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1. Introduction. Let H be the complex upper half plane and let Γ be
a congruence subgroup of SL2(Z). Since the group Γ acts on H by linear
fractional transformations, we get the modular curve X(Γ ) = Γ\H∗, as the
projective closure of smooth affine curve Γ\H, with genus gΓ . Since g1,N = 0
only for the eleven cases 1 ≤ N ≤ 10 and N = 12 ([12]) when Γ = Γ1(N)(
=

{
γ ∈ SL2(Z) | γ ≡

(
1 ∗
0 1

)
(mod N)

})
, the function field K(X1(12)) over

the curve X1(12) = Γ1(12)\H∗ is a rational function field C(j1,12) where
j1,12(z) := θ3(2z)/θ3(6z) for z ∈ H and θ3 is the classical Jacobi theta series.

In this article we will construct in Section 3 some sort of class fields
by means of Shimura’s ideas for the congruence subgroups Γ (N), Γ0(N)
and Γ1(N). In Section 4 we will generate the ray class field K(12) with
conductor 12 of imaginary quadratic fields K by applying standard results
of complex multiplication to the modular function j1,12(z). In Section 5 by
using Chen–Yui’s result [1], we shall investigate when the subfield of K(12)

generated by j1,12(α) is equal to a ray class fieldKf for a conductor f dividing
12 where α is the quotient of a basis of an OK-ideal (Theorems 20, 21 and
23). Lastly, in Section 6 we will explore an explicit formula for the conjugates
of the Hauptmodul N(j1,12(α)) permitting the numerical computation of its
minimal polynomial. We thank the referee for his valuable comments which
enabled us to improve Sections 5 and 6.

Throughout the article we adopt the following notations:

• Γ (N) = {γ ∈ SL2(Z) | γ ≡ I (mod N)},
• Γ0(N) =

{(
a b
c d

)
∈ Γ (1)

∣∣ c ≡ 0 (mod N)
}
,

• Γ 1(N) =
{(

a b
c d

)
∈ Γ (1)

∣∣ a ≡ d ≡ 1, b ≡ 0 (mod N)
}
,
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• Γ0(N,M) =
{(

a b
c d

)
∈ Γ (1)

∣∣ b ≡ 0 (mod M), c ≡ 0 (mod N)
}
,

• Mk/2(Γ̃0(N)), the space of modular forms of half integral weight for
the group Γ0(N),

• Mk/2(Γ̃0(N), χ) =
{
f ∈ Mk/2(Γ̃0(N))

∣∣ f(γz) = χ(d)j(γ, z)kf(z) for
all γ =

(∗ ∗
c d

)
∈ Γ0(N)

}
where χ is a Dirichlet character modulo N and

j(γ, z) = (c/d)ε−1
d

√
cz + d with εd = 1 if d ≡ 1 (mod 4) and = i otherwise,

• Zp, the ring of p-adic integers,
• Qp, the field of p-adic numbers,
• qh = e2πiz/h, z ∈ H.

2. Hauptmodul of K(X1(12)) as a quotient of Jacobi theta series.
For µ, ν ∈ R and z ∈ H, put

Θµ,ν(z) :=
∑
n∈Z

exp
{
πi

(
n+ 1

2µ
)2
z + πinν

}
.

This series converges uniformly for Im(z) ≥ η > 0, and hence defines a
holomorphic function on H. Then the Jacobi theta series θ2, θ3 and θ4 are
defined by

θ2(z) := Θ1,0(z) =
∑
n∈Z

q
(n+1/2)2

2 ,

θ3(z) := Θ0,0(z) =
∑
n∈Z

qn2

2 ,

θ4(z) := Θ0,1(z) =
∑
n∈Z

(−1)nqn2

2 .

And we have the following transformation formulas ([17], pp. 218–219):

(1)

θ2(z + 1) = eπi/4θ2(z), θ2(−1/z) = (−iz)1/2θ4(z),

θ3(z + 1) = θ4(z), θ3(−1/z) = (−iz)1/2θ3(z),

θ4(z + 1) = θ3(z), θ4(−1/z) = (−iz)1/2θ2(z).

Furthermore, we have the following theorem at hand. For the definition of
modular forms of half integer weight, we refer to [20] or [14].

Theorem 1. (1) θ3(2z) ∈M1/2(Γ̃0(4)) and θ3(6z) ∈M1/2(Γ̃0(12), χ3).
(2) K(X1(12)) = C(j1,12) and j1,12 takes the following value at each

cusp: j1,12(∞) = 1, j1,12(0) =
√

3, j1,12(1/2) = 0 (a simple zero), j1,12(1/3)
= i, j1,12(1/4) =

√
3i, j1,12(1/5) = −

√
3, j1,12(1/6) = ∞ (a simple pole),

j1,12(1/8) = −
√

3i, j1,12(1/9) = −i, j1,12(5/12) = −1.

P r o o f. [11], Theorem 4.
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3. Generation I. Let Γ be a Fuchsian group of the first kind. Then
Γ\H∗ (= X(Γ )) is a compact Riemann surface. Hence, there exists a projec-
tive nonsingular algebraic curve VΓ , defined over C, biregularly isomorphic
to Γ\H∗. We specify a Γ -invariant holomorphic map ϕΓ of H∗ to VΓ which
gives a biregular isomorphism of Γ\H∗ to VΓ . In that situation, we call
(VΓ , ϕΓ ) a model of Γ\H∗. Through this article we always assume that the
genus of Γ\H∗ is zero. Then its function field K(X(Γ )) is equal to C(J ′)
for some J ′ ∈ K(X(Γ )).

Lemma 2. (P1(C), J ′) is a model of Γ\H∗.

P r o o f. [6], Lemma 14.

Let GA be the adelization of an algebraic group G = GL2 defined over
Q. Put

Gp = GL2(Qp) (p a rational prime),
G∞ = GL2(R),
G∞+ = {x ∈ G∞ | det(x) > 0},
GQ+ = {x ∈ GL2(Q) | det(x) > 0}.

We define the topology of GA by taking U =
∏

p GL2(Zp)×G∞+ to be
an open subgroup of GA. Let K be an imaginary quadratic field and ξ be
an embedding of K into M2(Q). We call ξ normalized if it is defined by

a

(
z
1

)
= ξ(a)

(
z
1

)
for a ∈ K

where z is the fixed point of ξ(K×) (⊂ GQ+) in H. Observe that the em-
bedding ξ defines a continuous homomorphism of K×

A into GA+, which we
denote again by ξ. Here GA+ is the group G0G∞+ with G0 the nonar-
chimedean part of GA and K×

A is the idele group of K.
Let Z be the set of open subgroups S of GA+ containing Q×G∞+ such

that S/Q×G∞+ is compact. For S ∈ Z, we see that det(S) is open in Q×
A .

Therefore the subgroup Q× · det(S) of Q×
A corresponds to a finite abelian

extension of Q, which we write kS . Put ΓS = S ∩GQ+ for S ∈ Z. As is well
known ([19], Proposition 6.27), ΓS/Q× is a Fuchsian group of the first kind
commensurable with Γ (1)/{±1}.

Proposition 3. Let Γ ′ be a discrete subgroup of G∞+/R× commen-
surable with Q×Γ (1)/Q×, and containing Γ (N) for some N . Then Γ ′ =
ΓS/Q× for some S ∈ Z.

P r o o f. [19], Proposition 6.30.

In accordance with Proposition 3, we are able to find open compact
subgroups S corresponding to Γ0(N), Γ0(N,M), Γ1(N) and Γ 1(N). Fix
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positive integers N and M , and consider the following:

U(p) =
{(

a b
c d

)
∈ GL2(Zp)

∣∣ (
a b
c d

)
≡

(
1 0
0 1

)
(mod NZp)

}
,

U0,(p) =
{(

a b
c d

)
∈ GL2(Zp)

∣∣ c ≡ 0 (mod NZp)
}
,

U0
0,(p) =

{(
a b
c d

)
∈ GL2(Zp)

∣∣ b ≡ 0 (mod MZp), c ≡ 0 (mod NZp)
}
,

U1,(p) =
{(

a b
c d

)
∈ GL2(Zp)

∣∣ a ≡ d ≡ 1, c ≡ 0 (mod NZp)
}
,

U1
(p) =

{(
a b
c d

)
∈ GL2(Zp)

∣∣ a ≡ d ≡ 1, b ≡ 0 (mod NZp)
}
,

UN = {x = (xp) ∈ U | xp ∈ U(p) for all finite p},
U0 = {x = (xp) ∈ U | xp ∈ U0,(p) for all finite p},
U0

0 = {x = (xp) ∈ U | xp ∈ U0
0,(p) for all finite p},

U1 = {x = (xp) ∈ U | xp ∈ U1,(p) for all finite p},
U1 = {x = (xp) ∈ U | xp ∈ U1

(p) for all finite p}.

Put

S = Q×UN , S0 = Q×U0, S0
0 = Q×U0

0 , S1 = Q×U1, S1 = Q×U1.

We then have the following lemmas.

Lemma 4. (i) S0, S
0
0 ∈ Z.

(ii) kS0 = kS0
0

= Q.
(iii) ΓS0 = Q×Γ0(N) and ΓS0

0
= Q×Γ0(N,M).

P r o o f. First, we observe that Q×U0 (resp. Q×U0
0 ) is an open subgroup

of Q×U since Q×U0 (resp. Q×U0
0 ) contains Q×UN (resp. Q×Ul.c.m.{N,M}).

Hence, for (i), it is enough to show that Q×U/Q×G∞+ is compact. But, we
know that Q×U/Q×G∞+ =

∏
p GL2(Zp) is compact because each GL2(Zp)

is a profinite group. For (ii), note by class field theory that Q corresponds
to the norm group Q× ·Q×∞

A with Q×∞
A = R× ×

∏
p Z×p .

We claim that det(U0) = det(U0
0 ) = Q×∞

A . Indeed, it is obvious that
det(U0),det(U0

0 ) ⊂ Q×∞
A . Conversely, for any element (αp) ∈ Q×∞

A , take
yp =

(
1
0

0
αp

)
. Then (yp) ∈ U0, U

0
0 and det(yp) = (det yp) = (αp). Finally,

we come up with ΓS0 = Q×U0 ∩ GQ+ = Q×(U0 ∩ GQ+) = Q×Γ0(N) and
ΓS0

0
= Q×U0

0 ∩GQ+ = Q×(U0
0 ∩GQ+) = Q×Γ0(N,M).

Lemma 5. (i) S1, S
1 ∈ Z.

(ii) kS1 = kS1 = Q(ζN ) where ζN = e2πi/N .
(iii) ΓS1 = Q×Γ1(N) and ΓS1 = Q×Γ 1(N).

P r o o f. (i) follows from the same method as in Lemma 4(i). Let

VNp∞ = {α = (αp) ∈ Q×
A |α ≡ 1 (mod∗Np∞), αp ∈ Z×p for p -N}
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where p∞ denotes the infinite Q-prime. Here α ≡ 1 (mod∗Np∞) means that
each αpi

is congruent to 1 (mod pni
i Zpi

) if N = pn1
1 . . . pnr

r and αp∞ > 0.
As is well known ([15], p. 209), Q(ζN ) is the class field corresponding to
Q×VNp∞ .

Now as for (ii), it suffices to show that det(U1) = det(U1) = VNp∞ .
For (xp) ∈ U1, U

1, det(xp) ≡ 1 (mod NZp) ≡ 1 (mod pnZp) when pn ‖N .
Hence, det(U1), det(U1) ⊂ VNp∞ . Conversely, for (αp) ∈ VNp∞ , take xp =(

1
0

0
αp

)
. Since NZp = pnZp and αp ≡ 1 (mod pnZp) for pn ‖N , it is clear

that (xp) ∈ U1, U
1 and det(xp) = αp. Finally, we end up with ΓS1 =

Q×U1 ∩ GQ+ = Q×(U1 ∩ GQ+) = Q×Γ1(N) and ΓS1 = Q×U1 ∩ GQ+ =
Q×(U1 ∩GQ+) = Q×Γ 1(N).

Remark 6. Now we consider a normalized embedding ξz : K →M2(Q)
defined by a

(
z
1

)
= ξz(a)

(
z
1

)
for a ∈ K and z ∈ K ∩ H. Then z is the

fixed point of ξ(K×) in H. Let (VT , ϕT ) be a model of ΓT \H∗ for T ∈
{S0, S

0
0 , S1, S

1}. Note that, for convenience, we identify VT and ϕT with a
projective nonsingular algebraic curve VΓT

and a ΓT -invariant holomorphic
map ϕΓT

, respectively.
We see by [4] that ϕS0 can be chosen as the product of Dedekind eta

functions and VS0 = P1(C). It then follows from [19], Proposition 6.31,
that ϕS0(z) belongs to P1(Kab) for the curves X0(N) = Γ0(N)\H∗ where
Kab is the maximal abelian extension of K. Furthermore, it is true that
the Dedekind eta function η(z) has no zeros in H. Hence we conclude
that ϕS0(z) in fact belongs to Kab for z ∈ K ∩ H. On the other hand,
since

(
M
0

0
1

)−1
Γ0(N,M)

(
M
0

0
1

)
= Γ0(NM), two modular curves X0(N,M) =

Γ0(N,M)\H∗ and X0(NM) = Γ0(NM)\H∗ are isomorphic and hence the
genera of X0(N,M) are completely determined by those of X0(NM), and
vice versa.

We recall from [19], Section 6.7, the following general situation.
Let Γ ′ be another Fuchsian group of the first kind, H∗′ the union of

H and the cusps of Γ ′, and (VΓ ′ , ϕΓ ′) a model of Γ ′\H∗′. Suppose that
αΓα−1 ⊂ Γ ′ with an element α in G∞+. Then we can define a rational
map T of VΓ to VΓ ′ by T (ϕΓ (z)) = ϕΓ ′(α(z)), that is, by the following
commutative diagram:

H∗
α→ H∗′

ϕΓ↓ ↓ϕΓ ′

VΓ
T→ VΓ ′

This includes, as special cases, the following two types of maps:

Case (a): α = 1, hence Γ ⊂ Γ ′. Then T is the usual projection map.
Case (b): αΓα−1 = Γ ′. ThenT is a biregular isomorphism ofVΓ toVΓ ′ .



262 K. J. Hong and J. K. Koo

We shall apply our situation to Case (b). Take Γ = Γ0(N,M), Γ ′ =
Γ0(NM) and α=

(
M
0

0
1

)−1. Then we have T (ϕΓ0(N,M)(z))=ϕΓ0(NM)(α(z)),
which means that (P1(C), ϕΓ0(NM)(z/M)) is a model of Γ0(N,M)\H∗. In
particular, since the genera of Γ0(NM)\H∗ and Γ0(N,M)\H∗ are all zeros,
we can take ϕΓ0(NM)(z) and ϕΓ0(NM)(z/M) as Hauptmoduln. Therefore we
can construct the following class fields by making use of the Hauptmoduln of
genus zero curves X0(N). We refer to the Appendix for those Hauptmoduln.

Theorem 7. Let K be an imaginary quadratic field and let ξz be the
normalized embedding for fixed z ∈ K ∩ H. Then ϕS0(z) belongs to the
maximal abelian extension Kab of K and K(ϕS0(z)) is the class field of K
corresponding to the subgroup K× · ξ−1

z (S0) of K×
A .

P r o o f. In the case of S0, we have kS0 = Q and ΓS0 = Q×Γ0(N) by
Lemma 4(ii) and (iii). Since ϕS0 gives a model of the curve X0(N), the
assertion follows from [19], Proposition 6.33, and Remark 6.

Since
(

M
0

0
1

)
ξz/M (a)

(
M
0

0
1

)−1 = ξz(a) for a ∈ K,

K× · ξ−1
z/M (Q×U0) = K× · ξ−1

z (Q×U0
0 )

and hence we have the following corollary for Γ0(N,M).

Corollary 8. Notations being as in Theorem 7, ϕS0(z/M) is in the
maximal abelian extension Kab of K when gΓ0(N,M) = 0 and K(ϕS0(z/M))
is the class field of K corresponding to the subgroup K× · ξ−1

z (S0
0) of K×

A .

We refer to the Appendix for the Hauptmoduln of genus zero curves
X(N) (except for the case N = 5) and X1(N). Again by [19], Proposi-
tion 6.31, each Hauptmodul listed in Table 4 belongs to P1(Kab). Since the
Hauptmoduln have poles only at ∞, we see that they in fact take values
in Kab for z ∈ K ∩ H. As an analogue of Theorem 7 in the case of Γ (N)
(N = 2, 3, 4) and Γ1(N) (1 ≤ N ≤ 10 and N = 12), we get the following
theorem.

Theorem 9. Let K be an imaginary quadratic field and let ξz be the
normalized embedding for z ∈ K ∩ H. Then N(j1,N (z)) and N(jN (z)) be-
long to the maximal abelian extension Kab of K and K(N(j1,N (z)), ζN )
(resp. K(N(jN (z)), ζN )) is the class field of K corresponding to the subgroup
K× · ξ−1

z (S1) (resp. K× · ξ−1
z (S)) of K×

A .

P r o o f. As for the cases of S and S1, by Lemma 5 and [19], we have
kS = kS1 = Q(ζN ), ΓS = Q×Γ (N) and ΓS1 = Q×Γ1(N). Since N(j1,N )
(resp. N(jN )) gives a model of the curve X1(N) (resp. X(N)), the assertion
follows from [19], Proposition 6.33, and the argument mentioned above.

In particular, when N = 12 we would obtain
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Corollary 10. Notations being as in Theorem 7, K(i,
√

3, N(j1,12(z)))
is the class field of K corresponding to the subgroup K× · ξ−1

z (Q×U1) where
U1 = {x = (xp) ∈ U | xp ∈ U1,(p) for all finite p} and U1,(p) =

{(
a
c

b
d

)
∈

GL2(Zp) | a ≡ d ≡ 1, c ≡ 0 (mod 12Zp)
}
.

Since
(

N
0

0
1

)−1
Γ 1(N)

(
N
0

0
1

)
= Γ1(N), we have

K× · ξ−1
z/N (Q×U1) = K× · ξ−1

z (Q×U1).

Therefore we get the following corollary for Γ 1(N).

Corollary 11. Notations being as in Theorem 7, N(j1,N (z/N)) belongs
to the maximal abelian extension Kab of K and K(N(j1,N (z/N)), ζN ) is the
class field of K corresponding to the subgroup K× · ξ−1

z (S1) of K×
A .

4. Generation II. In view of standard results on complex multipli-
cation, we are interested in investigating whether the value j1,12(α) is a
generator for a certain full ray class field when α is the quotient of a basis
of an ideal belonging to the maximal order in an imaginary quadratic field.
To this end we are first in need of a result from complex multiplication.

Theorem 12. Let FN be the field of modular functions of level N rational
over Q(e2πi/N ), and let K be an imaginary quadratic field. Let OK be the
maximal order of K and a be an OK-ideal such that a = [z1, z2] and α =
z1/z2 ∈ H. Then the field KFN (α) generated over K by all values f(α) with
f ∈ FN and f defined at α, is the ray class field over K with conductor N .

P r o o f. [16], Ch. 10, Corollary of Theorem 2.

LetK(X(Γ ′)) be the function field of the modular curveX(Γ ′) = Γ ′\H∗.
Suppose that the genus of X(Γ ′) is zero. Let h be the width of the cusp
∞. By F we denote the field of all modular functions in K(X(Γ ′)) whose
Fourier coefficients with respect to qh belong to Q.

Lemma 13. Let K(X(Γ ′)) = C(J ′) for some J ′ ∈ K(X(Γ ′)). If J ′ ∈ F ,
then F = Q(J ′).

P r o o f. [6], Lemma 4.

Theorem 14. Q(j1,12) is the the field of all modular functions in the field
K(X1(12)) whose Fourier coefficients with respect to q are rational numbers.

P r o o f. Since j1,12 has rational Fourier coefficients, the result follows
from Lemma 13.

It follows from [19], Proposition 6.9, that

(2) FN = Q(j, f(a1,a2) | (a1, a2) ∈ N−1Z2, 6∈ Z2).
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Here j is the classical modular function of level 1 and f(a1,a2) is the Fricke
function defined by

fa(z) =
g2(ω1, ω2)g3(ω1, ω2)

∆(ω1, ω2)
℘

(
a

[
ω1

ω2

]
;ω1, ω2

)
for z = ω1/ω2 ∈ H and a = (a1, a2). We recall that

(3) f(a1,a2) = f(b1,b2) if and only if ± (a1, a2) ≡ (b1, b2) (mod Z2)

and

(4) f(a1,a2)|γ = f(a1,a2)γ for γ ∈ Γ (1),

where f(z)|γ = f(γz) for a modular function f .

Theorem 15. K(X1(12)) = C(j, f(0,t) | t ∈ 12−1Z\Z) (= C(j1,12)).

P r o o f. Observe that

K(X(1)) ⊆ K(X1(12)) ⊆ K(X(12))

where K(X(12)) is a Galois extension over K(X(1)) with Galois group
Γ (1)/Γ (12) ([18], Ch. VI, Theorem 4 or [19], p. 31). We consider the
Galois group

G = Gal(K(X(12))/C(j, f(0,t) | t ∈ 12−1Z\Z)).

For γ ∈ Γ (1)/Γ (12), let γ =
(

a b
c d

)
be its representative in Γ (1). Then by

(3) and (4),

γ ∈ G⇔ f(0,t) = f(0,t)|γ = f(0,t)γ = f(tc,td) for t ∈ 12−1Z\Z
⇔ (c, d) ≡ ±(0, 1) (mod 12)
⇔ γ ∈ Γ 1(12).

Hence we must have

G = Γ 1(12)/Γ (12) = Gal(K(X(12))/K(X1(12))),

from which we end up with K(X1(12)) = C(j, f(0,t) | t ∈ 12−1Z\Z).

Lemma 16. For z ∈ H, we get

Q(j(z), f(0,t)(z) | t ∈ 12−1Z\Z) = Q(j1,12(z)/
√

3).

P r o o f. For f ∈ K(X1(12)), we let W12(f) = f |( 0
12
−1
0

) be the action

of the Fricke involution. Since W12 =
(

0
12
−1
0

)
belongs to the normalizer of

Γ1(12) ([13]), W12 ∈ Aut(K(X1(12))). We observe that

W12(f) = f |S(12z) for S =
(

0 −1
1 0

)
.
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Hence it follows that W12(j(z)) = j(12z) and W12(f(0,t)(z)) = f(t,0)(12z).
Since j1,12(z) = θ3(2z)/θ3(6z), we derive, by (1),

j1,12(z)
∣∣
S

=
θ3(2z)
θ3(6z)

∣∣∣∣
S

=
θ3

(
− 1

z/2

)
θ3

(
− 1

z/6

)(5)

=

(
−i z

2

)1/2
θ3

(
z
2

)(
−i z

6

)1/2
θ3

(
z
6

) =
√

3/j1,12

(
z

12

)
.

We denote by F1,12 the field of modular functions in K(X1(12)) with
rational Fourier coefficients. Considering the Fourier expansions of Fricke
functions ([16], p. 66, or [19], p. 141), we know that f(t,0)(12z) has rational
Fourier coefficients for t ∈ 12−1Z\Z. Thus

Q(W12(j(z)),W12(f(0,t)(z)) | t ∈ 12−1Z\Z) ⊆ F1,12.

Moreover, we observe by Theorem 15 that

C(W12(j(z)),W12(f(0,t)(z)) | t ∈ 12−1Z\Z) = W12(K(X1(12)))
= K(X1(12)).

On the other hand, by a similar argument to [6], Lemma 5, we get

(6) F1,12 = Q(W12(j(z)),W12(f(0,t)(z)) | t ∈ 12−1Z\Z).

We then deduce by Theorem 14 and (5) that

F1,12 = Q(j1,12(z)) = Q(W12(j1,12(z)/
√

3)),

which by (6) forces

W12(Q(j(z), f(0,t)(z) | t ∈ 12−1Z\Z)) = W12(Q(j1,12(z)/
√

3)).

Therefore applying the involution W12 to the above yields the conclusion.

Lemma 17. We have

{(a1, a2) (mod Z2) | (a1, a2) ∈ 12−1Z2, 6∈ Z2} = A ∪B ∪ C

where

A =
{
(0, a1)

(
0
1
−1
x

)
(mod Z2)

∣∣ a1 ∈ 12−1Z\Z, x = 0, . . . , 11
}
,

B =
{
(0, a2)

(
1
x

0
1

)
(mod Z2)

∣∣ a2 ∈ 12−1Z\Z, x = 0, . . . , 11
}
,

C =
{
(0, a2)

(
1
y

0
1

)(
1
0
−1
1

)
(mod Z2)

∣∣ a2 ∈ 12−1Z\Z, y = 3, 4, 9, 10
}
.

P r o o f. In order to generate the ray class field of an imaginary quadratic
field K with conductor 12, we shall use Lemma 16 and the fact that

F12 = Q(j, f(a1,a2) | (a1, a2) ∈ 12−1Z2, 6∈ Z2).



266 K. J. Hong and J. K. Koo

To this end, considering lattice points (modulo 12) in a plane, divide the
set proposed in the lemma into subsets by considering elements of the form
(0, t)γ with γ ∈ SL2(Z). Observe that

A = {(a1, a1x) | a1 ∈ 12−1Z\Z, x = 0, . . . , 11},
B = {(a2x, a2) | a2 ∈ 12−1Z\Z, x = 0, . . . , 11}.

Direct computation shows that the elements not in A ∪B form a set

E = {(2, 3), (2, 9), (3, 2), (3, 4), (3, 8), (3, 10), (4, 3), (4, 6), (4, 9), (6, 4), (6, 8),
(8, 3), (8, 6), (8, 9), (9, 2), (9, 4), (9, 8), (9, 10), (10, 3), (10, 9)}.

Now we embed E into a subset whose elements are of the form (0, t)γ with
γ ∈ SL2(Z). Since (a1, a2)|T = (a1, a1 + a2) (mod 12) for T =

(
1
0

1
1

)
,

E|T = {(2, 5), (2, 11), (3, 5), (3, 7), (3, 11), (3, 1), (4, 7), (4, 10), (4, 1), (6, 10),
(6, 2), (8, 11), (8, 2), (8, 5), (9, 11), (9, 1), (9, 5), (9, 7), (10, 1), (10, 7)}.

It follows that the congruence t′y ≡ s′ (mod 12) yields y = 3, 4, 9 or 10,
when (s, t)T = (s′, t′) for (s, t) ∈ E. Thus we get

E|T ⊂ {(a2y, a2) | a2 ∈ 12−1Z\Z, y = 3, 4, 9, 10};

in other words,

E ⊂ C =
{

(0, a2)
(

1 0
y 1

)(
1 −1
0 1

) ∣∣∣∣ a2 ∈ 12−1Z\Z, y = 3, 4, 9, 10
}

which completes the proof.

Theorem 18. Let K and α be as in Theorem 12, and let K(12) denote
the ray class field over K with conductor 12. Then

K(12) = K

(
j1,12

(
−1
α+ x

)/√
3, j1,12

(
α

xα+ 1

)/√
3,

j1,12

(
α− 1

yα+ 1− y

)/√
3

∣∣∣∣x = 0, . . . , 11 and y = 3, 4, 9, 10
)
.

P r o o f. For each z ∈ H, we have

F12 = Q(j(z), f(a1,a2)(z) | (a1, a2) ∈ 12−1Z2, 6∈ Z2) by (2)

= Q(j(z), f(0,a1)|( 0
1
−1
x

) | a1 ∈ 12−1Z, 6∈ Z, x = 0, . . . , 11)

∪Q(j(z), f(0,a2)|( 1
x

0
1

) | a2 ∈ 12−1Z, 6∈ Z, x = 0, . . . , 11)

∪Q(j(z), f(0,a2)|( 1
y

0
1

)(
1
0
−1
1

) | a2 ∈ 12−1Z, 6∈ Z, y = 3, 4, 9, 10)

by Lemma 17 and (4)
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= Q
(
j1,12

(
−1
z + x

)/√
3, j1,12

(
z

xz + 1

)/√
3, j1,12

(
z − 1

yz + 1− y

)/√
3∣∣∣∣x = 0, . . . , 11 and y = 3, 4, 9, 10

)
by Lemma 16.

Therefore, the result follows from Theorem 12.

By class field theory ([19], Section 5.2, or [21], Theorem 3.6), the reci-
procity map induces an isomorphism

[·,K] : K×
A /K

×U(12)
∼→Gal(K(12)/K)

where U(12) is the subgroup of K×
A given by

U(12) = {s ∈ K×
A | sp ∈ O×p and sp ≡ 1 (mod (12)Op)

for all finite primes p}.

5. Generation III. Let K be an imaginary quadratic field, OK the
maximal order of K and a = [z1, z2] an OK-ideal with α := z1/z2 ∈ H.
Since α is an imaginary quadratic element, α satisfies an integral equation
az2 + bz + c = 0. In this section, we shall find class fields generated by
singular values j1,12(α) and j1,12(α)2 under some conditions on a and the
discriminant dK (= b2 − 4ac) of K. First, we need the following lemma
which is a modification of a statement in the proof of Theorem 3.7.5 in [1].

Lemma 19. Let f be a modular function of level 12 with rational Fourier
coefficients and (β) a principal ideal of OK relatively prime to 12. Put
β = m+ n(aα) ∈ Z + Z(aα) = OK and let Aβ be a matrix in SL2(Z) whose
image in SL2(Z/12Z) is equal to(

−bn+m −cn
anN(β)−1 mN(β)−1

)
.

Then the action of (β) on f(α) is given by

f(α)[(β),K(12)/K] = f(Aβ · α).

In Theorem 18, we generated the ray class field K(12) over K by 28
singular values of j1,12. However, whenever a is relatively prime to 12, we
now see that K(12) is simply generated by one singular value j1,12(α) and,
moreover, j0,12(α) defined below spans some ring class field.

Theorem 20. Notations being as above, let az2 + bz + c = 0 be the
equation of α such that a > 0, (a, b, c) = 1, and let j0,12(z) = j1,12(z)2 =
θ3(2z)2/θ3(6z)2. Suppose that (a, 12) = 1. Then:

(1) j0,12(α) generates the ring class field of an imaginary quadratic order
O (= Z + 12OK) with discriminant 122dK .
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(2) j1,12(α) generates the ray class field K(12) of K with conductor 12,
and the degree of K(j1,12(α)) over K is 2h(O), where h(O) is the class
number of O.

P r o o f. (1) By Theorem 1(1), j0,12(z) ∈ K(X0(12)). We observe that

[K(X1(12)) : C(j0,12(z))] = [C(j1,12(z)) : C(j0,12(z))] = 2.

Since [Γ 0(N) : Γ 1(N)] = 1
2φ(N) for N > 2, with φ the Euler phi function,

it follows that [K(X1(12)) : K(X0(12))] = [Γ 0(12) : Γ 1(12)] = 2; whence
K(X0(12)) = C(j0,12(z)). This indicates that j0,12(z) is a field generator of
a genus zero curve, and so we are able to normalize it as

N(j0,12(z)) =
4

j0,12(z)− 1
+ 1 = T12I(z),

the Thompson series of type 12I. Now the result follows from [1], Theo-
rem 3.7.5(1).

(2) Let L0 = K(j0,12(α)) and L1 = K(j1,12(α)). Then we have the
following field tower:

K ⊆ L0 ⊆ L1 ⊆ K(12).

Here the last inclusion follows from Theorem 12. For a subfield L of K(12),
let ΦL/K : IK(12) → Gal(L/K) signify the Artin map, where IK(12) =
{fractional ideal a | (a, 12OK) = 1}, which forms a group under multiplica-
tion. Then Ker(ΦK(12)/K) = PK,1(12) and

PK,1(12) ⊆ Ker(ΦL1/K) ⊆ Ker(ΦL0/K) ⊆ IK(12)

by class field theory, where PK,1(12) denotes the subgroup of IK(12) gen-
erated by the principal ideals βOK with β ∈ OK and β ≡ 1 (mod 12OK).
Since L0 is the ring class field of O = Z + 12OK , it follows from class field
theory (e.g. [3]) that

Pic(O) = I(O, 12)/P (O, 12) ∼= IK(12)/PK,Z(12) ∼= Gal(L0/K),

where the last isomorphism is induced by the Artin map ΦL0/K , and PK,Z(12)
denotes the subgroup of IK(12) generated by the principal ideals βOK with
β ∈ OK and β ≡ l (mod 12OK) for some integer l relatively prime to 12.
Therefore we get Ker(ΦL0/K) = PK,Z(12) and

PK,1(12) ⊆ Ker(ΦL1/K) ⊆ PK,Z(12).

Since PK,Z(12)/PK,1(12) is isomorphic to (Z/12Z)×/{±1}, the degree of
PK,Z(12) over PK,1(12) is 2. Thus we have either Ker(ΦL1/K) = PK,1(12)
or Ker(ΦL1/K) = PK,Z(12), and hence it remains to prove Ker(ΦL1/K) =
PK,1(12).

Now, we take two integers n and m such that 12 |n and m ≡ ±5
(mod 12). Let (β) be a principal ideal of OK prime to 12, and Aβ be
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as in Lemma 19. Then Aβ ∈ Γ0(12)\ ± Γ1(12), and since

χ3(m ·N(β)−1) =
(

3
m

)(
1

N(β)−1

)
= −1 · 1 = −1,

we get j1,12(Aβ ·α)=−j1,12(α) by Theorem 1(1). Since j1,12 never vanishes
on H, we must have j1,12(Aβ · α) 6= j1,12(α).

On the other hand, j0,12(Aβ · α) = j1,12(Aβ · α)2 = j0,12(α), from which
we get (β) ∈ Ker(ΦL0/K)\Ker(ΦL1/K). Therefore Ker(ΦL1/K) is equal to
PK,1(12), and L1 = K(12) by class field theory. The last assertion fol-
lows from the fact that j0,12(α) generates the ring class field of O and
[K(j1,12(α)) : K(j0,12(α))] = 2.

Examples. Put K = Q(
√
N) with N a square-free negative integer.

Then j0,12((1 +
√
N)/2) (resp. j0,12(

√
N)) generates the ring class field of

an imaginary quadratic order O (= Z + 12OK) with discriminant 122dK

provided that N ≡ 1 (mod 4) (resp. N ≡ 2, 3 (mod 4)) and j1,12((1 +√
N)/2) (resp. j1,12(

√
N)) generates the ray class field K(12) of K with

conductor 12 if N ≡ 1 (mod 4) (resp. N ≡ 2, 3 (mod 4)).

As for the construction of the ray class fields over imaginary quadratic
fields with conductor strictly dividing 12, we need to consider some other
conditions on a and dK , different from the previous one. We shall illustrate
this in two theorems; one excluding the cases dK = −3 and −4, the other
only with dK = −3 and −4.

Theorem 21. Notations being as above, let az2 + bz + c = 0 be the
equation of α such that a > 0 and (a, b, c) = 1, and let Kf be a ray class field
over K with conductor f. Assume that the discriminant of K is neither −4
nor −3 (i.e. K 6= Q(

√
−1),Q(

√
−3)). Then:

(1) If (a, 12) = 2, then j1,12(α) generates Kf over K with conductor f
given by

f =
{

3[2, aα]3, dK ≡ 0 (mod 4),
3[2, aα][2, aα+ 1]2, dK ≡ 1 (mod 8).

Furthermore, 2 ramifies in K when dK ≡ 0 (mod 4) and splits completely
in K if dK ≡ 1 (mod 8), and so

12OK =
{

3[2, aα]4, dK ≡ 0 (mod 4),
3[2, aα]2[2, aα+ 1]2, dK ≡ 1 (mod 8).

(2) If (a, 12) = 3, then j1,12(α) generates Kf with conductor f given by

f =

 4[3, aα], b ≡ 0 (mod 3),
4[3, aα+ 1], b ≡ 1 (mod 3),
4[3, aα+ 2], b ≡ 2 (mod 3).
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Moreover ,

12OK =

 4[3, aα]2, b ≡ 0 (mod 3),
4[3, aα][3, aα+ 1], b ≡ 1 (mod 3),
4[3, aα][3, aα+ 2], b ≡ 2 (mod 3).

(3) If (a, 12) = 4 and dK ≡ 1 (mod 8), then j1,12(α) generates Kf with
conductor f = 3[2, aα+ 1]2 and 12OK = 3[2, aα]2[2, aα+ 1]2.

(4) If (a, 12) = 6 and dK 6≡ 5 (mod 8), then j1,12(α) generates Kf with
conductor f given by

f =



[2, aα]3[3, aα], b ≡ 0 (mod 6),
[2, aα][2, aα+ 1]2[3, aα+ 1], b ≡ 1 (mod 6),
[2, aα]3[3, aα+ 2], b ≡ 2 (mod 6),
[2, aα][2, aα+ 1]2[3, aα], b ≡ 3 (mod 6),
[2, aα]3[3, aα+ 1], b ≡ 4 (mod 6),
[2, aα][2, aα+ 1]2[3, aα+ 2], b ≡ 5 (mod 6).

Moreover ,

12OK =



[2, aα]4[3, aα]2, b ≡ 0 (mod 6),
[2, aα]2[2, aα+ 1]2[3, aα][3, aα+ 1], b ≡ 1 (mod 6),
[2, aα]4[3, aα][3, aα+ 2], b ≡ 2 (mod 6),
[2, aα]2[2, aα+ 1]2[3, aα]2, b ≡ 3 (mod 6),
[2, aα]4[3, aα][3, aα+ 1], b ≡ 4 (mod 6),
[2, aα]2[2, aα+ 1]2[3, aα][3, aα+ 2], b ≡ 5 (mod 6).

(5) If (a, 12) = 12 and dK ≡ 1 (mod 8), then j1,12(α) generates Kf with
conductor f given by

f =

 [2, aα+ 1]2[3, aα], b ≡ 0 (mod 3),
[2, aα+ 1]2[3, aα+ 1], b ≡ 1 (mod 3),
[2, aα+ 1]2[3, aα+ 2], b ≡ 2 (mod 3).

Further ,

12OK =

 [2, aα]2[2, aα+ 1]2[3, aα]2, b ≡ 0 (mod 3),
[2, aα]2[2, aα+ 1]2[3, aα][3, aα+ 1], b ≡ 1 (mod 3),
[2, aα]2[2, aα+ 1]2[3, aα][3, aα+ 2], b ≡ 2 (mod 3).

P r o o f. As in Theorem 20, for a subfield L ofK(12), let ΦL/K : IK(12) →
Gal(L/K) be the Artin map. Since j1,12(α) ∈ K(12) by Theorem 12, we have
K ⊆ K(j1,12(α)) ⊆ K(12) so that

PK,1(12) = Ker(ΦK(12)/K) ⊆ Ker(ΦK(j1,12(α))/K).

Let a ∈ Ker(ΦK(j1,12(α))/K). Then ΦK(j1,12(α))/K(a) = [a,K(j1,12(α))/K]
fixes j1,12(α) and hence it fixes j(α), too. Since K(j(α)) is the Hilbert class
field ofK, IK/PK

∼= Gal(K(j(α)) /K). And the fact that [a,K(j1,12(α))/K]
is trivial on K(j(α)) implies a ∈ PK ∩ IK(12) = PK(12).
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Now we write a = βOK with β ∈ OK and (N(β), 12) = 1. Let β =
m+n(aα) ∈ Z+Z ·(aα) = OK . Considering Aβ described in Lemma 19, we
see that (β) ∈ Ker(ΦK(j1,12(α))/K) if and only if Aβ ∈ ±Γ1(12) · Γα, where
Γα = {γ ∈ SL2(Z) | γ(α) = α}. Note that Γα is nontrivial if and only if
α is equivalent to i or % = e2πi/3 under the action of SL2(Z). In view of
quadratic forms we see that Γα is nontrivial if and only if dK = −4 or −3,
that is, K = Q(

√
−1) or K = Q(

√
−3). By our assumption, however, Γα

must be trivial; hence

(β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ Aβ ∈ ±Γ1(12).

(1) Suppose that (a, 12) = 2. Then, for (β) ∈ IK(12),

(β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ Aβ ∈ ±Γ1(12)
⇔ 12 | an and −bn+m ≡ ±1 (mod 12)
⇔ 6 |n and m ∈ ±1 + bn+ 12Z since (a, 12) = 2
⇔ ±β ∈ 1 + 6[2, aα+ b]
⇔ (β) ∈ PK,1(f) with f = 6[2, aα+ b].

Therefore we have

Gal(K(j1,12(α))/K) ∼= IK(12)/PK,1(f) ∩ IK(12) ∼= IK(f)/PK,1(f),

and K(j1,12(α)) = Kf by class field theory.
We observe that [2, aα + b] is the prime ideal p of K lying above 2Z

which would be [2, aα] (resp. [2, aα + 1]) if dK ≡ 0 (mod 4) (resp. dK ≡ 1
(mod 8)). Since the polynomial X2 + bX + ac of aα is congruent to{

X2 (mod 2) if dK ≡ 0 (mod 4),
X(X + 1) (mod 2) if dK ≡ 1 (mod 8),

we see that 2 ramifies into [2, aα]2 when dK ≡ 0 (mod 4) and splits com-
pletely into [2, aα][2, aα+ 1] if dK ≡ 1 (mod 8). Note that IK(12) = IK(f)
because

f (= 6p) =
{

3[2, aα]3, dK ≡ 0 (mod 4),
3[2, aα][2, aα+ 1]2, dK ≡ 1 (mod 8)

and

12OK =
{

3[2, aα]4, dK ≡ 0 (mod 4),
3[2, aα]2[2, aα+ 1]2, dK ≡ 1 (mod 8).

(2) Assume that (a, 12) = 3. Then, in a similar manner, we find that for
(β) ∈ IK(12),

(β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ Aβ ∈ ±Γ1(12)
⇔ ±β ∈ 1 + 4[3, aα+ b]
⇔ (β) ∈ PK,1(f) with f = 4[3, aα+ b].
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Hence Ker(ΦK(j1,12(α))/K) = PK,1(f) ∩ IK(12), and so K(j1,12(α)) = Kf.

Here, we note that the prime ideal [3, aα+ b] would be [3, aα+ i] if b ≡ i
(mod 3) for i = 0, 1, 2. Since the polynomial X2+bX+ac of aα is congruent
to X2 (mod 3) if b ≡ 0 (mod 3),

X(X + 1) (mod 3) if b ≡ 1 (mod 3),
X(X + 2) (mod 3) if b ≡ 2 (mod 3),

we claim that 3 ramifies into [3, aα]2 when b ≡ 0 (mod 3) and splits com-
pletely into [3, aα][3, aα + 1] (resp. [3, aα][3, aα + 2]) when b ≡ 1 (mod 3)
(resp. b ≡ 2 (mod 3)). Observe in addition that IK(12) = IK(f) only if
dK ≡ 0 (mod 3) (i.e. b ≡ 0 (mod 3)) because

f = 4[3, aα], 12OK = 4[3, aα]2,
f = 4[3, aα+ 1], 12OK = 4[3, aα][3, aα+ 1],
f = 4[3, aα+ 2], 12OK = 4[3, aα][3, aα+ 2].

(3) Assume that (a, 12) = 4. Then, for (β) ∈ IK(12),

(β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ Aβ ∈ ±Γ1(12)
⇔ 12 | an and −bn+m ≡ ±1 (mod 12)
⇔ 3 |n and m ∈ ±1 + bn+ 12Z since (a, 12) = 4
⇔ ±β ∈ 1 + 3[4, aα+ b].

Due to dK ≡ 1 (mod 8) one can easily show that [4, aα+ b] = [2, aα+ 1]2.
Therefore, K(j1,12(α)) = Kf with f = 3[2, aα+ 1]2.

(4) Assume that (a, 12) = 6. Then, for (β) ∈ IK(12),

(β) ∈ Ker(ΦK(j1,12(α))/K)

⇔ Aβ ∈ ±Γ1(12)

⇔ ±β ∈ 1 + 2[6, aα+ b] = 1 + 2[2, aα+ b][3, aα+ b]

⇔ (β) ∈ PK,1(f) with f = 2[2, aα+ b][3, aα+ b].

We conclude that K(j1,12(α)) = Kf. Note that [6, aα+ b] is equal to

[2, aα][3, aα], b ≡ 0 (mod 6), [2, aα+ 1][3, aα+ 1], b ≡ 1 (mod 6),
[2, aα][3, aα+ 2], b ≡ 2 (mod 6), [2, aα+ 1][3, aα], b ≡ 3 (mod 6),
[2, aα][3, aα+ 1], b ≡ 4 (mod 6), [2, aα+ 1][3, aα+ 2], b ≡ 5 (mod 6).
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Since the polynomial X2 + bX + ac of aα is congruent to

X2 (mod 2), X2 (mod 3) if b ≡ 0 (mod 6),
X(X + 1) (mod 2), X(X + 1) (mod 3) if b ≡ 1 (mod 6),
X2 (mod 2), X(X + 2) (mod 3) if b ≡ 2 (mod 6),
X(X + 1) (mod 2), X2 (mod 3) if b ≡ 3 (mod 6),
X2 (mod 2), X(X + 1) (mod 3) if b ≡ 4 (mod 6),
X(X + 1) (mod 2), X(X + 2) (mod 3) if b ≡ 5 (mod 6),

we see that 2 (resp. 3) ramifies into [2, aα]2 (resp. [3, aα]2) when dK ≡ 0
(mod 6) (i.e. b ≡ 0 (mod 6)), and either 2 or 3 splits completely otherwise.
Moreover, observe that IK(12) = IK(f) only if b ≡ 0 or 3 (mod 6) because

• if b ≡ 0 (mod 6) then

f = [2, aα]3[3, aα], 12OK = [2, aα]4[3, aα]2,

• if b ≡ 1 (mod 6) then

f = [2, aα][2, aα+1]2[3, aα+1], 12OK = [2, aα]2[2, aα+1]2[3, aα][3, aα+1],

• if b ≡ 2 (mod 6) then

f = [2, aα]3[3, aα+ 2], 12OK = [2, aα]4[3, aα][3, aα+ 2],

• if b ≡ 3 (mod 6) then

f = [2, aα][2, aα+ 1]2[3, aα], 12OK = [2, aα]2[2, aα+ 1]2[3, aα]2,

• if b ≡ 4 (mod 6) then

f = [2, aα]3[3, aα+ 1], 12OK = [2, aα]4[3, aα][3, aα+ 1],

• if b ≡ 5 (mod 6) then

f = [2, aα][2, aα+1]2[3, aα+2], 12OK = [2, aα]2[2, aα+1]2[3, aα][3, aα+2].

(5) Assume that (a, 12) = 12. Then, for (β) ∈ IK(12),

(β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ Aβ ∈ ±Γ1(12)
⇔ 12 | an and −bn+m ≡ ±1 (mod 12)
⇔ m ∈ ±1 + bn+ 12Z since (a, 12) = 12
⇔ ±β ∈ 1 + [12, aα+ b] = 1 + [3, aα+ b][4, aα+ b].

Therefore K(j1,12(α)) = Kf with f = [3, aα + b][4, aα + b]. Note that the
conductor f would be [2, aα+ 1]2[3, aα], b ≡ 0 (mod 3),

[2, aα+ 1]2[3, aα+ 1], b ≡ 1 (mod 3),
[2, aα+ 1]2[3, aα+ 2], b ≡ 2 (mod 3).
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Remark 22. (1) In the cases (a, 12) = 2, 4, 6 and 12, if dK ≡ 5 (mod 8),
there is no α satisfying the hypothesis.

(2) In the cases (a, 12) = 4 and 12, we see that [4, aα + b] (= [4, aα] or
[4, aα+ 2]) does not divide 2OK if dK ≡ 0 (mod 4).

Examples. (1) Take K = Q(
√
−2) and a = [2,

√
−2]. Then dK = −8 ≡

0 (mod 4), so it follows from Theorem 21(1) that j1,12(
√
−2/2) generates

Kf over K with f = 3[2,
√
−2]3.

Take K = Q(
√
−7) and a = [2, (−1 +

√
−7)/2]. Then dK = −7 ≡ 1

(mod 8), so it follows from Theorem 21(1) that j1,12((−1 +
√
−7)/4) gener-

ates Kf with

f = 3
[
2,
−1 +

√
−7

2

][
2,

1 +
√
−7

2

]2

.

(2) Take K = Q(
√
−21) and a = [21,

√
−21]. Then dK = −4 · 21 ≡ 0

(mod 3), so it follows from Theorem 21(2) that j1,12(
√
−21/21) generates

Kf over K with f = 4[3,
√
−21].

(3) Take K = Q(
√
−6) and a = [6,

√
−6]. Then dK = −4 · 6 ≡ 0

(mod 6), so it follows from Theorem 21(4) that j1,12(
√
−6/6) generates Kf

over K with f = [2,
√
−6]3[3,

√
−6].

Take K = Q(
√
−15) and a = [6, (−3 +

√
−15)/2]. Then α = (−3 +√

−15)/12 satisfies the equation 6X2 + 3X + 1 = 0, so it follows from
Theorem 21(4) that j1,12((−3 +

√
−15)/12) generates Kf over K with

f =
[
2,

1 +
√
−15

2

][
2,
−1 +

√
−15

2

]2[
3,
−3 +

√
−15

2

]
.

In Theorem 21, we constructed ray class fields Kf with conductor f which
strictly divide 12 under the assumption K 6= Q(

√
−1),Q(

√
−3). As we saw

in the course of proof, however, a crucial point making its proof formidable
was the nontriviality of Γα when K = Q(

√
−1),Q(

√
−3). We now give other

descriptions for spanning Kf in these cases by a thorough analysis of Γα.

Theorem 23. Notations being as in Theorem 21 except for the discrim-
inant , we have the following assertions:

(1) If (a, 12) = 2, then j1,12(α) generates Q(
√
−1)f over Q(

√
−1) with

conductor f = 3[2, aα]3. In this case, 2 ramifies in Q(
√
−1) as [2, aα]2, and

so we have 12OK = 3[2, aα]4.
(2) If (a, 12) = 3, then j1,12(α) generates Q(

√
−3)f over Q(

√
−3) with

conductor f = 4[3, aα]. Furthermore, 3 ramifies in Q(
√
−3) as [3, aα]2, and

hence 12OK = 4[3, aα]2.

Remark 24. (1) In the case (a, 12) = 2 and K = Q(
√
−3), we see that

there is no α satisfying the hypothesis. For, otherwise, b2−4ac = −3 implies
that b2 ≡ 5 (mod 8), which is absurd.
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(2) In the case (a, 12) = 3 and K = Q(
√
−1), no such α exists. Indeed,

otherwise, b2−4ac = −4 implies that b2 ≡ 8 (mod 12), which is impossible,
too.

(3) In a similar way, in the cases (a, 12) = 4, 6 and 12, we see that there
exists no such α for both fields Q(

√
−1) and Q(

√
−3).

P r o o f (of Theorem 23). (1) The arguments from the beginning to the
nontriviality of Γα are exactly the same as those in Theorem 21. Suppose
that α is equivalent to i under SL2(Z), in which case dK = −4. Put f =
6[2, aα]. Then we have, for (β) ∈ IK(12),

(β) ∈ PK,1(f) ⇔ ± β ≡ 1 (mod f) or ± βi ≡ 1 (mod f)
⇔ ± β ∈ 1 + 6[2, aα] or

6
∣∣ (
−b
2
n+m

)
and

b

2

(
m− b

2
n

)
− n ≡ ±1 (mod 12).

Here, the second statement is due to the fact that aα = −b/2 + i and
b2 − 4ac = −4. On the other hand,

(β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ Aβ ∈ ±Γ1(12) · Γα

⇔ Aβ ∈ ±Γ1(12) or
Aβ ·

(
γ−1

(
0
1
−1
0

)
γ
)
∈ ±Γ1(12),

where α = γ−1i for some γ =
(

p
r

q
s

)
∈ SL2(Z). Since α is the root of the

polynomial [1, 0, 1] ◦
(

p
r

q
s

)(
z
1

)
= (p2 + r2)z2 + 2(pq+ rs)z+ (q2 + s2), we get

a = p2 + r2, b = 2(pq + rs) and c = q2 + s2. Thus we get

γ−1

(
0 −1
1 0

)
γ =

(
−(pq + rs) −(q2 + s2)
p2 + r2 pq + rs

)
=

(
−b/2 −c
a b/2

)
.

Therefore,

Aβ ·
(
γ−1

(
0 −1
1 0

)
γ

)
=

(
−bn+m −cn
anN(β)−1 mN(β)−1

) (
−b/2 −c
a b/2

)
=

(
b2n/2− bm/2− acn ∗

(−abn/2 + am)N(β)−1 ∗

)
,

where
b2n

2
− bm

2
− acn = − b

2

(
m− b

2
n

)
− n.

Then we have

Aβ ∈ ±Γ1(12) or Aβ ·
(
γ−1

(
0
1
−1
0

)
γ
)
∈ ±Γ1(12)

⇔ 12 | an, m ∈ ±1 + bn+ 12Z, or

12
∣∣ a(m− b

2
n

)
and − b

2

(
m− b

2
n

)
− n ≡ ±1 (mod 12)
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⇔ 6 |n, ±β ∈ 1 + n(aα+ b) + 12Z, or

6
∣∣ (
m− b

2
n

)
and − b

2

(
m− b

2
n

)
− n ≡ ±1 (mod 12)

⇔ ± β ∈ 1 + 6[2, aα+ b] = 1 + 6[2, aα], or

6
∣∣ (
m− b

2
n

)
and

b

2

(
m− b

2
n

)
− n ≡ ±1 (mod 12).

Consequently, we see that (β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ (β) ∈ PK,1(f) ∩
IK(12), and the result follows.

(2) Assume that α is equivalent to % under SL2(Z), in which case dK =
−3. Since Γ% =

{
±I2,±

(
0
1
−1
1

)
,±

(
1
−1

1
0

)}
, we see that

Γα =
{
± I2,±γ−1

(
0 −1
1 1

)
γ,±γ−1

(
1 1
−1 0

)
γ

}
for some γ ∈ SL2(Z). Put f = 4[3, aα]. Then we have, for (β) ∈ IK(12),

(β) ∈ PK,1(f) ⇔ ± β ≡ 1 (mod f) or ± β% ≡ 1 (mod f)
or ± β%2 ≡ 1 (mod f)

⇔ ± β ∈ 1 + 4[3, aα], or

4
∣∣ (

b+ 1
2

n−m

)
and

b− 1
2

m− b2 + 3
4

n ≡ ±1 (mod 12), or

4
∣∣ (

b− 1
2

n−m

)
and − b+ 1

2
m+

b2 + 3
4

n ≡ ±1 (mod 12).

Here, the second argument is due to the fact that % = aα + (b − 1)/2,
%2 = −aα− (b+ 1)/2 and b2 − 4ac = −3. On the other hand,

(β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ Aβ ∈ ±Γ1(12) · Γα

⇔ Aβ ∈ ±Γ1(12) or Aβ ·
(
γ−1

(
1
−1

1
0

)
γ
)
∈ ±Γ1(12)

or Aβ ·
(
γ−1

(
0
1
−1
1

)
γ
)
∈ ±Γ1(12),

where α = γ−1% for some γ =
(

p
r

q
s

)
∈ SL2(Z). Since α is the root of

the polynomial [1, 1, 1] ◦
(

p
r

q
s

)(
z
1

)
= (p2 + pr + r2)z2 + (2pq + ps + rq +

2rs)z + (q2 + qs + s2), we get a = p2 + pr + r2, b = 2pq + ps + rq + 2rs
(= 2(pq + ps+ rs)− 1 = 2(pq + rq + rs) + 1) and c = q2 + qs+ s2. Thus

γ−1

(
1 1
−1 0

)
γ =

(
ps+ pq + rs q2 + sq + s2

−(p2 + rp+ r2) −(qr + pq + rs)

)
=

(
(b+ 1)/2 c
−a −(b− 1)/2

)
,
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and

Aβ ·
(
γ−1

(
1 1
−1 0

)
γ

)
=

(
−bn+m −cn
anN(β)−1 mN(β)−1

) (
(b+ 1)/2 c
−a −(b− 1)/2

)
=

( b+1
2 (−bn+m) + acn ∗(
b+1
2 n−m

)
aN(β)−1 ∗

)
,

where
b+ 1

2
(−bn+m) + acn = −b

(
b+ 1

2
n−m

)
− b− 1

2
m+

b2 + 3
4

n.

In the same manner, we have

γ−1

(
0 −1
1 1

)
γ =

(
−(pq + rs+ rq) −(q2 + sq + s2)
p2 + rp+ r2 pq + ps+ rs

)
=

(
−(b− 1)/2 −c

a (b+ 1)/2

)
and

Aβ ·
(
γ−1

(
0 −1
1 1

)
γ

)
=

(− b−1
2 (−bn+m)− acn ∗(

− b−1
2 n+m

)
aN(β)−1 ∗

)
,

where

−b− 1
2

(−bn+m)− acn = b

(
b− 1

2
n−m

)
+
b+ 1

2
m− b2 + 3

4
n.

So we get

Aβ ∈ ±Γ1(12) or Aβ ·
(
γ−1

(
1 1
−1 0

)
γ

)
∈ ±Γ1(12)

or Aβ ·
(
γ−1

(
0 −1
1 1

)
γ

)
∈ ±Γ1(12)

⇔ 12
∣∣ an, m ∈ ±1 + bn+ 12Z, or 12

∣∣ a(b+ 1
2

n−m

)
and

− b
(
b+ 1

2
n−m

)
− b− 1

2
m+

b2 + 3
4

n ≡ ±1 (mod 12), or

12
∣∣ a(−b− 1

2
n+m

)
and b

(
b− 1

2
n−m

)
+
b+ 1

2
m− b2 + 3

4
n

≡ ±1 (mod 12)

⇔ 4
∣∣n,m ∈ ±1 + bn+ 12Z, or 4

∣∣ (
b+ 1

2
n−m

)
and
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− b
(
b+ 1

2
n−m

)
− b− 1

2
m+

b2 + 3
4

n ≡ ±1 (mod 12), or

4
∣∣ (
−b− 1

2
n+m

)
and b

(
b− 1

2
n−m

)
+
b+ 1

2
m− b2 + 3

4
n

≡ ±1 (mod 12)
⇔ ± β ∈ 1 + 4[3, aα+ b] = 1 + 4[3, aα], or

4
∣∣ (

b+ 1
2

n−m

)
and − b− 1

2
m+

b2 + 3
4

n ≡ ±1 (mod 12), or

4
∣∣ (
−b− 1

2
n+m

)
and

b+ 1
2

m− b2 + 3
4

n ≡ ±1 (mod 12).

Therefore, we see that

(β) ∈ Ker(ΦK(j1,12(α))/K) ⇔ (β) ∈ PK,1(f) ∩ IK(12),

and the theorem follows.

Examples. (1) Take K = Q(
√
−1) and a = [1, (1 +

√
−1)/2]. Then

α = (1+
√
−1)/2 satisfies 2X2−2X+1 = 0. It follows from Theorem 23(1)

that j1,12((1 +
√
−1)/2) generates Q(

√
−1)f over Q(

√
−1) with conductor

f = 3[2, 1 +
√
−1]3.

(2) Take K = Q(
√
−3) and a = [3, (−3 +

√
−3)/2]. Then α = (−3 +√

−3)/6 satisfies 3X2 + 3X + 1 = 0. We are certain by Theorem 23(2)
that j1,12((−3 +

√
−3)/6) generates Q(

√
−3)f over Q(

√
−3) with conductor

f = 4[3, (−3 +
√
−3)/2].

Table 1. Conductor f of K(j1,12(α))
(× means that there is no α satisfying the condition)

(a, 12) = 1 (a, 12) = 2 (a, 12) = 4

dK ≡ 0 (mod 4) (12) 3[2, aα]3 ×

dK ≡ 1 (mod 8) (12) 3[2, aα][2, aα + 1]2 3[2, aα + 1]2

dK ≡ 5 (mod 8) (12) × ×

(a, 12) = 3 (a, 12) = 12, (a, 12) = 12,
dK ≡ 1 (mod 8) dK 6≡ 1 (mod 8)

b ≡ 0 (mod 3) 4[3, aα] [2, aα + 1]2[3, aα] ×

b ≡ 1 (mod 3) 4[3, aα + 1] [2, aα + 1]2[3, aα + 1] ×

b ≡ 2 (mod 3) 4[3, aα + 2] [2, aα + 1]2[3, aα + 2] ×
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Table 1 (cont.)

(a, 12) = 6, (a, 12) = 6,
dK 6≡ 5 (mod 8) dK ≡ 5 (mod 8)

b ≡ 0 (mod 6) [2, aα]3[3, aα] ×

b ≡ 1 (mod 6) [2, aα][2, aα + 1]2[3, aα + 1] ×

b ≡ 2 (mod 6) [2, aα]3[3, aα + 2] ×

b ≡ 3 (mod 6) [2, aα][2, aα + 1]2[3, aα] ×

b ≡ 4 (mod 6) [2, aα]3[3, aα + 1] ×

b ≡ 5 (mod 6) [2, aα][2, aα + 1]2[3, aα + 2] ×

6. Explicit calculation of minimal polynomials. In this section,
we will find an explicit formula for the conjugates of j1,12(α) permitting the
numerical calculation of its minimal polynomial. Since t(α) := N(j1,12(α))
is an algebraic integer ([11], Corollary 7), it is more convenient to work
with t than with j1,12 in realizing its minimal polynomial. Let QdK

(N) be
the set of primitive quadratic forms [a′, b′, c′] having discriminant dK with
conditions a′ > 0 and (a′, N) = 1. For γ ∈ Γ0(N) and Q ∈ QdK

(N),
Q ◦ γ again belongs to QdK

(N). Hence the quotients QdK
(N)/Γ0(N) and

QdK
(N)/Γ1(N) are well defined.

Theorem 25. With K, a and α as before, let az2 + bz + c = 0 be the
equation of α such that a > 0 and (a, b, c) = 1. Suppose that (a, 12) = 1.
Then:

(1) |QdK
(12)/Γ1(12)| = 2h(O), where O = Z + 12OK and h(O) denotes

the class number of O.
(2) Let {Qi}2h(O)

i=1 be a complete set of representatives for QdK
(12)/Γ1(12).

Set

f(X) =
2h(O)∏
i=1

(X − t(τQi
)).

Then f(X) is the minimal polynomial of t(α) over K. Here, τQi
denotes

the root of the equation Qi(z, 1) = 0 in H. Moreover , f(X) ∈ Z[X].

P r o o f. First, we recall from [1], Proposition 4.1, that there is a one-to-
one correspondence between QdK

(12)/Γ0(12) and IK(12)/PK,Z(12), which
maps [a, b, c] ∈ QdK

(12)/Γ0(12) to [a, (−b +
√
dK)/2] ∈ IK(12)/PK,Z(12).

Hence the cardinality of QdK
(12)/Γ0(12) is equal to h(O) because

IK(12)/PK,Z(12) ∼= Gal(L/K),

where L is the ring class field of O = Z + 12OK over K.
Now let π : QdK

(12)/Γ1(12) → QdK
(12)/Γ0(12) be the natural projec-

tion. Choose an element γ in Γ0(12)\±Γ1(12), and consider the decomposi-
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tion Γ 0(12) = Γ 1(12)∪ γΓ 1(12) as transformation groups. It can be easily
shown that π−1(Q) = {Q,Q ◦ γ} for each Q ∈ QdK

(12)/Γ0(12). We claim
that Q cannot be equivalent to Q ◦ γ under Γ1(12). Indeed, if Q ∼ Q ◦ γ
under Γ1(12), then Q = Q◦γ′ for some γ′ ∈ Γ0(12)\±Γ1(12). Let τQ (∈ H)
be the root of Q(z, 1) = 0. Then γ′−1τQ is the root of Q ◦ γ′ in H and it
must be equal to τQ. On the other hand, we see that Γ0(12) has no elliptic
element ([19], Proposition 1.43). Thus γ′ turns out to be trivial, which is a
contradiction. This proves (1).

We note that the order Oa of an OK-ideal a is OK itself. Since Oa =
OK =[1, aα], b2− 4ac= dK< 0, (a, 12) = 1 and (a, b, c) = 1, [a, b, c] belongs
to QdK

(12). Hence t(α) = t(τQi
) for some i. So f(X) certainly has t(α) as

a root. Now we claim that the conjugate of t(α) over K must be of the form
t(τ ′), where τ ′ is a root of a quadratic form [a′, b′, c′] ∈ QdK

(12). Indeed, let
σ be an embedding of K(12) over K. Then there exists an ideal a ∈ IK(12)
such that σ = [a,K(12)/K]. Since t has rational coefficients, we get

t(α)σ = t(α)[a,K(12)/K] = t(A · α)

for some A ∈ GQ+ ([1], (3.7.3)). Since T12I = N(j0,12) is a rational function
of t, it follows that T σ

12I = T12I(τ ′), where τ ′ = A · α. Define disc(τ ′) =
discO[1,τ ′] = b′2−4a′c′, where a′τ ′2+b′τ ′+c′ = 0, a′ > 0 and (a′, b′, c′) = 1.
Assume that A =

(
p
r

q
s

)
∈M2(Z) with (p, q, r, s) = 1. Put disc(τ ′) = m2dK .

Now, by Theorem 3.7.5(1) of [1], K(T12I(τ ′)) is the ring class field of an
order O′ = Z + fOK , where f = m · 12/(a′, 12). On the other hand,
K(T12I(α)) is the ring class field of O = Z + 12OK . Since T12I(τ ′) is a
conjugate of T12I(α), the two fields K(T12I(τ ′)) and K(T12I(α)) coincide,
so that m = (a′, 12). Let Aι =

(
s
−r

−q
p

)
be the main involution of A and

Q ◦ Aι(z, 1) = a′′z2 + b′′z + c′′, where Q = [a, b, c]. Since τ ′ = A · α is
a root of the polynomial Q ◦ Aι(z, 1) and a′′ is positive, it follows that
Q ◦ Aι(z, 1)/(a′′, b′′, c′′) = a′z2 + b′z + c′. By taking discriminants on both
sides, we get det(A)2 ·dK = (a′′, b′′, c′′)2 ·m2 ·dK , so that m divides det(A).
But (N(a), 12) = 1 implies that (det(ξα(s−1)), 12) = 1, where s is an idele
corresponding to a. Thus (det(A), 12) = 1 and so (m, 12) = 1. Since m =
(a′, 12), both m and (a′, 12) must be 1. This shows that [a′, b′, c′] ∈ QdK

(12)
and t(τ ′) = t(τQj

) for some j. Since |QdK
(12)/Γ1(12)| = 2h(O) and there

are exactly 2h(O) conjugates of t(α) (Theorem 20(2)), the first part of the
assertion (2) is proved.

For the second part of (2), let t(z) = q−1 +
∑

n≥1Hnq
n (Hn ∈ Z) be the

Fourier expansion of t. Write τQ = x+ iy ∈ H and consider

t(τQ) = e−2πi(x+iy)+
∑
n≥1

Hne2πin(x+iy) =e−2πi(−x+iy)+
∑
n≥1

Hne
2πin(−x+iy)

= t(−x+ iy) = t(τQ),
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where Q is defined to be [a,−b, c] when Q = [a, b, c]. Hence the complex
conjugate fixes the roots of f(X) and so f(X) ∈ R[X]. But, since t(α)
is an algebraic integer and K is an imaginary quadratic field, f(X) lies in
(R ∩ OK)[X] = Z[X].

Example. Take K = Q(
√
−1) and a = [1,

√
−1] = OK . Then the

degree of K(j1,12(
√
−1)) over K is 2h(Z + 12OK) = 16. Observe that

QdK
(12)/Γ0(12) = {[1, 0, 1], [5, 4, 1], [5, 6, 2], [17, 8, 1],

[17,−8, 1], [13, 10, 2], [37, 12, 1], [25, 14, 2]}.
For any γ ∈ Γ0(12)\ ± Γ1(12), we have

QdK
(12)/Γ1(12) = {Q,Q ◦ γ | Q ∈ QdK

(12)/Γ0(12)}.
Now Theorem 25(2) permits an explicit calculation of the minimal polyno-
mial of t(

√
−1) = N(j1,12(

√
−1)). In fact, by approximating t(τQi

) with the
aid of computer, we can determine the coefficients of f(X) =

∏
i(X−t(τQi

))
because we already know that f(X) is in Z[X]. Taking the representatives
of QdK

(12)/Γ0(12) as above and γ =
(

7
12

4
7

)
∈ Γ0(12)\± Γ1(12), we see that

the minimal polynomial of t(
√
−1) is

X16 − 520X15 − 8184X14 − 59840X13 − 266800X12 − 813984X11

− 1810976X10 − 3051904X9 − 3978144X8 − 4039552X7 − 317504X6

− 1886208X5 − 803584X4 − 218624X3 − 26112X2 + 2048X + 256.

Theorem 26. Let K, a and α be as in Theorem 25. Assume that (a, 12)=
2 and dK ≡ 0 (mod 4). Let Q(2)

dK
= {[a′, b′, c′] ∈ QdK

| (a′, 12) = 2},
where QdK

is the set of positive definite primitive quadratic forms having
discriminant dK . Then the quotient Q(2)

dK
/Γ1(12) is well defined and its

cardinality is equal to the class number h(O) of the order O = Z + 12OK .
Let {Qi}h(O)

i=1 be a complete set of representatives for Q(2)
dK
/Γ1(12) and put

f(X) =
∏h(O)

i=1 (X − t(τQi)). Then f(X) is the minimal polynomial of t(α)
over K and lies in Z[X].

P r o o f. We first construct a bijection between Q(2)
dK
/Γ0(12) and QdK

(6)/

Γ0(6). Define φ : Q(2)
dK
/Γ0(12) → QdK

(6)/Γ0(6) by sending a class of
[a′, b′, c′] to that of [a′/2, b′, 2c′]. Observe that φ sends the class of [a′, b′, c′]◦(

p
r

q
s

)
(with

(
p
r

q
s

)
∈ Γ0(12)) to the class of [a′/2, b′, 2c′] ◦

(
p

r/2
2q
s

)
, where(

p
r/2

2q
s

)
lies in Γ0(6). Thus φ is a well defined map. Conversely, we

define a map ψ : QdK
(6)/Γ0(6) → Q(2)

dK
/Γ0(12) as follows: we observe

that any class in QdK
(6)/Γ0(6) contains a form [a′′, b′′, c′′] with c′′ even.

In fact, if [a′′, b′′, c′′] is a form in QdK
(6) with c′′ odd, then we consider

[a′′, b′′, c′′] ◦
(

7
6

1
1

)
= [∗, ∗, a′′ + b′′ + c′′]. Since dK = b′′2 − 4a′′c′′ ≡ 0
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(mod 4), b′′ must be even. The fact that both a′′ and c′′ are odd im-
plies that a′′ + b′′ + c′′ is even, as desired. For such a [a′′, b′′, c′′], we define
ψ([a′′, b′′, c′′]) = [2a′′, b′′, c′′/2]. For

(
u
w

v
x

)
∈ Γ0(6), let [a′′, b′′, c′′] ◦

(
u
w

v
x

)
=

[∗, ∗, a′′v2 + b′′vx + c′′x2] have a′′v2 + b′′vx + c′′x2 even. Then the fact
that a′′ is odd and b′′, c′′ are even implies that v should be even. Now ψ
maps [a′′, b′′, c′′]◦

(
u
w

v
x

)
to [2a′′, b′′, c′′/2]◦

(
u
2w

v/2
x

)
, where

(
u
2w

v/2
x

)
∈ Γ0(12).

Hence ψ is also well defined. Further, φ and ψ are inverses of each other by
construction. Thus

|Q(2)
dK
/Γ0(12)| = |QdK

(6)/Γ0(6)| = h(Z + 6OK) = h(Z + 12OK)/2.

Now let π : Q(2)
dK
/Γ1(12) → Q(2)

dK
/Γ0(12) be the natural projection. Then it

can be easily seen that |π−1(Q)| = 2 for each Q ∈ Q(2)
dK
/Γ0(12). This proves

the first assertion.
For the second, we see that f(X) has t(α) as a root due to the conditions

on a, b, c and dK . If we proceed in a similar manner as in Theorem 25(2), it
can be shown that the conjugates of t(α) over K must have the form t(τ ′)
with τ ′ being a root of [a′, b′, c′] ∈ Q(2)

dK
. Thus t(τ ′) = t(τQj ) for some j.

At this stage, we need to know the field degree of K(t(α)) over K. By [1],
Theorem 3.7.5(i), K(T12I(α)) is the ring class field of order Z +6OK . Since
[K(t(α)) : K] = 2h(Z + 6OK) = h(Z + 12OK), each t(τQj

) gives rise to all
the conjugates of t(α). Finally, the proof of the fact that f(X) ∈ Z[X] is
completely the same as that in Theorem 25(2).

Examples. (1) Take K = Q(
√
−1) and a = [2, 1 +

√
−1]. Then the

degree of K(j1,12((1 +
√
−1)/2)) over K is h(Z + 12OK) = 8. Observe that

Q(2)
dK
/Γ0(12) = {[2,−2, 1], [26, 10, 1], [10, 14, 5], [10,−14, 5]}.

Taking the representatives of Q(2)
dK
/Γ0(12) in the above and γ =

(
7
12

4
7

)
in

Γ0(12)\ ± Γ1(12), we come up with the following minimal polynomial of
t((1 +

√
−1)/2)

X8 + 28X7 + 124X6 + 304X5 + 448X4 + 340X3 + 208X2 + 64X + 16.

(2) TakeK=Q(
√
−2) and a=[2,

√
−2]. Then the degree of j1,12(

√
−2/2)

over K is h(Z + 12OK) = 8. Observe that

Q(2)
dK
/Γ0(12) = {[2, 0, 1], [22,−28, 9], [86, 32, 3], [134, 40, 3]}.

Taking the representatives of Q(2)
dK
/Γ0(12) in the above and γ =

(
7
12

4
7

)
in

Γ0(12)\± Γ1(12), we come up with the following minimal polynomial of
t(
√
−2/2):

X8 − 80X7 − 416X6 − 992X5 − 1280X4 − 896X3 − 224X2 + 64X + 16.

Theorem 27. Notations being as in Theorem 26, assume that (a, 12) = 2
and dK ≡ 1 (mod 8). Then:
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(1) |QdK
/Γ1(12)| = 2h(O), where O = Z + 12OK .

(2) g(X) :=
∏2h(O)

i=1 (X − t(τQi)) has t(α) as a root and lies in Z[X]. Let
f(X) ∈ K[X] be the monic irreducible factor of g(X) having t(α) as a root.
Then f(X) is the minimal polynomial of t(α) over K and lies in OK [X].

P r o o f. (1) We define φ : Q(2)
dK
/Γ0(12) → QdK

(6)/Γ0(6, 2) by sending
the class of [a′, b′, c′] to that of [a′/2, b′, 2c′]. Observe that φ sends the class
of [a′, b′, c′] ◦

(
p
r

q
s

)
(with

(
p
r

q
s

)
∈ Γ0(12)) to that of [a′/2, b′, 2c′] ◦

(
p

r/2
2q
s

)
,

where
(

p
r/2

2q
s

)
lies in Γ0(6, 2). Thus φ is a well defined map. Conversely,

we define ψ : QdK
(6)/Γ0(6, 2) → Q(2)

dK
/Γ0(12) as follows: we note that, for

any class [a′′, b′′, c′′] in QdK
(6)/Γ0(6, 2), c′′ is always even because a′′ is odd

and dK = b′′2 − 4a′′c′′ ≡ 1 (mod 8). Now ψ sends [a′′, b′′, c′′] ◦
(

u
w

v
x

)
to

[2a′′, b′′, c′′/2] ◦
(

u
2w

v/2
x

)
, where

(
u
2w

v/2
x

)
∈ Γ0(12). Hence ψ is also well

defined. Moreover, φ and ψ are inverses of each other. Thus

|Q(2)
dK
/Γ0(12)| = |QdK

(6)/Γ0(6, 2)| = 2|QdK
(6)/Γ0(6)| = h(O).

This implies that |Q(2)
dK
/Γ1(12)| = 2h(O), which proves (1).

(2) The assertion g(t(α)) = 0 and g(X) ∈ Z[X] can be proved by the
same method as in Theorem 26. The remaining assertions are obvious.

Example. Take K = Q(
√
−7) and a = [2, (−1 +

√
−7)/2]. The degree

of K(j1,12((−1 +
√
−7)/4)) over K is h(Z + 12OK) = 8. Observe that

Q(2)
dK
/Γ0(12) = {[2, 1, 1], [2,−1, 1], [22, 13, 2], [22,−13, 2],

[14, 21, 8], [14,−21, 8], [106, 29, 2], [106,−29, 2]}.
Then we have an irreducible polynomial over Z,

g(X) = X16 + 8X15 + 4104X14 + 32656X13 + 138848X12 + 401328X11

+ 866800X10 + 1464128X9 + 1980720X8 + 2173760X7

+ 1946944X6 + 1423872X5 + 843008X4 + 394240X3 + 138240X2

+ 32768X + 4096,

which has t(α) as a root. However, since the degree of K(t((−1+
√
−7)/4))

over K is 8, we must factor g(X) into two polynomials in OK [X] and one
of them is the minimal polynomial of t(α). Indeed, we come up with the
following minimal polynomial of t(α) over K:

X8 + (4− 24
√
−7)X7 + (28− 96

√
−7)X6 + (88− 216

√
−7)X5

+ (136− 312
√
−7)X4 + (88− 312

√
−7)X3 − (8 + 216

√
−7)X2

− (32 + 96
√
−7)X − (8 + 24

√
−7).

Lastly, for more practical and overall calculation of minimal polynomials,
we first need the following lemma.
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Lemma 28. For each even integer N ≥ 4, let

γ1 =
(

1 0
0 1

)
, γ2 =

(
1 0
1 1

)
, γn+1 =

(
n+ 1 1
n 1

)
(2 ≤ n ≤ N − 1)

and

δm =
(

2m+ 1 4m+ 1
1 2

)
(1 ≤ m ≤ N/2− 1).

Then the set {γ1, . . . , γN , δ1, . . . , δN/2−1} is a subset of representatives for
Γ (1)/Γ 0(N).

P r o o f. First, we check that γ−1
i γj 6∈ Γ0(N) for distinct i and j. We

have

γ−1
2 γn+1 =

(
n+ 1 1
−1 0

)
6∈Γ0(N) and γ−1

m+1γn+1 =
(

1 0
n−m 1

)
∈Γ0(N)

if and only if n = m because 2 ≤ n,m ≤ N − 1. And γ−1
2 δm =

( ∗
−2m

∗
∗
)
6∈

Γ0(N) since −N + 2 ≤ −2m ≤ −2, and δ−1
m δn =

( ∗
2(m−n)

∗
∗
)
∈ Γ0(N) if and

only if m = n owing to the fact that −(N −4) ≤ 2(m−n) ≤ N −4. Finally,
we get γ−1

n+1δm =
( ∗
−2mn+1

∗
∗
)
6∈ Γ0(N) because −2mn+1 is an odd integer.

This proves the lemma.

For our case N = 12,

γ1 =
(

1 0
0 1

)
, γ2 =

(
1 0
1 1

)
, γn+1 =

(
n+ 1 1
n 1

)
(2 ≤ n ≤ 11)

and

δm =
(

2m+ 1 4m+ 1
1 2

)
(1 ≤ m ≤ 5)

constitute a part of the set of representatives for Γ (1)/Γ 0(12).
Then from a direct computation we can show that

γ13 =
(

1 −1
3 −2

)
, γ14 =

(
7 2
3 1

)
, γ15 =

(
1 1
4 5

)
, γ16 =

(
2 −1
5 −2

)
,

γ17 =
(

4 1
7 2

)
, γ18 =

(
1 1
10 11

)
, γ19 =

(
2 −1
1 0

)
together with {γ1, . . . , γ12, δ1, . . . , δ5} form a complete set of representa-
tives for Γ (1)/Γ 0(12). Define S = {γ1, . . . , γ19, δ1, . . . , δ5}. Since

(
7
12

4
7

)
∈

Γ0(12)\ ± Γ1(12), we see that S′ = S ∪ S
(

7
12

4
7

)
is a complete set of repre-

sentatives for Γ (1)/Γ 1(12) as desired.

Theorem 29. With K and α as before, let f(X) be the minimal polyno-
mial of t(α) over K and az2 + bz+ c = 0 the equation of α such that a > 0
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and (a, b, c) = 1. Let QdK
/Γ (1) = {Qj}hK

j=1 and Γ (1)/Γ 1(12) = {γk}48k=1

with γk ∈ S′, where hK denotes the class number of K. Define

g(X) =
hK∏
j=1

48∏
k=1

(X − t(γ−1
k τQj

)).

Then:

(1) g(X) lies in Z[X] and is divisible by f(X).
(2) f(X) lies in OK [X]\R[X] if (a, 12) = 2, 4, 12 and dK ≡ 1 (mod 8),

(a, 12) = 3 and b 6≡ 0 (mod 3),
(a, 12) = 6 and b 6≡ 0 (mod 6)

and lies in Z[X] if 
(a, 12) = 1,
(a, 12) = 2 and dK ≡ 0 (mod 4),
(a, 12) = 3 and b ≡ 0 (mod 3),
(a, 12) = 6 and b ≡ 0 (mod 6).

(3) g(X) decomposes in the following way :

f1(X)3f3(X)3 if dK = −3,

f1(X)2f2(X)2 if dK = −4,

f1(X)n1(f2(X)f2(X))n2(f3(X)f3(X))n3(f4(X)f4(X))n4

× (f6(X)f6(X))n6(f12(X)f12(X))n12

if dK≡1 (mod 8), dK≡ ±1 (mod 12),

f1(X)f2(X)f2(X)f4(X)f4(X) if dK≡1 (mod 8), dK≡ ±5 (mod 12),

f1(X)f2(X)f2(X)f3(X)f4(X)f4(X)f6(X)f6(X)f12(X)f12(X)

if dK ≡ 1 (mod 8), dK ≡ 0 (mod 3),

f1(X)f3(X)f3(X) if dK≡5 (mod 8), dK≡ ±1 (mod 12),

f1(X) if dK≡5 (mod 8), dK≡ ±5 (mod 12),

f1(X)f3(X) if dK ≡ 5 (mod 8), dK ≡ 0 (mod 3),

f1(X)f2(X)f3(X)f6(X) if dK ≡ 0 (mod 4), dK ≡ 0 (mod 3),

f1(X)f2(X)f3(X)f3(X)f6(X)f6(X)
if dK ≡ 0 (mod 4), dK ≡ 1 (mod 3),

f1(X)f2(X) if dK ≡ 0 (mod 4), dK ≡ 2 (mod 3),



286 K. J. Hong and J. K. Koo

where fi(X) (i = 1, 2, 3, 4, 6, 12) stands for the minimal polynomial of t(α)
over K with (a, 12) = i, and fi(X) the complex conjugation of fi(X). In
the third case, each nj ≥ 1 and

8(n1 + n2 + n3 + n4) + 4(n6 + n12) = 48.

P r o o f. (1) Let π : QdK
/Γ1(12) → QdK

/Γ (1) be the natural projection.
Then for each Qj ∈ QdK

/Γ (1), π−1(Qj) = {Qj ◦γk | k = 1, . . . , 48}. Hence,
[a, b, c] is equivalent under Γ1(12) to Qj ◦γk for some j and k because [a, b, c]
belongs to QdK

. Since t(α) = t(γ−1
k τQj

), g(X) certainly has t(α) as a root.
Moreover, the fact that g(X) ∈ Z[X] can be proved in the same manner as
in Theorem 25(2).

(2) Let τ be the map which gives the complex conjugation on K(t(α)).
Then it can be easily shown that

Ker(ΦK(t(α))τ /K) = (Ker(ΦK(t(α))/K))τ = PK,1(f)τ

where f is as in Table 1.
If (a, 12) ≥ 2 and the conditions in the first statement are satisfied,

then we can see from the proof of Theorem 21 that either 2 or 3 splits
completely in K, and so PK,1(f)τ = PK,1(fτ ) 6= PK,1(f). This implies that
K(t(α))τ 6= K(t(α)). Moreover, f(X) differs from f(X) because K(t(α))
(resp. K(t(α))τ ) is the splitting field of f(X) (resp. f(X)). Therefore we
conclude that f(X) 6∈ R[X].

For the cases (a, 12) = 1, (a, 12) = 2 and dK ≡ 0 (mod 4), the assertion
follows from Theorems 25 and 26 (this can also be proved by the argument
below). For the other cases, we note that the conductors f are of the form
“an integer times a product of ramified prime ideals”. Therefore, f should
be invariant under the action of τ and so

Gal(K(t(α))/K) ∼= IK(f)/PK,1(f) = IK(fτ )/PK,1(fτ )
∼= Gal(K(t(α))τ/K).

Hence, it follows from the uniqueness theorem of class field theory that

K(t(α)) = K(t(α))τ = K(t(α)τ ).

Then, since both K(t(α)) and K(t(α)τ ) are splitting fields of f(X), they
are identical. This yields that

f(X) = f(X) and f(X) ∈ (OK ∩ R)[X] = Z[X].

(3) If dK = −3 (resp. dK = −4), the decomposition of g(X) is im-
mediately obtained by factorizing the polynomial

∏48
k=1(X− t(γ−1

k %)) (resp.∏48
k=1(X−t(γ

−1
k

√
−1))) where % = e2πi/3. Next, suppose that dK 6= −3,−4.
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Let f be as in Theorem 21. We then see that

[Kf : K] = [Kf : K(j0,12(α))][K(j0,12(α)) : K] = 2[K(j0,12(α)) : K]
= 2h(Of ) by [1], Theorem 3.7.5(i),

for an imaginary quadratic order Of = Z + fOK where f = 12/(a, 12). As
for the computation of h(Of ), we recall from [16] or [19] that

(7) h(Of ) = hK
f

(O×K : O×f )

∏
p|f

(
1−

(
dK

p

)
1
p

)
,

where hK is the class number of K, O×K and O×f are the unit groups of OK

and Of , respectively, and
(

dK

p

)
is the quadratic reciprocity, equal to 1 if

p splits completely in K, −1 if p inerts, and 0 if p ramifies in K. By the
assertion (1), the polynomials on the right hand side are factors of g(X).
Furthermore, we see by (7) that the sum of their degrees in each case is
equal to the degree of g(X), which is 48hK . This completes the proof.

Given K and α, factorizing the polynomial g(X) in Theorem 29, we
obtain the following table for several dK ≥ −7.

Table 2. Minimal polynomial of t(α)

dK = −3

α (a, 12) f min(t(α), K)

X12 + 240X11 + 2172X10 + 9752X9

+ 27324X8 + 52416X7 + 71520X6
−1+

√
−3

2 1 (12)
+ 69696X5 + 47088X4 + 20480X3

+ 4800X2 + 384X + 64

−3+
√

−3
6 3 4

[
3, −3+

√
−3

2

]
X4 + 8X3 + 12X12 + 8X + 4

dK = −4

α (a, 12) f min(t(α), K)

X16 − 520X15 − 8184X14 − 59840X13

− 266800X12 − 813984X11

− 1810976X10 − 3051904X9
√

−1 1 (12) − 3978144X8 − 4039552X7

− 317504X6 − 1886208X5

− 803584X4 − 218624X3

− 26112X2 + 2048X + 256

X8 + 28X7 + 124X6 + 304X5 + 448X4
1+

√
−1

2 2 3
[
2, 1 +

√
−1

]3

+ 340X3 + 208X2 + 64X + 16
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Table 2 (cont.)
dK = −7

α (a, 12) f min(t(α), K)

X16 + 4088X15 + 65544X14

+ 479296X13 + 2133968X12

+ 6508128X11 + 14487520X10

−1+
√

−7
2 1 (12) + 24430208X9 + 31839840X8

+ 32289920X7 + 25339264X6

+ 15071232X5 + 6495488X4

+ 1845760X3 + 268800X2

+ 2048X + 256

X8+(4−24
√

−7)X7+(28−96
√

−7)X6

3
[
2, −1+

√
−7

2

]
+(88−216

√
−7)X5+(136−312

√
−7)X4

−1+
√

−7
4 2

×
[
2, 1+

√
−7

2

]2 + (88−312
√

−7)X3−(8+216
√

−7)X2

− (32 + 96
√

−7)X − (8 + 24
√

−7)

X8+(4+24
√

−7)X7+(28+96
√

−7)X6

3
[
2, 1+

√
−7

2

]
+(88+216

√
−7)X5+(136+312

√
−7)X4

1+
√

−7
4 2

×
[
2, −1+

√
−7

2

]2 + (88+312
√

−7)X3−(8−216
√

−7)X2

− (32 − 96
√

−7)X − (8 − 24
√

−7)

X8 +
(

23−3
√

−7
2

)
X7 + (58 − 6

√
−7)X6

+
(

311−27
√

−7
2

)
X5 +

(
467−39

√
−7

2

)
X4

−3+
√

−7
8 4 3

[
2, −1+

√
−7

2

]2

+
(

371−39
√

−7
2

)
X3 +

(
119−27

√
−7

2

)
X2

− (2 + 6
√

−7)X −
(

1+3
√

−7
2

)
X8 +

(
23+3

√
−7

2

)
X7 + (58 + 6

√
−7)X6

+
(

311+27
√

−7
2

)
X5 +

(
467+39

√
−7

2

)
X4

3+
√

−7
8 4 3

[
2, 1+

√
−7

2

]2

+
(

371+39
√

−7
2

)
X3 +

(
119+27

√
−7

2

)
X2

− (2 − 6
√

−7)X −
(

1−3
√

−7
2

)
Here min(t(α), K) denotes the minimal polynomial of t(α) over K.

Appendix. In Table 3, we give the Hauptmoduln for the genus zero
curves X0(N), due to K. Harada ([4]). Note that each Hauptmodul corre-
sponds to the Thompson series as specified in the table ([2]).

For generation of generators of K(X1(N)), we used the functions:

• E4(z) = 1 + 240
∑∞

n=1 σ3(n)qn, the normalized Eisenstein series of
weight 4,
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Table 3

N Hauptmodul Type

2 η(z)24

η(2z)24 2B

3 η(z)12

η(3z)12 3B

4 η(z)8

η(4z)8 , η(2z)24

η(z)8η(4z)16 4C

5 η(z)6

η(5z)6 5B

6 η(2z)3η(3z)9

η(z)3η(6z)9 , η(2z)8η(3z)4

η(z)4η(6z)8 , η(z)5η(3z)
η(2z)η(6z)5 6E

7 η(z)4

η(7z)4 7B

8 η(z)4η(4z)2

η(2z)2η(8z)4 8E

9 η(z)3

η(9z)3 9B

10 η(2z)η(5z)5

η(z)η(10z)5 , η(2z)4η(5z)2

η(z)2η(10z)4 , η(z)3η(5z)
η(2z)η(10z)3 10E

12 η(4z)4η(6z)2

η(2z)2η(12z)4 , η(3z)3η(4z)
η(z)η(12z)3 , η(z)3η(4z)η(6z)2

η(2z)2η(3z)η(12z)3 12I

13 η(z)2

η(13z)2 13B

16 η(z)2η(8z)
η(2z)η(16z)2 16B

18 η(6z)η(9z)3

η(3z)η(18z)3 , η(2z)2η(9z)
η(z)η(18z)2 , η(z)2η(6z)η(9z)

η(2z)η(3z)η(18z)2 18D

25 η(z)
η(25z) 25Z

• η(z) = eπiz/12
∏∞

n=1(1− qn), the Dedekind eta function,
• G2(z) = 2ζ(2)− 8π2

∑∞
n=1 σ1(n)qn, the Eisenstein series of weight 2,

• E2(z), the normalized Eisenstein series of weight 2,
• G(p)

2 (z) = G2(z)− pG2(pz) for a prime p,
• E(p)

2 (z) = E2(z)− pE2(pz) for a prime p,
• G(a1,a2) (mod N)

2 (z), the level N Eisenstein series of weight 2.

In Table 4, we give the Hauptmoduln for genus zero curves X1(N), due
to Kim and Koo ([5]–[11]).

Since

±
(

3 0
0 1

)−1

Γ (3)
(

3 0
0 1

)
= Γ0(9)

and η(z)3/η(9z)3 is the Hauptmodul of X0(9), we see that j3(z) defined
above is the Hauptmodul of X(3). Here, WN =

(
0
N
−1
0

)
is the Fricke invo-

lution.
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Table 4

N Hauptmodul Field generator

2 N(j2(z)) = 16
j2(z) − 8 j2(z) = λ(z) = θ2(z)4

θ3(z)4

3 N(j3(z)) = j3(z) j3(z) = η(z)3

η(9z)3

∣∣∣( 1
3
0

0
1

)
4 N(j4(z)) = 4

j4(z) + 2 j4(z) = θ3(z/2)
θ4(z/2)

2 N(j1,2(z)) = 28

j1,2(z) + 24 j1,2(z) = θ2(z)8

θ4(2z)8

3 N(j1,3(z)) = 240
j1,3(z)−1 + 9 j1,3(z) = E4(z)

E4(3z)

4 N(j1,4(z)) = 16
j1,4(z) − 8 j1,4(z) = θ2(2z)4

θ3(2z)4

5 N(j1,5(z)) = −8
j1,5(z)+44 − 5 j1,5(z) =

(
4 η(z)5

η(5z) + E
(5)
2 (z)

)
/

η(5z)5

η(z)

6 N(j1,6(z)) = 2
j1,6(z)−1 − 1 j1,6(z) = G

(2)
2 (z)−G

(2)
2 (3z)

2G
(2)
2 (z)−G

(3)
2 (z)

7 N(j1,7(z)) = −1
W7(j1,7(z))−1 − 3 j1,7(z) = G

(0,1) (mod 7)
2 −G

(0,2) (mod 7)
2

G
(0,1) (mod 7)
2 −G

(0,3) (mod 7)
2

8 N(j1,8(z)) = 2
j1,8(z)−1 − 1 j1,8(z) = θ3(2z)

θ3(4z)

9 N(j1,9(z)) = −1
W9(j1,9(z))−1 − 2 j1,9(z) = G

(0,1) (mod 9)
2 −G

(0,2) (mod 9)
2

G
(0,1) (mod 9)
2 −G

(0,4) (mod 9)
2

10 N(j1,10(z)) = −1
W10(j1,10(z))−1 − 2 j1,10(z) = G

(0,1) (mod 10)
2 −G

(0,2) (mod 10)
2

G
(0,1) (mod 10)
2 −G

(0,4) (mod 10)
2

12 N(j1,12(z)) = 2
j1,12(z)−1 j1,12(z) = θ3(2z)

θ3(6z)
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