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1. Introduction. In Ye [10] the author proved the following bounds
for an exponential sum. Let p be an odd prime and let b and c be integers
relatively prime to p. Set q = pa, a ≥ 1, and k ≥ 0. Define the exponential
sum

Sk(q, b, c) =
∑

xmod q

e
(
bx+ cxk

q

)

where e(x) = e2πix. Then for 1 < m < p we have [10]

|Sφ(q)−m(q, b, c)| ≤





(m+ 1)p1/2 + 1 if m > 1, m | (p− 1), and a = 1,
(m+ 1)q1/2 if 1 < m < p− 1 and a ≥ 2,
p1/2q1/2 if m = p− 1 and a ≥ 5,
pq1/2 if m = p− 1 and a = 4,
p1/2q1/2 if m = p− 1 and a = 3,
q1/2 if m = p− 1 and a = 2.

In this article we will prove certain identities between the above expo-
nential sum and hyper-Kloosterman sums, generalize the above estimation
for the exponential sum to other cases of m when a ≥ 2, and establish new
bounds for hyper-Kloosterman sums. Write ph ‖n if ph |n but ph+1 -n.

Theorem 1. Let p be a prime, q = pa, a ≥ 2, and k an integer with
a ≤ k < φ(q) and p - k. We set h by ph ‖ (k − 1). Then for any b and c
relatively prime to p we have

|Sk(q, b, c)| ≤





(φ(q)−k + 1)q1/2 if p - (k − 1),
(φ(q)−k + 1)p−h/2q1/2 if h ≥ 1 and a≥3h+2,
(k−1, p−1)pmin(h,a/2−1)q1/2 if h ≥ 1 and 2 | a,
(k−1, p−1)pmin(h+1/2,a/2−1)q1/2 if h ≥ 1 and 2 - a,
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when p > 2, and

|Sk(q, b, c)| ≤




(φ(q)− k + 1)p1−h/2q1/2 if h ≥ 1 and a ≥ 3h+ 5,
pmin(h+1,a/2−1)q1/2 if h ≥ 1 and 2 | a,
pmin(h+3/2,a/2−1)q1/2 if h ≥ 1 and 2 - a,

when p = 2.

When a ≥ 3h+2 with p > 2 and when a ≥ 3h+5 with p = 2, two bounds
are given in Theorem 1; the smaller bound applies. Loxton and Smith [5]
proved that

|Sk(q, b, c)| ≤ q1/2dk−1(q)(∆, q)1/2

when b and c are relatively prime to p, where dk−1(q) is the number of
representations of q as a product of k − 1 positive integers and ∆ is the
discriminant of the derivative of the polynomial bx+ cxk. After an improve-
ment by Loxton and Vaughan [6], Dąbrowski and Fisher established in [1]
better bounds for exponential sums of this kind. Under the restriction of
p - k, which is the case we will deal with in this paper, their Theorem 1.8
implies the following estimates (see Section 4 for details).

Theorem 2. Let p be a prime, a ≥ 2, q = pa, k ≥ 2, p - k, and ph ‖ (k−1).
Then for any integers b and c relatively prime to p we have

|Sk(q, b, c)|

≤





(k − 1)q1/2 if p - (k − 1) and a ≥ 2,
(k − 1)p−h/2q1/2 if h ≥ 1 and a ≥ 3h+ 2,
(k − 1, p− 1)pmin(h,a/2−1)q1/2 if h ≥ 1 and 2 | a,
(k − 1, p− 1)pmin(h+1/2,a/2−1)q1/2 if h ≥ 1 and 2 - a,

when p > 2, and

|Sk(q, b, c)| ≤




(k − 1)p1−h/2q1/2 if h ≥ 1 and a ≥ 3h+ 5,
pmin(h+1,a/2−1)q1/2 if h ≥ 1 and 2 | a,
pmin(h+1/2,a/2−1)q1/2 if h ≥ 1 and 2 - a,

when p = 2.

We note that the last two cases here for p > 2 and for p = 2 are the
same as in Theorem 1. In other cases Theorem 1 is effective for large k while
Theorem 2 gives better bounds for small k. In particular when p > 2 and
p - k(k − 1), we can combine these two theorems and get

|Sk(q, b, c)| ≤ min(k − 1, φ(q)− k + 1)q1/2.

This estimate becomes worse than trivial when q1/2 ≤ k ≤ φ(q)−q1/2. What
kind of non-trivial bounds one can get for k in this middle range is indeed
an interesting question. See Vaughan [8] for a history of estimation of this
exponential sum. The question of estimating this exponential sum for large
k was posed by Loxton and Vaughan [6].
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As in [10] our proof of Theorem 1 is based on certain identities between
the above exponential sum and hyper-Kloosterman sums (Theorem 3).
These identities are in turn deduced from generalized Davenport–Hasse
identities of Gauss sums (Theorem 5). Using the new bounds for hyper-
Kloosterman sums for prime power moduli obtained by Dąbrowski and
Fisher [1] (see (19), (20), and an improved version in (1) and (2)), we then
prove Theorem 1.

We denote a hyper-Kloosterman sum by

K(q,m+ 1, z) =
∑

x1,...,xm mod q
(x1,p)=...=(xm,p)=1

e
(
x1 + . . .+ xm + zx1 . . . xm

q

)

for q = pa, m ≥ 1, and p - z. Define an exponential sum by

I(q,m, z) =
∑

xmod q
(x,p)=1

e
(
mx+ zxm

q

)
.

The identities for hyper-Kloosterman sums are given in the following theo-
rem. Set εp = 1 if p ≡ 1 (mod 4), and εp = i if p ≡ 3 (mod 4).

Theorem 3. Let p be a prime, m ≥ 1, p -m, a ≥ 2, and q = pa. Then
for any integer z with p - z we have

K(q,m+ 1, z) =




q(m−1)/2I(q,m, z) if 2 | a,

q(m−1)/2εm−1
p

(
2m−1zm−1m

p

)
I(q,m, z) if 2 - a,

when p > 2, and

K(q,m+ 1, z) = q(m−1)/2
(

2
m

)a
I(q,m, z)

when p = 2.

For the case of even a these identities were proved by Smith [7]. When
a = 1 a similar identity is indeed the Diophantine manifestation of a geo-
metric isomorphism of sheaves in Katz [4], Theorem 9.2.3. In Section 3 we
will thus only consider the case of odd a ≥ 3.

To see another application of our identities, we note that for any positive
integer n,

I(q,m+ nφ(q), z) =
∑

xmod q
(x,p)=1

e
(

(m+ nφ(q))x+ zxm+nφ(q)

q

)

=
∑

ymod q
(y,p)=1

e
(
my + z(m+ nφ(q))mmmym

q

)
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where we set y ≡ (m+ nφ(q))mx (mod q), which is still relatively prime to
p because p -m, a ≥ 2, and p |φ(q). Since (m + nφ(q))mmm ≡ 1 − npa−1

(mod q), we have

I(q,m+ nφ(q), z) = I(q,m, z(1− npa−1)).

Applying this identity to the exponential sums on the right side in Theo-
rem 3, we can easily deduce the following identity for hyper-Kloosterman
sums.

Corollary. Let p be any prime, m and n any positive integer , p -m,
a ≥ 2, and q = pa. Then for any integer z relatively prime to p we have

K(q,m+ nφ(q) + 1, z) =





qnφ(q)/2K(q,m+ 1, z(1− npa−1))

if 2 | a or if p = 2, a ≥ 5, and 2 - a,

qnφ(q)/2εnφ(q)
p K(q,m+ 1, z(1− npa−1))

if p > 2 and 2 - a.

This Corollary simplifies hyper-Kloosterman sums of prime power moduli
with larger m, p -m, to hyper-Kloosterman sums with m between 1 and
φ(q) − 1. Consequently, the bounds for hyper-Kloosterman sums of prime
power moduli proved by Dąbrowski and Fisher [1] (see (19) and (20) in
Section 4) can be rewritten and improved for large m when p -m. These
improved bounds may also be proved directly following their Theorem 1.8
and Example 1.17:

(1) |K(q,m+ 1, z)|

≤





(r + 1)qm/2 if p - (r + 1),
(r + 1)p−h/2qm/2 if h ≥ 1 and a ≥ 3h+ 2,
(r + 1, p− 1)pmin(h,a/2−1)qm/2 if h ≥ 1 and 2 | a,
(r + 1, p− 1)pmin(h+1/2,a/2−1)qm/2 if h ≥ 1 and 2 - a,

when p > 2, and

(2) |K(q,m+ 1, z)| ≤




(r + 1)p1−h/2qm/2 if h ≥ 1 and a ≥ 3h+ 5,
pmin(h+1,a/2−1)qm/2 if h ≥ 1 and 2 | a,
pmin(h+3/2,a/2−1)qm/2 if h ≥ 1 and 2 - a,

when p = 2, where h is given by ph ‖ (r + 1) and m ≡ r (mod φ(q)) with
1 ≤ r < φ(q) and p - r.

Using the Corollary and the identities in Theorem 3 backward, we can
further deduce new bounds for hyper-Kloosterman sums from the bounds
for the exponential sum Sk(q, b, c). These new bounds are sharper than the
improved bounds of Dąbrowski and Fisher in (1) and (2) when m ≡ r
(mod φ(q)) with r being less than and close to φ(q) − a. Here in order to
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have
∑

xmod q
p | x

e
(
bx+ cxφ(q)−r

q

)
= 0

we need to assume that φ(q)− r ≥ a.

Theorem 4. Let p be any prime. Assume that a ≥ 2 when p > 2 and
a ≥ 4 when p = 2. Set q = pa and let m be any positive integer with p -m,
m ≡ r (mod φ(q)) and 1 ≤ r ≤ φ(q)− a. Define h by ph ‖ (r+ 1). Then for
any integer z relatively prime to p we have

|K(q,m+ 1, z)|

≤





(φ(q)− r − 1)qm/2 if p - (r + 1),
(φ(q)− r − 1)p−h/2qm/2 if h ≥ 1 and a ≥ 3h+ 2,
(r + 1, p− 1)pmin(h,a/2−1)qm/2 if h ≥ 1 and 2 | a,
(r + 1, p− 1)pmin(h+1/2,a/2−1)qm/2 if h ≥ 1 and 2 - a,

when p > 2, and

|K(q,m+ 1, z)| ≤




(φ(q)− r − 1)p1−h/2qm/2 if h ≥ 1 and a ≥ 3h+ 5,
pmin(h+1,a/2−1)qm/2 if h ≥ 1 and 2 | a,
pmin(h+3/2,a/2−1)qm/2 if h ≥ 1 and 2 - a,

when p = 2.

Estimation of hyper-Kloosterman sums for prime moduli was proved by
Deligne [2] and Katz [3]. It is interesting to see whether bounds like those
in Theorem 4 can be established for hyper-Kloosterman sums modulo p.

2. New Davenport–Hasse identities for Gauss sums. Let p be a
prime and m > 1 an integer with p -m. Let χ be any ramified multiplicative
character on the p-adic field Qp with conductor exponent a(χ) = a. Here
χ is ramified if it is non-trivial on R×p , the group of invertible elements of
the ring of integers Rp in Qp; for a ramified multiplicative character χ its
conductor exponent, denoted by a(χ), is the smallest positive integer a such
that χ is trivial on 1 + paRp. Let ψ be an additive character of Qp whose
order is zero. Here the order of an additive character ψ, denoted by n(ψ), is
the largest integer n such that the character ψ is trivial on p−nRp.

For any additive character φ we define the local ε-factor as

ε(χ, φ; dx) =





χ(pn(φ))pn(φ) if χ is unramified,\
p−a(χ)−n(φ)R×p

χ−1(x)φ(x) dx if χ is ramified,

where dx is a Haar measure on Qp normalized by volume(Rp) = 1. Then the
new Davenport–Hasse identities for Gauss sums have the following form.
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Theorem 5. Let p be a prime and m > 1 an integer with p -m. Let ψ be
a non-trivial additive character of Qp of order zero. Then for any ramified
multiplicative character χ with conductor exponent a(χ) = a ≥ 2 we have

(ε(χ, ψ; dx))m =





q(m−1)/2χm(m)ε(χm, ψ; dx) if 2 | a,
qm−1−[m/p]χm(m)ε(χm, ψ; dx)

×
∏

2≤j≤m
p - j(j−1)

\
p(a−1)/2Rp

χ

(
1 +

j − 1
2j

y2
j

)
dyj if 2 - a,

when p > 2, and

(ε(χ, ψ; dx))m

=





q(m−1)/2χm(m)ε(χm, ψ; dx) if 2 | a,
qm−1−[(m−1)/4]χm(m)ε(χm, ψ; dx)

×
( \
u,v∈p(a−1)/2Rp

χ(1 + u2 + uv + v2) du dv
)[(m+1)/4]

if 2 - a,

when p = 2, where q = pa.

P r o o f. Following the computation in Ye [9] and [10] we have

(ε(χ, ψ; dx))m =
\

(q−1R×p )m

χ−1(x1 . . . xm)ψ(x1 + . . .+ xm) dx1 . . . dxm.

Change variables from xi to yi = xi/x1 for i = 2, . . . ,m. Since p -m, the
conductor exponent of χm is still a. Consequently, the integral with respect
to x1 vanishes unless 1+y2 + . . .+ym ∈ R×p . Setting z = x1(1+y2 + . . .+ym)
we get

(ε(χ, ψ; dx))m = qm−1ε(χm, ψ; dx)

×
\

y2,...,ym∈R×p
1+y2+...+ym∈R×p

χ

(
(1 + y2 + . . .+ ym)m

y2 . . . ym

)
dy2 . . . dym.

Denote the integral by Im. Since a(χ) = a ≥ 2, for m ≥ 3 we set
ym = y0(1 + u) where

y0 ∈ (R×p − (−(1 + y2 + . . .+ ym−1) + pRp))/(1 + p[(a+1)/2]Rp)

and u ∈ p[(a+1)/2]Rp. The integral with respect to u vanishes unless 1+y2 +
. . .+ ym−1 − (m− 1)y0 ∈ p[a/2]Rp. Therefore the variables in Im satisfy

(3) 1 + y2 + . . .+ ym−1 − (m− 1)ym ∈ p[a/2]Rp.
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If p - (m− 1), then we get the case discussed in [10]. Setting ym = (1 + y2 +
. . .+ ym−1)/(m− 1) + y with y ∈ p[a/2]Rp we get

(4) Im = Im−1χ

(
mm

(m− 1)m−1

) \
p[a/2]Rp

χ

(
1 +

(m− 1)y2

2m

)
dy

when p > 2, m ≥ 3, and p -m(m − 1). When a is even, we can further
compute the integral in (4) to get

(5) Im = q−1/2χ

(
mm

(m− 1)m−1

)
Im−1

when p > 2, m ≥ 3, p -m(m− 1), and 2 | a.
Now we consider the case of p | (m − 1) and m ≥ 4. Then from (3) we

know that 1 + y2 + . . . + ym−1 ∈ pRp; hence 1 + y2 + . . . + ym−2 ∈ R×p
and ym−1 ∈ −(1 + y2 + . . . + ym−2) + (m − 1)ym + p[a/2]Rp. Set ym−1 =
−(1 + y2 + . . .+ ym−2) + (m− 1)ym + y with y ∈ p[a/2]Rp. Then

(6) Im

=
\

y∈p[a/2]Rp
y2,...,ym−2,ym∈R×p

1+y2+...+ym−2∈R×p

χ

(
− (mym + y)m

y2 . . . ym−2ym(1 + y2+. . .+ym−2−(m−1)ym−y)

)

× dy dy2 . . . dym−2 dym.

When 2 | a, the integrand above equals

χ

(
− mmym−1

m

y2 . . . ym−2(1 + y2 + . . .+ ym−2 − (m− 1)ym)

)

× χ
(

1 +
(

1
ym

+
1

1 + y2 + . . .+ ym−2 − (m− 1)ym

)
y

)
.

Consequently, in order to have a non-zero integral with respect to y we must
have

1
ym

+
1

1 + y2 + . . .+ ym−2 − (m− 1)ym
∈ pa/2Rp,

which is equivalent to 1 + y2 + . . . + ym−2 − (m − 2)ym ∈ pa/2Rp. Note
that p - (m − 2); hence we can set ym = (1 + y2 + . . . + ym−2)/(m − 2) + z
with z ∈ pa/2Rp. Integrating with respect to y and substituting the above
expression of ym into

χ

(
− mmym−1

m

y2 . . . ym−2(1 + y2 + . . .+ ym−2 − (m− 1)ym)

)
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we can see that the resulting expression is independent of z:

χ

(
mm

(m− 2)m−2

)
χ

(
(1 + y2 + . . .+ ym−2)m−2

y2 . . . ym−2

)
.

Integrating with respect to z we get

(7) Im = q−1χ

(
mm

(m− 2)m−2

)
Im−2

when p > 2, m ≥ 4, p -m, p | (m− 1), a ≥ 2, and 2 | a.
Now let us turn to the case of 2 - a. Then the integral in (6) becomes

(8) Im

=
\

y∈p(a−1)/2Rp
y2,...,ym−2,ym∈R×p

1+y2+...+ym−2∈R×p

χ

(
− mmym−1

m

y2 . . . ym−2(1 + y2 + . . .+ ym−2 − (m− 1)ym)

)

× χ
(

1 + y

(
1
ym

+
1

1 + y2 + . . .+ ym−2 − (m− 1)ym

)

+ y2
(
m− 1
2my2

m

+
1
ym

+ 1
1+y2+...+ym−2−(m−1)ym

1 + y2 + . . .+ ym−2 − (m− 1)ym

))

× dy dy2 . . . dym−2 dym.

Since we assume in this case that p > 2, the term (m − 1)/(2my2
m) ∈ pRp

and hence can be taken out of the above integrand. Setting y = z + u with
z ∈ p(a−1)/2Rp/p

(a+1)/2Rp and u ∈ p(a+1)/2Rp, we have y2 ∈ z2 + qRp.
Integrating with respect to u we get a non-zero result only if

1
ym

+
1

1 + y2 + . . .+ ym−2 − (m− 1)ym
∈ p(a−1)/2Rp.

Because of this condition, the integrand in (8) can be simplified to

χ

(
− mmym−1

m

y2 . . . ym−2(1 + y2 + . . .+ ym−2 − (m− 1)ym)

)

× χ
(

1 + y

(
1
ym

+
1

1 + y2 + . . .+ ym−2 − (m− 1)ym

))
.

Then the integral with respect to y is non-zero only when
1
ym

+
1

1 + y2 + . . .+ ym−2 − (m− 1)ym
∈ p(a+1)/2Rp,

i.e., only when 1 + y2 + . . . + ym−2 − (m − 2)ym ∈ p(a+1)/2Rp. Integrate
with respect to y and set ym = (1 + y2 + . . . + ym−2)/(m − 2) + z with
z ∈ p(a+1)/2Rp. If we substitute this expression for ym, we can see the
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integrand is indeed independent of z. Integrating with respect to z as before
we conclude that

(9) Im = q−1χ

(
mm

(m− 2)m−2

)
Im−2

when p > 2, m ≥ 4, p -m, p | (m− 1), a ≥ 2, and 2 - a.
Using the same approach as above we can also get

(10) I2 = q−1/2χ(22)

when p > 2, a ≥ 2, and 2 | a, and

(11) I2 = χ(22)
\

p(a−1)/2Rp

χ

(
1 +

y2

4

)
dy

when p > 2, a ≥ 2, and 2 - a. Putting all these results from (4), (5), (7), (9),
(10), and (11) together we get the following expressions for Im:

Im = q(1−m)/2χ(mm)

when p > 2, m ≥ 2, p -m, a ≥ 2, and 2 | a, and

Im = q−[m/p]χ(mm)
∏

2≤j≤m
p - j(j−1)

\
p(a−1)/2Rp

χ

(
1 +

(j − 1)y2
j

2j

)
dyj

when p > 2, m ≥ 2, p -m, a ≥ 2, and 2 - a. Theorem 5 in the case of p > 2
then follows.

We now consider the case of p = 2. Following the same approach as
above we set

Im =
\

y2,...,ym∈R×p
1+y2+...+ym∈R×p

χ

(
(1 + y2 + . . .+ ym)m

y2 . . . ym

)
dy2 . . . dym

so that

(ε(χ, ψ; dx))m = qm−1ε(χm, ψ; dx)Im.

Since p = 2 and 2 -m, we always have p | (m−1). For m ≥ 5 we get the same
expression of Im as in (6) which implies (7) when a is even. When a is odd,
we get (8) again. If 4 | (m − 1), then we still have (m − 1)/(2my2

m) ∈ pRp
and hence this term can be taken out of the integrand in (8). By the same
computation, we get (9). Therefore

(12) Im = q−1χ

(
mm

(m− 2)m−2

)
Im−2

when (i) p = 2, m ≥ 5, 2 -m, a ≥ 2, and 2 | a, or (ii) p = 2, m ≥ 5, 2 -m,
4 | (m− 1), a ≥ 3, and 2 - a.
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Now we consider the case of p = 2, 2 -m, 4 - (m − 1), a ≥ 3, and 2 - a.
Then (m − 1)/(2my2

m) ∈ R×p . Consequently, by setting y = z + u with
z ∈ p(a−1)/2Rp/p

(a+1)/2Rp and u ∈ p(a+1)/2Rp, we can only get

1
ym

+
1

1 + y2 + . . .+ ym−2 − (m− 1)ym
∈ p(a−1)/2Rp.

Set ym = (1 + y2 + . . .+ ym−2)/(m− 2) + z with z ∈ p(a−1)/2Rp. Then (8)
can be simplified to

Im =
\

y,z∈p(a−1)/2Rp
y2,...,ym−2∈R×p

1+y2+...+ym−2∈R×p

χ

(
mm

(m− 2)m−2

)
χ

(
(1 + y2 + . . .+ ym−2)m−2

y2 . . . ym−2

)

× χ
(

1 +
(m− 1)z2

2(m− 2)

)
χ

(
1− yz +

(m− 1)y2

2m

)
dy dz dy2 . . . dym−2.

Since (m− 1)/2 is an odd integer we can further simplify the integrals with
respect to y and z to get

(13) Im = χ

(
mm

(m− 2)m−2

)
Im−2

\
y,z∈p(a−1)/2Rp

χ(1 + y2 + yz + z2) dy dz

when p = 2, m ≥ 5, 2 -m, 4 - (m− 1), a ≥ 3, and 2 - a.
We can also compute I3:

(14) I3 = q−1χ(33)

if p = 2, a ≥ 2, and 2 | a, and

(15) I3 = χ(33)
\

u,v∈p(a−1)/2Rp

χ(1 + u2 + uv + v2) du dv

if p = 2, a ≥ 2, and 2 - a. Putting the results in (12)–(15) together we prove
Theorem 5 for p = 2.

3. Identities for hyper-Kloosterman sums. In this section we will
prove Theorem 3 when a ≥ 3 is odd. Denote the hyper-Kloosterman sum
over p-adic field by

Kp(q,m+ 1, z) =
∑

x1,...,xm∈R×p /(1+qRp)

ψ

(
1
q

(
x1 + . . .+ xm +

z

x1 . . . xm

))
.

Applying the Mellin transform to the p-adic hyper-Kloosterman sum as
in [10], we get\

R×p

χ−1(z)Kp(q,m+ 1, z) dz = q−1χ−(m+1)(q)(ε(χ, ψ; dx))m+1
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when a(χ) = a ≥ 2 and q = pa. By Theorem 5 when p is odd and p -m the
above becomes

qm−2−[m/p]χ−(m+1)(q)χm(m)ε(χ, ψ; dx)ε(χm, ψ; dx)

×
∏

2≤j≤m
p - j(j−1)

\
p(a−1)/2Rp

χ

(
1 +

j − 1
2j

y2
j

)
dyj

if a is odd. By the same computation as in [10] we can prove that

(16)
\
R×p

χ−1(z)Kp(q,m+ 1, z) dz

= q(m−1)/2εm−1−2[m/p]
p

\
R×p

χ−1(z) dz

×
∑

x∈R×p /(1+qRp)

ψ

(
1
q

(
mx+

z

xm

)) ∏

2≤j≤m
p - j(j−1)

(
2j(j − 1)xmz

p

)

when p > 2, p -m, 2 - a for any multiplicative character χ. Since the number
of factors in the product in (16) is m− 1− 2[m/p], the product equals
(
xm

p

)m−1−2[m/p](
z

p

)m−1−2[m/p] ∏

2≤j≤m
p - j(j−1)

(
j(j − 1)

p

)

=
(
x

p

)m(m−1)(2z
p

)m−1(
m

p

) ∏

1≤k<m/p

(
(kp+ 1)(kp− 1)

p

)

=
(

2z
p

)m−1(
m

p

)(−1
p

)[m/p]

.

Consequently, we proved the following identity over the p-adic field:

Kp(q,m+ 1, z) = q(m−1)/2εm−1
p

(
2m−1zm−1m

p

)

×
∑

x∈R×p /(1+qRp)

ψ

(
1
q

(
mx+

z

xm

))

when p > 2, p -m, 2 - a, and p - z. This identity is equivalent to Theorem 3
in the case of odd p which is a generalization of a result proved in [10].

Now we turn to the case of p = 2 with 2 -m. When a ≥ 3 is odd, we
deduce from Theorem 5 that
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(17)
\
R×p

χ−1(z)Kp(q,m+ 1, z) dz

= qm−2−[(m−1)/4]χ−(m+1)(q)χm(m)ε(χ, ψ; dx)ε(χm, ψ; dx)

×
( \
u,v∈p(a−1)/2Rp

χ(1 + u2 + uv + v2) du dv
)[(m+1)/4]

.

We have

q−2χ−(m+1)(q)ε(χ, ψ; dx)ε(χm, ψ; dx)

= q−2χ−(m+1)(q)
\

(q−1R×p )2

χ−1(x1x
m
2 )ψ(x1 + x2) dx1 dx2

=
\

(R×p )2

χ−1(x)ψ
(

1
q

(
y +

x

ym

))
dx dy.

Rewriting the power in (17) as
∏

1≤j≤[(m+1)/4]

\
uj ,vj∈p(a−1)/2Rp

χ(1 + u2
j + ujvj + v2

j ) duj dvj

we then change variables from x to z via

x = zmm
∏

1≤j≤[(m+1)/4]

(1 + u2
j + ujvj + v2

j ).

Then the expression on the right side of (17) becomes

qm−[(m−1)/4]
\

(R×p )2

χ−1(z) dz dy

×
\

uj ,vj∈p(a−1)/2Rp
1≤j≤[(m+1)/4]

ψ

(
1
q

(
y +

zmm

ym

∏

1≤j≤[(m+1)/4]

(1 + u2
j + ujvj + v2

j )
))

× dz dy du1 dv1 . . . du[(m+1)/4] dv[(m+1)/4].

Changing variables again and multiplying out the product we get

qm−1−[(m−1)/4]
\
R×p

χ−1(z) dz
∑

y∈R×p /(1+qRp)

ψ

(
1
q

(
my +

z

ym

))

×
( \
u,v∈p(a−1)/2Rp

ψ

(
z

qym
(u2 + uv + v2)

)
du dv

)[(m+1)/4]

.

In order to compute the integral with respect to u and v we write it as a
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finite sum\
u,v∈p(a−1)/2Rp

ψ

(
z

qym
(u2 + uv + v2)

)
du dv

= p−a−1
∑

u,v∈p(a−1)/2Rp/p(a+1)/2Rp

ψ

(
z

qym
(u2 + uv + v2)

)

= p−a−1
∑

u,v∈Rp/pRp
ψ

(
z

pym
(u2 + uv + v2)

)
.

Since p = 2, we can take u, v = 0, 1 and get

p−a−1
(

1 + 2ψ
(

z

pym

)
+ ψ

(
3z
pym

))
.

Since the order of ψ is zero and p−1R×p /Rp has only one element, we have

ψ

(
z

pym

)
= ψ

(
3z
pym

)
= −1

and hence \
u,v∈p(a−1)/2Rp

ψ

(
z

qym
(u2 + uv + v2)

)
du dv = −q−1.

Consequently,\
R×p

χ−1(z)Kp(q,m+ 1, z) dz

= q(m−1)/2
(

2
m

) \
R×p

χ−1(z) dz
∑

y∈R×p /(1+qRp)

ψ

(
1
q

(
my +

z

ym

))

for any ramified character χ with conductor exponent a(χ) = a, where we
used the facts that

[(m− 1)/4] + [(m+ 1)/4] = (m− 1)/2 and (−1)[(m+1)/4] =
(

2
m

)
.

Since a > 1 this identity also holds for other multiplicative character χ.
Therefore we proved the following identity which is equivalent to Theorem 3
in the case of p = 2, p -m, a ≥ 3, and 2 - a:

(18) Kp(q,m+ 1, z) = q(m−1)/2
(

2
m

) ∑

y∈R×p /(1+qRp)

ψ

(
1
q

(
my +

z

ym

))

for any z ∈ R×p .
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4. Estimation of exponential sums. We first prove Theorem 2 using
Theorem 1.8 of Dąbrowski and Fisher [1]. Let f(x) = bx + cxk be a poly-
nomial with b, c, and k relatively prime to p. For a ≥ 2 we set q = pa

and j = [a/2]. Define the scheme D of critical points of f as zeros of
f ′(x) = b + ckxk−1. Then a point x in D is étale if p - (k − 1), x is h-étale
if ph ‖ (k − 1), and x is strictly h-étale if ph+1 ‖ (k − 1). Theorem 1.8(a) of
Dąbrowski and Fisher [1] says that

|Sk(q, b, c)| ≤
{
|D(Z/pjZ)|q1/2 if 2 | a or if 2 - a and p - (k − 1),
|D(Z/pjZ)|p1/2q1/2 if 2 - a and p | (k − 1).

Theorem 1.8(b) on the other hand implies that

|Sk(q, b, c)| ≤ |D(Zp)|ph/2q1/2

if a ≥ 3h+ 2 when p > 2 or a ≥ 3h+ 5 when p = 2, where h ≥ 1 is given by
ph ‖ (k − 1). Following Example 1.17 of [1] we have

|D(Z/pjZ)| ≤



k − 1 if p - (k − 1),
pmin(h+1,j−1) if p = 2 and h ≥ 1,
(k − 1, p− 1)pmin(h,j−1) if p > 2 and h ≥ 1,

and

|D(Zp)| ≤
{

(k − 1)p−h if p > 2,
(k − 1)p1−h if p = 2.

Substituting these results into the above inequalities for the exponential
sum, we get the estimates in Theorem 2.

By similar computation the bounds for the hyper-Kloosterman sum
K(q,m+ 1, z) considered in Example 1.17 of Dąbrowski and Fisher [1] can
be written in the following way. Here h is given by ph ‖ (m+ 1).

(19) |K(q,m+ 1, z)|

≤





(m+ 1)qm/2 if p - (m+ 1),
(m+ 1)p−h/2qm/2 if h ≥ 1 and a ≥ 3h+ 2,
(m+ 1, p− 1)pmin(h,a/2−1)qm/2 if h ≥ 1 and 2 | a,
(m+ 1, p− 1)pmin(h+1/2,a/2−1)qm/2 if h ≥ 1 and 2 - a,

when p > 2, and

(20) |K(q,m+ 1, z)| ≤




(m+ 1)p1−h/2qm/2 if h ≥ 1 and a ≥ 3h+5,
pmin(h+1,a/2−1)qm/2 if h ≥ 1 and 2 | a,
pmin(h+3/2,a/2−1)qm/2 if h ≥ 1 and 2 - a,

when p = 2. As before here we assume that p -m. By the identities of hyper-
Kloosterman sums in Theorem 3, we get the same bounds as in Theorem 1
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but for the exponential sum
∑

xmod q
(x,p)=1

e
(
mx+ zxm

q

)

if we set k = φ(q)−m. For m in the range of 1 ≤ m ≤ φ(q)− a, however
∑

xmod q
p | x

e
(
mx+ zxφ(q)−m

q

)
= 0.

This completes the proof of Theorem 1.
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