (8) again. If 4] (m — 1), then we still have (m — 1)/(2my2,) € pR,
and hence this term can be taken out of the integrand in (8). By the same
computation, we get (9). Therefore

(12) Iy = q‘lx(mfng)Imz

when (i) p =2, m > 5, 2tm, a > 2, and 2|a, or (ii) p =2, m > 5, 2¢m,
4| (m—1), a >3, and 2ta.
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Now we consider the case of p = 2, 2¢m, 4f(m — 1), a > 3, and 2{a.
Then (m — 1)/(2my;,) € RY. Consequently, by setting y = z + u with
z€pla= V2R, /plat /2R and u € plet1/2R, we can only get

1 1

+
Ym 14yt +ym—2— (m— Ly

Set Y = (1+ya+ ...+ Ym_2)/(m —2) + z with z € p»=V/2R . Then (8)
can be simplified to

c p(afl)/2Rp_

I, =

mm (I+ys+... 4 Ym2)™ 2
S X (m —2)m=2 X Y2.-.Y
y,zEp(a71>/2Rp 2. Ym—2

y27"'7ym—26R;
1+y2+-~~+y7n72€R;

m — 1)22 m — 1)y?

X X 1+¥ X 1—yz+¢ dydzdys ... dYym—s.
2(m — 2) 2m

Since (m —1)/2 is an odd integer we can further simplify the integrals with

respect to y and z to get

mm
(13) I, :X<(m_2)m_2)lm_2 S (I +9y? +yz+ 23 dydz
y,z€pa—1/2R,,

when p =2, m >5,2¢m, 4{(m —1), a > 3, and 2ta.
We can also compute I3:

(14) I3y = ¢ 'x(3%)
ifp=2,a>2, and 2|a, and
(15) I3 = x(3%) X x(1 +u? +uv + v?) dudv

u,vepla—1)/2R,

if p=2,a>2, and 2ta. Putting the results in (12)—(15) together we prove
Theorem 5 for p = 2.

3. Identities for hyper-Kloosterman sums. In this section we will
prove Theorem 3 when a > 3 is odd. Denote the hyper-Kloosterman sum
over p-adic field by

Zi,..,@mERY /(1+qRy)
Applying the Mellin transform to the p-adic hyper-Kloosterman sum as
in [10], we get

[ XM @K (g m 12 dz = g~ XD (g) (e, s da) ™
Ry
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when a(x) = a > 2 and ¢ = p®. By Theorem 5 when p is odd and ptm the
above becomes

g™ 27 Im /P =MD ()™ (m)e (x, ¥ dw)e(X™, s da)

j—1
X H S X<1 + 29?) dy;
2<j<m  pla—1)/2R, J
pfiGi—1)
if a is odd. By the same computation as in [10] we can prove that
(16) S X () Ky(g,m+1,2)dz
Ry
= q(m—l)/%;)n—l—?[m/p] S Y (z)dz

Ry

2 (gl ) IO

2E€RX /(1+qR,) 2<j<m P
pfiGi—1)

when p > 2, pfm, 24a for any multiplicative character x. Since the number
of factors in the product in (16) is m — 1 — 2[m/p|, the product equals

<$m>m—1—2[m/p] <z>m—1—2[m/p] H <](] _ 1))
p p 2<j<m p

pli(i-1)

-GG 6. ()

1<k<m/p

@)™

Consequently, we proved the following identity over the p-adic field:
2mflsz 1m
)

o b))

zER) /(1+qRy)

Kp(g,m+1,2) = gm=1/2em=1 <

when p > 2, ptm, 2{a, and p{z. This identity is equivalent to Theorem 3
in the case of odd p which is a generalization of a result proved in [10].

Now we turn to the case of p = 2 with 2tm. When a > 3 is odd, we
deduce from Theorem 5 that
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(17) S X_I(Z)Kp(q,m+1,z) dz
Ry

_ qm_z_[(m—l)/4}x—(m+1)(q)xm(m)g(x, Wy dx)e(x™, ¥; dx)

X ( S x(1+u? +uv +v?) du dv) [(m+1)/4}.

u,weple—1/2R,
We have
g2 x "D (@)e(x, s dw)e(X™, s d)
= ¢ 2 m () S X w128 (zy + w2) doy dag

(7' R;)?
1 1 T
gl )
(Ry)?
Rewriting the power in (17) as
H S x(1 —i—uf + u,;v; —i—v?)duj dv;

1<5<[(m+1)/4] w;j,v;epla—D/2R,
we then change variables from x to z via
x = zm™ I +ud +um+0).
1<5<[(m+1)/4]
Then the expression on the right side of (17) becomes

A | T ) dady
(R)?

1 m
X S ¢<(y+w}n H (1+u§+ujvj+v§)>>
wyyepa-vreg, N1 Y7 a<i<limin /g
1<7<(m+1)/4)

X dz dy du1 dv1 . dU[(m+1)/4] dv[(m+1)/4] .

Changing variables again and multiplying out the product we get

Frm e 2 oo )

Ry yERy /(14+qRp)
X <

In order to compute the integral with respect to v and v we write it as a

. [(m+1)/4]
W <(u2 +uv + 1)2)> du dv)
qy™

u,vepe—1)/2R,
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finite sum

P (Zm(u2 + uv + vz)> du dv
u,veple—1/2R, ¥

=p ol Z ¢<qyzm(u2 +uv+v2)>

u}fu@p(afl)/QRp/p(a‘Fl)/QRP

=p ol Z 1/;<p;m(u2 +uv+v2)>.

u,VER, /PRy

Since p = 2, we can take u,v = 0,1 and get

e (e () o))
Py Py

Since the order of % is zero and p‘lR; /R, has only one element, we have
z 3z
o))
Py by

¢<Z(u2 + uv + 1)2)) dudv = —q .
qy™

and hence

u,veple—1/2R,

Consequently,

S X_l(z)Kp(q, m+1,z)dz

Ry
AR ) SRR SR CYE=S)

Ry yER /(1+qRy)

for any ramified character x with conductor exponent a(x) = a, where we
used the facts that

[(m—1)/4] 4 [(m+1)/4] = (m —1)/2 and (—1)lm+D/4 = (;)

Since a > 1 this identity also holds for other multiplicative character y.
Therefore we proved the following identity which is equivalent to Theorem 3
in the case of p =2, ptm, a > 3, and 2{a:

2 1 z
— o(m=1)/2 il
(18) Kp(g,m+1,2)=q¢'"™ <m> E w<q<my+ym>>
yERy /(1+qRy)

for any 2 € R}
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4. Estimation of exponential sums. We first prove Theorem 2 using
Theorem 1.8 of Dabrowski and Fisher [1]. Let f(z) = bx + cz* be a poly-
nomial with b, ¢, and k relatively prime to p. For a > 2 we set ¢ = p“
and j = [a/2]. Define the scheme D of critical points of f as zeros of
f'(z) = b+ ckz®=1. Then a point x in D is étale if pf(k — 1), x is h-étale
if p || (k — 1), and z is strictly h-étale if p"*1|| (k — 1). Theorem 1.8(a) of
Dabrowski and Fisher [1] says that

|D(Z/pZ)|q"/? if 2| a or if 2¢a and pf(k — 1),
151(.5,0)] < { ID(Z/pZ)[pM2q"/?  if 2ta and p| (k — 1).

Theorem 1.8(b) on the other hand implies that
S, b, 0) < [D(Zy)lp"*q"

if a > 3h+4+2 when p > 2 or a > 3h+5 when p = 2, where h > 1 is given by
p" || (k — 1). Following Example 1.17 of [1] we have

k—1 if pt(k—1),
|D(Z/p’Z)| < { pmintht1li—1) ifp=2and h >1,
(k—1,p—1)p™iri=1) if p > 2 and h > 1,

and

(k—1)p*~" ifp=2.

Substituting these results into the above inequalities for the exponential
sum, we get the estimates in Theorem 2.

’D(Zp)|g{(k—1)p—h if p> 2,

By similar computation the bounds for the hyper-Kloosterman sum
K(gq,m + 1, z) considered in Example 1.17 of Dabrowski and Fisher [1] can
be written in the following way. Here h is given by p" || (m + 1).

(19) |K(g,m+1,z)]

(m—l—l)qm/2 if pt(m+1),
(m + 1)p~ "/ 2gm/? if h>1and a>3h+2,
(m+1,p — 1)pmin(hae/2=1) gm/2 if h>1and 2]a,

(m+ 1,p — 1)pmin(h+1/2,a/2=1)gm/2 if b > 1 and 2¢a,
when p > 2, and

(m 4+ 1)p'="/2¢™/2  if h > 1 and a > 3h+5,
(20) |K(g,m+1,z)| < pminthtlae/2=1)gm/2 if b > 1 and 2|a,
pmin(h+3/2,a/271)qm/2 if h >1 and 2*@,

when p = 2. As before here we assume that p{m. By the identities of hyper-
Kloosterman sums in Theorem 3, we get the same bounds as in Theorem 1
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but for the exponential sum

Z e<m$—;zxm)

x mod q
(z,p)=1

if we set k = ¢(q) — m. For m in the range of 1 < m < ¢(q) — a, however

<mx + zxd’(‘”_m)
Z e ¢ =0.

x mod q
plz

This completes the proof of Theorem 1.
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