ACTA ARITHMETICA
XCIIL3 (2000)

Generation of class fields by the modular function j; 12
by

Kuk JiN HonG and JA KyuNG Koo (Taejon)

Dedicated to Professor Takashi Ono
on the occasion of his 70th birthday

1. Introduction. Let $) be the complex upper half plane and let I" be
a congruence subgroup of SLy(Z). Since the group I" acts on $) by linear
fractional transformations, we get the modular curve X (I") = I'\$*, as the
projective closure of smooth affine curve I"\$), with genus gp. Since g1 x =0
only for the eleven cases 1 < N < 10 and N = 12 ([12]) when I' = I'}(N)
(={y€eSLe(2) |y = (é 7) (mod N)}), the function field K (X;(12)) over
the curve X;(12) = I7(12)\9* is a rational function field C(j; 12) where
J1,12(2) = 03(22)/05(62) for z € $ and 63 is the classical Jacobi theta series.

In this article we will construct in Section 3 some sort of class fields
by means of Shimura’s ideas for the congruence subgroups I'(N), Ip(NV)
and I'(N). In Section 4 we will generate the ray class field K(;9) with
conductor 12 of imaginary quadratic fields K by applying standard results
of complex multiplication to the modular function j; 12(z). In Section 5 by
using Chen—Yui’s result [1], we shall investigate when the subfield of K9
generated by ji,12() is equal to a ray class field K for a conductor f dividing
12 where « is the quotient of a basis of an Og-ideal (Theorems 20, 21 and
23). Lastly, in Section 6 we will explore an explicit formula for the conjugates
of the Hauptmodul N (j; 12(cv)) permitting the numerical computation of its
minimal polynomial. We thank the referee for his valuable comments which
enabled us to improve Sections 5 and 6.

Throughout the article we adopt the following notations:

o I'(N) = {y€8SLy(Z) |y =1 (mod N)},
o L(N)={(*Y) € I'(1)[¢=0 (mod N)},
o I'(N)={(¢})er(1)a=d=1b=0 (mod N)},
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o IH(N,M)={(*})er)|b=0 (mod M),c=0 (mod N)},

o M, /2(fO(N )), the space of modular forms of half integral weight for
the group I'H(N),

o Mk/z(fo(N)aX) ={f € Mk/2(f0(N)) | f(v2) = x(d)j (v, 2)* f(2) for
all v = (* %) € Iy(N)} where x is a Dirichlet character modulo N and
j(v,2) = (¢/d)e; ' Vez +d with ey = 1 if d = 1 (mod 4) and = i otherwise,

® Z,, the ring of p-adic integers,

e (), the field of p-adic numbers,

I e27r71,z/h7 2 €H.

2. Hauptmodul of K(X;(12)) as a quotient of Jacobi theta series.
For y,v € R and z € 9, put

Ouu(z) = Z exp {mi(n + %,U,)QZ + minv}.
neZ

This series converges uniformly for Im(z) > n > 0, and hence defines a
holomorphic function on $. Then the Jacobi theta series 65, 03 and 04 are
defined by

02(2) == O1,0(2) = ZCIénH/Q) ;

neZ

03(2) == BOp,0(2) = ZQSZ,
nez

0u(2) == Boa(2) = Y _(~1)"gs".
nez

And we have the following transformation formulas ([17], pp. 218-219):
Oo(z + 1) = ™/ 405(2),  02(—1/2) = (—i2)/204(2),

(1) 03(z + 1) = 04(2), 03(—1/z) = (—iz)'/203(2),
04(z 4 1) = 03(2), 04(—1/2) = (—iz)/205(2).

Furthermore, we have the following theorem at hand. For the definition of
modular forms of half integer weight, we refer to [20] or [14].

THEOREM 1. (1) 05(22) € M, /5(Io(4)) and 03(62) € My j5(I0(12), x3)-

(2) K(X:1(12)) = C(j1,12) and ji,12 takes the following value at each
cusp: j112(00) =1, j1,12(0) = V3, J1,12(1/2) = 0 (a simple zero), j1,12(1/3)
=i, j1.12(1/4) = V/3i, j1.12(1/5) = —V/3, j1.12(1/6) = oo (a simple pole),
112(1/8) = =31, j112(1/9) = =i, ji,12(5/12) = —1.

Proof. [11], Theorem 4. m
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3. Generation I. Let I' be a Fuchsian group of the first kind. Then
I'\$* (= X(I')) is a compact Riemann surface. Hence, there exists a projec-
tive nonsingular algebraic curve Vi, defined over C, biregularly isomorphic
to I'\$H*. We specify a I'-invariant holomorphic map ¢ of $H* to Vp which
gives a biregular isomorphism of I'\$* to V. In that situation, we call
(Vr,or) a model of I'\$)*. Through this article we always assume that the
genus of I'\$H* is zero. Then its function field K (X (I")) is equal to C(J")
for some J' € K(X(I)).

LEMMA 2. (PY(C), J’) is a model of I'\H*.
Proof. [6], Lemma 14. m

Let G be the adelization of an algebraic group G = GL, defined over
Q. Put

Gp = GL2(Q,) (p a rational prime),
G = GL2(R),

Goor = {x € G | det(x) > 0},

Go+ = {x € GL3(Q) | det(x) > 0}.

We define the topology of G4 by taking U = Hp GL3(Zp) x Gooy to be
an open subgroup of G. Let K be an imaginary quadratic field and & be
an embedding of K into M»(Q). We call £ normalized if it is defined by

a(i) :g(a)G) for a € K

where z is the fixed point of {(K*) (C Gg4+) in 9. Observe that the em-
bedding & defines a continuous homomorphism of K into G, which we
denote again by £. Here Gy is the group GoGeotr with Gy the nonar-
chimedean part of G4 and K is the idele group of K.

Let Z be the set of open subgroups S of G4 containing Q* G4 such
that S/Q*G ooy is compact. For S € Z, we see that det(S) is open in Qy.
Therefore the subgroup Q* - det(S) of Qf corresponds to a finite abelian
extension of Q, which we write kg. Put I's = SNGqy for S € Z. As is well
known ([19], Proposition 6.27), I's/Q* is a Fuchsian group of the first kind
commensurable with I"(1)/{+£1}.

PROPOSITION 3. Let I be a discrete subgroup of Goot/R* commen-
surable with Q*I'(1)/Q*, and containing I'(N) for some N. Then I =
I's/Q* for some S € Z.

Proof. [19], Proposition 6.30. =

In accordance with Proposition 3, we are able to find open compact
subgroups S corresponding to Io(N), Io(N, M), I''(N) and I''(N). Fix
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positive integers N and M, and consider the following:

Up) = {(24) € GLa(Zy) [ (2 4) = (57) (mod NZ)},

Uiy = {(2 ) € GLy(Zy) | ¢ =0 (mod NZy,)},
US o = {(45) € GLa(Zp) | b=0 (mod MZ,), c=0 (mod NZ,)},
Uy = {( 2) € GLy(Zp) |a=d=1, ¢c=0 (mod NZ,)},
U(lp) ={(¢ S) € GLy(Zy) |a=d=1, b=0 (mod NZ,)},
Uy ={z = (z,) € U |z, € Uy, for all finite p},
Up={z = (zp) € U |z, € Uy () for all finite p},
g ={z=(zp) €U |z, € Ugy(p) for all finite p},
Ui ={z = (1p) €U |z, € Uy () for all finite p},
'={z=(zp) €U |, € U(lp) for all finite p}.
Put

S=Q*Un, So=Q*Uy, S3=Q*U5, S =QU:, S'=Q*U"
We then have the following lemmas.

LEMMA 4. (i) Sp, S € Z.
(i) ks, = sy = Q.
(ifi) I's, = Q*Io(N) and I'sy = Q*[o(N, M).

Proof. First, we observe that Q* Uy (resp. Q*UJ)) is an open subgroup
of Q*U since Q*Uy (resp. Q*U{) contains Q*Uy (resp. Q*Ure.m.{N,M})-
Hence, for (i), it is enough to show that Q*U/Q* G+ is compact. But, we
know that Q*U/Q* Goot =[], GL2(Z,) is compact because each GL2(Z,)
is a profinite group. For (ii), note by class field theory that @ corresponds
to the norm group Q* - Q> with Q> =R* x [, Z)

We claim that det(UO) = det(UJ) = Q*°. Indeed, it is obvious that
det(Up), det(U§) € Q5. Conversely, for any element (a;,) € Q; >, take
Yp = (é;p). Then (y,) € Uy, U§ and det(y,) = (dety,) = (ap). Finally,
we come up with I's, = Q*Uy N Go+ = Q*(Up N Go+) = Q*IH(N) and
Fsg - @XU(()) ﬂGQJr - QX(U(()) HGQJF) = QXF()(N,M) u

LEMMA 5. (i) Sp,St € Z.
(i) ks, = kst = Q(Cn) where (y = 2™/,
(iii) I's, = Q*I(N) and I'ss = Q*I''(N).

Proof. (i) follows from the same method as in Lemma 4(i). Let

ViNpe = 1a = () € Qf |a =1 (mod* Npoo), ap, € Z,) for pfN}
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where po, denotes the infinite Q-prime. Here a = 1 (mod* Np.,) means that
each ap, is congruent to 1 (mod p;“Z,,) if N = p*...pl and o, > 0.
As is well known ([15], p. 209), Q(¢n) is the class field corresponding to
QXVNpOO'

Now as for (ii), it suffices to show that det(U;) = det(U') = Vi, .
For (z,) € Uy,U", det(x,) =1 (mod NZ,) =1 (mod p"Z,) when p" || N.
Hence, det(U;), det(U') C Vi, . Conversely, for (o) € Vi, , take z, =
((1) C?p). Since NZ, = p"Z, and «, = 1 (mod p"Z,) for p™ || N, it is clear
that (z,) € Up,U' and det(z,) = «,. Finally, we end up with I's, =
Q*U; N Ggy = QX(Uy N Goy) = QXIN(N) and I'sy = QXU N Ggy =
Q*(U'NGgy) =Q*I'(N). m

REMARK 6. Now we consider a normalized embedding &, : K — M (Q)
defined by a(?) = &(a)(7) for a € K and z € K N$H. Then z is the
fixed point of £(K*) in $. Let (Vr,pr) be a model of I'p\$H* for T €
{50,553, 51,5}, Note that, for convenience, we identify Vi and o7 with a
projective nonsingular algebraic curve Vp, and a ['p-invariant holomorphic
map @r,, respectively.

We see by [4] that ¢g, can be chosen as the product of Dedekind eta
functions and Vg, = P!(C). It then follows from [19], Proposition 6.31,
that ¢g,(z) belongs to PY(K?P) for the curves Xo(N) = I5(N)\H* where
K?P is the maximal abelian extension of K. Furthermore, it is true that
the Dedekind eta function 7n(z) has no zeros in $. Hence we conclude
that ¢g,(2) in fact belongs to K®® for z € K N H. On the other hand,

since (A[;I (1))71]})(]\7, M)(Ag ) = I'y(N M), two modular curves Xo(N, M) =
Io(N, M)\$H* and Xo(NM) = Io(NM)\H* are isomorphic and hence the
genera of Xo(N, M) are completely determined by those of Xo(NM), and

vice versa.

We recall from [19], Section 6.7, the following general situation.

Let I'" be another Fuchsian group of the first kind, $*' the union of
$ and the cusps of IV, and (Vv, /) a model of I"\$H*'. Suppose that
al'a=! C I with an element « in Go. Then we can define a rational
map T of Vi to Vpr by T(er(z)) = ¢r/(a(z)), that is, by the following
commutative diagram:

ﬁ* g) ﬁ*l
LPFl l“Pr/
Vi 5 Vi
This includes, as special cases, the following two types of maps:

CASE (a): @« =1, hence I' C I'"". Then T is the usual projection map.
CaSE (b): al'a™! = I'". Then T is abiregular isomorphism of Vi to V.
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We shall apply our situation to Case (b). Take I' = IH(N, M), I =

In(NM) and a= (1\04 (1))_1. Then we have T'(or, (v,m)(2)) =@y (v (a(2)),
which means that (P*(C), ¢r, v (z/M)) is a model of IH(N, M)\$H*. In
particular, since the genera of IH(NM)\H* and (N, M)\H* are all zeros,
we can take ¢, (var)(2) and @ v (2/M) as Hauptmoduln. Therefore we
can construct the following class fields by making use of the Hauptmoduln of

genus zero curves Xo(N). We refer to the Appendix for those Hauptmoduln.

THEOREM 7. Let K be an imaginary quadratic field and let &, be the
normalized embedding for fivzed z € K N $. Then ¢g,(z) belongs to the
mazimal abelian extension K of K and K (ps,(2)) is the class field of K
corresponding to the subgroup K* - £;1(So) of K.

Proof. In the case of Sy, we have ks, = Q and I's, = Q*I,(N) by
Lemma 4(ii) and (iii). Since gg, gives a model of the curve Xo(N), the
assertion follows from [19], Proposition 6.33, and Remark 6. m

Since (' ?){z/M(a)(]g“l))_l =¢&.(a) fora € K,

K* €3, (QU0) = K- £71(Q*Ug)
and hence we have the following corollary for I'h(N, M).

COROLLARY 8. Notations being as in Theorem 7, @gs,(2/M) is in the
mazimal abelian extension K*® of K when gry(n.avy = 0 and K (ps,(z/M))
is the class field of K corresponding to the subgroup K* -£-1(S0) of K.

We refer to the Appendix for the Hauptmoduln of genus zero curves
X(N) (except for the case N = 5) and X;(N). Again by [19], Proposi-
tion 6.31, each Hauptmodul listed in Table 4 belongs to P'(K?). Since the
Hauptmoduln have poles only at oo, we see that they in fact take values
in K* for z € KN $H. As an analogue of Theorem 7 in the case of I'(IV)
(N =2,3,4) and I'(N) (1 < N <10 and N = 12), we get the following
theorem.

THEOREM 9. Let K be an imaginary quadratic field and let &, be the
normalized embedding for z € K N $. Then N(ji.n(z)) and N(jn(z)) be-
long to the mazimal abelian extension K*® of K and K(N(j1.n(2)),(N)
(resp. K(N(jn(2)),C(n)) is the class field of K corresponding to the subgroup
KX &1(S1) (resp. K*-€21(8)) of K.

z

Proof. As for the cases of S and S7, by Lemma 5 and [19], we have
k‘s = /{351 = Q(CN), FS = QXF(N) and Fsl == Qxfl(N). Since N(jl’N)
(resp. N(jn)) gives a model of the curve X;(N) (resp. X(N)), the assertion
follows from [19], Proposition 6.33, and the argument mentioned above. m

In particular, when N = 12 we would obtain
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COROLLARY 10. Notations being as in Theorem 7, K (i,/3, N (j1.12(2)))
is the class field of K corresponding to the subgroup K* - £ 1(Q*Uy) where
Ui ={z = (2p) € U | xp € Uy for all finite p} and Uy ) = {(CCLZ) €
GL2(Zp) |a=d=1,c=0 (mod 12Z,)}.

Since (]g(l))flfl(N)(jg(l)) = I1(N), we have

KX 620 (Q1Uy) = KX - 6.1(Q*UY).
Therefore we get the following corollary for I''(IV).

COROLLARY 11. Notations being as in Theorem 7, N(ji1,n(z/N)) belongs
to the mazximal abelian extension K*® of K and K(N(j1 n(2/N)),(n) is the
class field of K corresponding to the subgroup K* - £-1(S') of K.

4. Generation II. In view of standard results on complex multipli-
cation, we are interested in investigating whether the value ji 12(c) is a
generator for a certain full ray class field when « is the quotient of a basis
of an ideal belonging to the maximal order in an imaginary quadratic field.
To this end we are first in need of a result from complex multiplication.

THEOREM 12. Let §n be the field of modular functions of level N rational
over Q(e*™/N) and let K be an imaginary quadratic field. Let Ok be the
mazximal order of K and a be an Ok-ideal such that a = [z1, 23] and o =
21/2z2 € $. Then the field K§n(«) generated over K by all values f(«) with
f €SN and f defined at «, is the ray class field over K with conductor N.

Proof. [16], Ch. 10, Corollary of Theorem 2. m

Let K (X (")) be the function field of the modular curve X (I'") = I'"\9H*.
Suppose that the genus of X (I") is zero. Let h be the width of the cusp
o0o. By F we denote the field of all modular functions in K (X (I"")) whose
Fourier coefficients with respect to g belong to Q.

LEMMA 13. Let K(X(I")) = C(J') for some J € K(X(I"")). If J' € F,
then F' = Q(J’).

Proof. [6], Lemma 4. m

THEOREM 14. Q(j1,12) is the the field of all modular functions in the field
K(X1(12)) whose Fourier coefficients with respect to q are rational numbers.

Proof. Since j; 12 has rational Fourier coefficients, the result follows
from Lemma 13. =

It follows from [19], Proposition 6.9, that
(2) SN :Q(jaf(al,ag) ‘ (al,a2) GN_1227¢22)'
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Here j is the classical modular function of level 1 and f(4, 4,) is the Fricke
function defined by

-] .

for z =wi/ws € $H and a = (ay,az). We recall that
(3)  flar,as) = fbr,poy if and only if £ (a1,a2) = (b1, b2) (mod 7?)

and
(4) flav,anly = Fflar,an)y  for v € I'(1),
where f(2)|y = f(yz) for a modular function f.
THEOREM 15. K (X1(12)) = C(j, fo,0) | t € 1271Z\Z) (= C(j1,12))-
Proof. Observe that
K(X(1) € K(X:(12)) € K(X(12))

where K (X(12)) is a Galois extension over K (X (1)) with Galois group
I'(1)/I'(12) ([18], Ch. VI, Theorem 4 or [19], p. 31). We consider the
Galois group

G = Gal(K(X(12))/C(), o | £ € 12712\2)).
For ¥ € I'(1)/I'(12), let v = (¢ Z) be its representative in I'(1). Then by
(3) and (4),
Y€ G e fon = fonl = fony = fea) for t € 127 Z\Z
< (¢,d) = £(0,1) (mod 12)
& 75el(12).

Hence we must have
G =T1(12)/1'(12) = Gal(K (X (12))/K (X1(12))),
from which we end up with K(X;(12)) = C(j, fon) | t € 127'Z\Z). =
LEMMA 16. For z € 9, we get
Q(i(2), fo(2) | t € 127" Z\Z) = Q(j112(2)/V3).

Proof. For f € K(X1(12)), we let Wia(f) = f]( ) be the action

0 —1
12 0
of the Fricke involution. Since Wiy = (12 0 ) belongs to the normalizer of

I (12) ([13]), W12 € Aut(K(X;1(12))). We observe that

0 —1

Waa(f) = fls(122) for5=<(1’ ‘01)-
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Hence it follows that Wi(j(2)) = j(122) and Wia(fo(2)) = fer,0)(122).
Since ji12(2) = 03(22)/03(62), we derive, by (1),

. 03(22) _%(-ﬁ)
O el )
(2)003) _

= T2, o 3/J1,12 .

(—i2)"%0s(2) < >

We denote by Fj 12 the field of modular functions in K(X;(12)) with
rational Fourier coeflicients. Considering the Fourier expansions of Fricke
functions ([16], p. 66, or [19], p. 141), we know that f(;)(12z) has rational
Fourier coefficients for ¢ € 1271Z\Z. Thus

QW12(j(2)), Wia(fro.(2)) | t € 127 Z\Z) C Fi 1.
Moreover, we observe by Theorem 15 that
C(Wi2(j (2)), Wiz(fo.0)(2)) | t € 127 Z\Z) = Wiz (K (X1(12)))
= K(X1(12)).
On the other hand, by a similar argument to [6], Lemma 5, we get
(6) Fraz = QW1a(j(2)), Wia(fo. (2)) | t € 127 Z\Z).
We then deduce by Theorem 14 and (5) that

Friz = Q(j112(2)) = QWi2(j1,12(2) /V3)),
which by (6) forces

Wi2(QUi(2), fro.(2) | t € 1271 2\Z)) = Wiz (Q(j112(2)/V3)).

Therefore applying the involution W15 to the above yields the conclusion. m
LEMMA 17. We have
{(a1,a2) (mod Z?) | (a1,a) € 127'Z%, ¢ 7Z*} = AUBUC
where
A={(0,a1)(}7") (mod Z?) |as € 127'Z\Z, z = 0,...,11},
B=1{(0,a2)(}Y) (mod Z?)|az € 127'Z\Z, 2 =0,...,11},
C={(0,a2)(,1)(p7") (mod Z?)|as € 127'Z\Z, y = 3,4,9,10}.

Proof. In order to generate the ray class field of an imaginary quadratic
field K with conductor 12, we shall use Lemma 16 and the fact that

1?5'12 = @(]7 f(al,az) ‘ ((Il,az) € 12_IZQ7¢ ZQ)
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To this end, considering lattice points (modulo 12) in a plane, divide the
set proposed in the lemma into subsets by considering elements of the form
(0,t)y with v € SLa(Z). Observe that

A={(a1,a12) | a1 € 127'Z\Z, £ =0,...,11},
B = {(azr,a2) | az € 127'Z\Z, x =0,...,11}.
Direct computation shows that the elements not in A U B form a set
E =1{(2,3),(2,9),(3,2),(3,4),(3,8),(3,10), (4, 3), (4,6), (4,9), (6,4), (6,8),
(8,3),(8,6),(8,9),(9,2),(9,4),(9,8),(9,10), (10, 3), (10,9)}.

Now we embed E into a subset whose elements are of the form (0,t)y with
v € SLy(Z). Since (a1, a2)|r = (a1,a1 + a2) (mod 12) for T' = ((1] }),

E|lr ={(2,5),(2,11),(3,5),(3,7),(3,11),(3,1),(4,7),(4,10), (4,1), (6, 10),
(6,2),(8,11),(8,2),(8,5),(9,11),(9,1),(9,5),(9,7), (10,1), (10,7)}.

It follows that the congruence t'y = s’ (mod 12) yields y = 3,4,9 or 10,
when (s,¢)T = (¢/,t') for (s,t) € E. Thus we get

E|r C {(azy,az2) | az € 127'Z\Z, y = 3,4,9,10};

in other words,

EcC= {(07@)(; (1)> <(1) _11)

which completes the proof. m

ap € 12712\ Z, y = 3,4, 9, 10}

THEOREM 18. Let K and « be as in Theorem 12, and let K(13) denote
the ray class field over K with conductor 12. Then

=) 5 )
i1o (a—l> I3

ya+1—y

rz=0,...,11 andy:3,4,9,10>.

Proof. For each z € §, we have
12 = Q(J(Z)a f(al,az)(z) ‘ (a17a2) € 1271Z27 ¢ ZQ) by (2)
= Q(J'(Z)af(o,alﬂ((l) -1 a1 €127'2,¢ Z, =0,...,11)

UQ(j(Z),f(O,aQ)‘(;(l)) | ag € 12—1Z,¢Z, x=0,...,11)

UQ(](2)7f(0,a2)‘(21/9)((1) *11) ‘ az € 12_1Z7¢27 y=3,4,9, 10)

by Lemma 17 and (4)
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R

z=0,...,11 andy:3,4,9,10> by Lemma 16.

Therefore, the result follows from Theorem 12. m

By class field theory ([19], Section 5.2, or [21], Theorem 3.6), the reci-
procity map induces an isomorphism

[, K] : KK/KXU(H) = Gal(K(12)/K)
where U(12) is the subgroup of K » given by

Uz ={s € K | s, € OF and s, =1 (mod (12)O,)
for all finite primes p}.

5. Generation III. Let K be an imaginary quadratic field, Ok the
maximal order of K and a = [z1, 22] an Ok-ideal with a := z1/22 € 9.
Since « is an imaginary quadratic element, o satisfies an integral equation
az? + bz + ¢ = 0. In this section, we shall find class fields generated by
singular values j1 12(c) and j; 12(«)? under some conditions on a and the
discriminant dr (= b? — 4ac) of K. First, we need the following lemma
which is a modification of a statement in the proof of Theorem 3.7.5 in [1].

LEMMA 19. Let f be a modular function of level 12 with rational Fourier
coefficients and (3) a principal ideal of Ok relatively prime to 12. Put
B =m+n(ax) € Z+ Z(aa) = Ok and let Ag be a matriz in SLy(Z) whose
image in SLy(Z/127) is equal to

—bn+m —cn
anN(B)~' mN(@B)~! )"
Then the action of (B) on f(«) is given by
f(@)®Ean/Kl — ¢( A5 ).

In Theorem 18, we generated the ray class field K(3) over K by 28
singular values of ji 12. However, whenever a is relatively prime to 12, we
now see that K(jg) is simply generated by one singular value ji 12() and,
moreover, jo 12(c) defined below spans some ring class field.

THEOREM 20. Notations being as above, let az? + bz + ¢ = 0 be the
equation of a such that a > 0, (a,b,c) = 1, and let jo12(z) = j112(2)* =

03(22)2/05(62)%. Suppose that (a,12) = 1. Then:

(1) jo12() generates the ring class field of an imaginary quadratic order
O (= Z +120k) with discriminant 122dx .
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(2) ji12(c) generates the ray class field Koy of K with conductor 12,
and the degree of K(j1,12(a)) over K is 2h(O), where h(O) is the class
number of O.

Proof. (1) By Theorem 1(1), jo,12(2) € K(Xo(12)). We observe that
[K(X1(12)) : C(jo2(2))] = [C(j1.12(2)) : C(do,12(2))] = 2.
Since [Ig(N) : I'1(N)] = 3¢(N) for N > 2, with ¢ the Euler phi function,
it follows that [K(X1(12)) : K(X0(12))] = [[o(12) : I'1(12)] = 2; whence

K (X0(12)) = C(jo,12(2)). This indicates that jo 12(2) is a field generator of
a genus zero curve, and so we are able to normalize it as

4
(Jo,12(2)) o) =1 + 121(2),
the Thompson series of type 12I. Now the result follows from [1], Theo-

rem 3.7.5(1).

(2) Let Lo = K(joi2(a)) and L1 = K(j112(«)). Then we have the
following field tower:

K C Ly C Ly C K9

Here the last inclusion follows from Theorem 12. For a subfield L of K(;9),
let @5 : Ix(12) — Gal(L/K) signify the Artin map, where Ik (12) =
{fractional ideal a | (a,120k) = 1}, which forms a group under multiplica-
tion. Then Ker(®k ,, /x) = Px,1(12) and

PK71<12) g Ker(@Ll/K) g Ker(@LO/K) g IK(IQ)

by class field theory, where Pk 1(12) denotes the subgroup of Ik (12) gen-
erated by the principal ideals SOk with § € Ok and f =1 (mod 120k).
Since Lg is the ring class field of O = Z + 120k, it follows from class field
theory (e.g. [3]) that

Pic(0) = 1(0,12)/P(0,12) 2 I (12)/ Px z(12) = Gal(Lo/K),

where the last isomorphism is induced by the Artin map @,/ x, and P 7(12)
denotes the subgroup of Ik (12) generated by the principal ideals SOk with
B € Ok and B =1 (mod 120k) for some integer [ relatively prime to 12.
Therefore we get Ker(®p,/x) = Pk z(12) and

PK71(12) - Ker(@Ll/K) - PK’Z(].Q).

Since Pk 7(12)/Pg,1(12) is isomorphic to (Z/127Z)* /{£1}, the degree of
Pr7(12) over Pk 1(12) is 2. Thus we have either Ker(®;, k) = Pk 1(12)
or Ker(®r,,x) = Pk z(12), and hence it remains to prove Ker(®p, /) =
Pr1(12).

Now, we take two integers n and m such that 12|n and m = =£5
(mod 12). Let (8) be a principal ideal of O prime to 12, and Ag be
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as in Lemma 19. Then Ag € I(12)\ £ I1(12), and since

- No) ) = (2 (g ) =11 =1

we get j1.12(Ag - @) =—j1,12(w) by Theorem 1(1). Since j;,12 never vanishes
on §), we must have ji 12(Ag - ) # ji1,12(v).

On the other hand, jo 12(Ag - @) = j1.12(Ag - @)? = jo,12(), from which
we get (8) € Ker(®r,/x)\Ker(®r, k). Therefore Ker(®r, k) is equal to
Pr1(12), and L1 = K(ig) by class field theory. The last assertion fol-
lows from the fact that joi12(a) generates the ring class field of O and
[K(j1,12()) : K(jo12(a))] = 2. =

ExAampLES. Put K = Q(v/N) with N a square-free negative integer.
Then jo 12((1 +V/N)/2) (resp. jo12(vV'N)) generates the ring class field of
an imaginary quadratic order O (= Z + 120 ) with discriminant 122dg
provided that N = 1 (mod 4) (resp. N = 2,3 (mod 4)) and j 12((1 +
V/N)/2) (resp. j112(V'N)) generates the ray class field K2y of K with
conductor 12 if N =1 (mod 4) (resp. N =2,3 (mod 4)).

As for the construction of the ray class fields over imaginary quadratic
fields with conductor strictly dividing 12, we need to consider some other
conditions on a and dg, different from the previous one. We shall illustrate
this in two theorems; one excluding the cases dx = —3 and —4, the other
only with dg = —3 and —4.

THEOREM 21. Notations being as above, let az? + bz + ¢ = 0 be the
equation of o such that a > 0 and (a,b,c) =1, and let K; be a ray class field
over K with conductor f. Assume that the discriminant of K is neither —4

nor =3 (i.e. K # Q(v/—1),Q(v/—3)). Then:
(1) If (a,12) = 2, then ji12(c) generates K5 over K with conductor f
given by
- 3[2, aal?, dg =0 (mod 4),
"1 3[2,a0][2,aa +1]2, dix =1 (mod 8).

Furthermore, 2 ramifies in K when dxg = 0 (mod 4) and splits completely
in K if dg =1 (mod 8), and so

_ [3[2,aa]’, drg =0 (mod 4),
120K = {B[Q,Ga]Q[Z,aa +1]?, dx =1 (mod 8).
(2) If (a,12) = 3, then ji12(v) generates Ky with conductor | given by
4[3a CLOZ], b=0 (HlOd 3),
f=< 4[3,aa+1], b=1 (mod 3),
4[3,aa+2], b=2 (mod 3).



270 K. J. Hong and J. K. Koo
Moreover,
4[3, aa)?, b=0 (mod 3),
120k = ¢ 4[3,a0|[3,acc + 1], b=1 (mod 3),
4[3,aa][3,aac+ 2], b=2 (mod 3).

(3) If (a,12) =4 and dx =1 (mod 8), then ji12(cr) generates Ky with

conductor f = 3[2,ac + 12

and 120k = 3[2, aa)?[2, ac + 1]2.

(4) If (a,12) =6 and dx # 5 (mod 8), then ji12(c) generates Ks with

conductor § given by

2, ac]?[3, aql], b=0 (mod
[2,a0][2,ac + 1]?[3,aa + 1], b=1 (mod
f— 2, ac)?[3 ,aa+2], b=2 (mod
2, aa][2, ac + 1]?[3, aql], b=3 (mod
2, ac)?[3 ,aa—i—l], b=4 (mod
[2,a0][2,ac + 1]?[3,aa + 2], b=5 (mod

Moreover,
2, ac]?[3, ac)? b=0
[2,a0)?[2,ac + 1)%[3,a0][3,aa + 1], b=1
) 12,aa]1[3, ad][3, ac + 2], b=2
120k = 2, aa]?[2, ac + 1)%[3, ac]? b=3
2, aa][3, aq][3, ac + 1], b=4
2, ac)?[2, ac + 1]2[3, aq][3,a + 2], b=5
(5) If (a,12) =12 and dxg =1 (mod 8), then ji12(a) g

conductor f given by

2, ac + 1]2[3, aql, b=0 (mod 3),
f=2< [2,aa+1)%[3,aa+1], b=1 (mod 3),
[2,ac +1]2[3,aac+ 2], b=2 (mod 3).
Further,
(2, ac)?[2, ac + 1]2[3, aa)?, b=0
120Kk = ¢ [2,a0)?[2,ac + 1]%[3,ad][3,ac + 1], b=1
(2, ac)?[2, ac + 1)2[3,a0][3, a0 + 2], b=2

enerates Kj with

(mod 3),
(mod 3),
(mod 3).

Proof. Asin Theorem 20, for a subfield L of K1), let 1 /x : Ix(12) —
Gal(L/K) be the Artin map. Since jj12() € K(12) by Theorem 12, we have

K - K(jlylg(a)) - K(lg) so that
Pr1(12)

Let a € Ker(Pr(j, 15(a))/x)- Then Px(j, 1(a)/x (@) = [a,

= Ker(¢K<12>/K) - Ker(ng(jl,lQ(a))/K)'

K(j112())/K]

fixes j1,12(«) and hence it ﬁxes j(a), too. Since K (j(«)) is the Hilbert class

field of K, Ix /P = Gal(K
is trivial on K(j(«)) 1mphes a€ Pk NIk(12) =

(o)) /K). And the fact that [a,
Pk (12).

K(j112())/K]
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Now we write a = Ok with f € Ok and (N((),12) = 1. Let g =
m+n(aa) € Z+Z-(aa) = Ok. Considering Ag described in Lemma 19, we
see that (8) € Ker(®g(j, ,,(a))/x) if and only if Ag € £I'1(12) - I},, where
I'y = {y € SL2(Z) | v(o) = a}. Note that I, is nontrivial if and only if
« is equivalent to i or o = ¢*™/3 under the action of SLy(Z). In view of
quadratic forms we see that I, is nontrivial if and only if dg = —4 or —3,
that is, K = Q(v/—1) or K = Q(v/—3). By our assumption, however, I},
must be trivial; hence

(ﬁ) S Ker(@K(jLu(a))/K) = .Ag S :|:F1(12)
(1) Suppose that (a,12) = 2. Then, for (5) € Ix(12),
(B) S Ker(@K(ij(a))/K) - .Ag S :|:F1(12)
& 12|an and —bn+m = £+1 (mod 12)
< 6|n and m € +£1 + bn + 127Z since (a,12) = 2
&+ €1+62,an+1)
=4 (,8) S PK71(f) with f= 6[2,0,0[ + b]

Therefore we have

Gal(K (j112())/K) = Ik (12)/Pr 1 (F) N Ik (12) = Ik (§)/ Pr (),

and K (j1,12(«)) = K by class field theory.

We observe that [2,ac + b] is the prime ideal p of K lying above 27Z
which would be [2,aa] (resp. [2,aa + 1)) if dx =0 (mod 4) (resp. dx =1
(mod 8)). Since the polynomial X2 + bX + ac of a« is congruent to

X2 (mod 2) if dg =0 (mod 4),
X(X+1) (mod 2) ifdgk =1 (mod 8),
we see that 2 ramifies into [2,aa]? when dx = 0 (mod 4) and splits com-

pletely into [2,aq][2,ac + 1] if dx =1 (mod 8). Note that Ix(12) = Ik (f)
because

f(= 6p) = 3[2, aa)?, dg =0 (mod 4),

=% =802, 00][2,a0 + 12, di =1 (mod 8)
and

[ 3[2,aa]4, dg =0 (mod 4),

120 = {3[2,aa]2[2,aa +12, dxg =1 (mod 8).

(2) Assume that (a,12) = 3. Then, in a similar manner, we find that for
(ﬁ) € Ker(@K(j1712(a))/K) = .AB S :I:F1(12)
& £ € 1+4[3,aa + b
& (B) € P 1(f) with f = 4[3, acc + b].
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Hence Ker(@K(ij(a))/K) = P 1(f) N Ix(12), and so K (j1,12(c)) = Kj.

Here, we note that the prime ideal [3, acc + b] would be [3,ac+i] if b =1
(mod 3) for i = 0, 1,2. Since the polynomial X2+bX +ac of ac is congruent
to

X2 (mod 3) if b=0 (mod 3),
X(X+1) (mod 3) ifb=1 (mod 3),
X(X +2) (mod3) ifb=2 (mod 3),

we claim that 3 ramifies into [3,aa]? when b = 0 (mod 3) and splits com-
pletely into [3,aa][3,aa + 1] (resp. [3,ac][3,ac + 2]) when b =1 (mod 3)
(resp. b = 2 (mod 3)). Observe in addition that Ix(12) = Ix(f) only if
dg =0 (mod 3) (i.e. b=0 (mod 3)) because

f = 4[3,aql, 120k = 4[3,aa)?,
f=4[3,aa+ 1], 120k = 4[3,aq][3,ac + 1],
f=4[3,aa+ 2], 120k =4[3,aq][3,aa + 2].

(3) Assume that (a,12) = 4. Then, for (8) € Ix(12),

(B) € Ker(Pk(j, 15(a))/Kk) < A € £11(12)
& 12|an and —bn +m = £+1 (mod 12)
< 3|n and m € £1 + bn + 12Z since (a,12) =4
& 0 el+3[4,aa+0].

Due to dg =1 (mod 8) one can easily show that [4,aa + b] = [2, ac + 1]%.
Therefore, K (j1,12(r)) = K5 with § = 3[2, aa + 1]2.
(4) Assume that (a,12) = 6. Then, for (8) € Ix(12),

(B) € Ker(@K(jl,m(a))/K)
& ./4/3 € +17(12)

& 16 €1+42[6,a0 +b] =1+ 2[2,aa + b][3, ac + 1]
< (B) € P1(f) with f = 2[2, ac + b][3, ac + b].

We conclude that K (ji,12(a)) = Ks. Note that [6, aa 4 b] is equal to

12, ac][3, aq, b=0 (mod 6), [2,ax+1][3,aac+1], b=1 (mod 6),
[2,a0][3,aa+ 2], b=2 (mod 6), [2,aa+ 1][3,aq], b=3 (mod 6),
[2,a0][3,aac+ 1], b=4 (mod 6), [2,aa+1][3,ac+2], b=5 (mod 6).
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Since the polynomial X? + bX + ac of ac is congruent to

X2 (mod 2), X? (mod 3) ifb=0 )
(X +1) (mod 2), X(X +1) (mod 3) ifb=1 (mod 6),
(mod 2), X(X +2) (mod 3 if b=2 (mod 6),

)

)

(mod 6),

(

) (

( +1) (mod 2), X% (mod 3) if b=3 (mod 6),
) (

(

X? (mod 2), X(X +1) (mod 3 if b=4 (mod 6),
X(X+1) (mod 2),X(X +2) (mod 3) ifb=5 (mod 6),

we see that 2 (resp. 3) ramifies into [2,aa]? (resp. [3,aa]?) when d = 0

(mod 6) (i.e. b=0 (mod 6)), and either 2 or 3 splits completely otherwise.
Moreover, observe that I (12) = Ix(f) only if b =0 or 3 (mod 6) because

e if b =0 (mod 6) then
f=1[2,a0)3[3,aa], 120 = [2,aa]*[3,aa)?,
e if b=1 (mod 6) then
f=1[2,a][2,aa+1]?[3,aa+1], 120k = [2,aa)*[2, ac+1]%[3, ac][3, aa+1],
e if b =2 (mod 6) then
f=1[2,a0)3[3,aa +2], 120k = [2,a0a]*[3,aa][3,ac + 2],
e if b =3 (mod 6) then
f=1[2,ad][2,aa + 1]%[3,aa], 120k = [2,aa]?[2,aa + 1]?[3,aa)?,
e if b =4 (mod 6) then
f=1[2,a0)3[3,aa + 1], 120x = [2,a0a]*[3,aq][3, ac + 1],
e if b=5 (mod 6) then
f=1[2,a][2,aa+1]?[3,aa+2], 120k = [2,aa)*[2, aa+1]%[3, aca][3, aa+2].
(5) Assume that (a,12) = 12. Then, for (3) € Ix(12),
(B) € Ker(Pk (j, 15(a))/ k) & Ap € £11(12)
< 12| an and —bn +m = £1 (mod 12)
< m € 14 bn + 127 since (a,12) =12
& +B8e1+[12,aa+ b =1+ [3,aa + b][4, ac + b).

Therefore K (ji,12(e)) = Ks with §f = [3,acc + b][4, ace + b]. Note that the
conductor { would be

2, ac + 1]?[3, aql, b=0 (mod 3),
[2,ac +1]?[3,aa+ 1], b=1 (mod 3),
[2,ac +1]2[3,aac+ 2], b=2 (mod 3). =
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REMARK 22. (1) In the cases (a,12) = 2,4,6 and 12, if dx =5 (mod 8),
there is no « satisfying the hypothesis.

(2) In the cases (a,12) = 4 and 12, we see that [4,aca + b] (= [4,aa] or
[4,aa + 2]) does not divide 20k if dxg =0 (mod 4).

EXAMPLES. (1) Take K = Q(v/—2) and a = [2,4/—2]. Then dgx = —8 =
0 (mod 4), so it follows from Theorem 21(1) that ji 12(v/—2/2) generates
K; over K with f = 3[2,/=2]?.

Take K = Q(v/—7) and a = [2,(=1 ++/=7)/2]. Then dx = -7 =1
(mod 8), so it follows from Theorem 21(1) that j; 12((—1++/=7)/4) gener-
ates K; with

2,

[ —1+ﬁH 1+ﬁr
f=3]2, :
2 2

(2) Take K = Q(v/—21) and a = [21,4/—21]. Then dx = —4-21 =0
(mod 3), so it follows from Theorem 21(2) that j; 12(v/—21/21) generates
K over K with § = 4[3,/—21].

(3) Take K = Q(v/—6) and a = [6,4/—6]. Then dx = —4-6 = 0
(mod 6), so it follows from Theorem 21(4) that ji12(v/—6/6) generates K
over K with f = [2,v/—6]3[3, v/—6].

Take K = Q(v/—15) and a = [6,(—3 + v/—15)/2]. Then o = (-3 +
v/—15)/12 satisfies the equation 6X? + 3X + 1 = 0, so it follows from
Theorem 21(4) that ji 12((—3 + v/—15)/12) generates K over K with

(— [2 1+\/—T5} [2 —1+\/—T5H —3+\/—T5]
' 2 2 2 ’

In Theorem 21, we constructed ray class fields K; with conductor f which
strictly divide 12 under the assumption K # Q(v/—1), Q(v/=3). As we saw
in the course of proof, however, a crucial point making its proof formidable
was the nontriviality of I, when K = Q(v/—1), Q(v/—3). We now give other
descriptions for spanning Kj in these cases by a thorough analysis of 1.

3,

)

THEOREM 23. Notations being as in Theorem 21 except for the discrim-
inant, we have the following assertions:

(1) If (a,12) = 2, then ji12(a) generates Q(v/—1); over Q(v/—1) with
conductor f = 3[2,aal®. In this case, 2 ramifies in Q(v/—1) as [2,aa)?, and
50 we have 120y = 3[2, ac]?.

(2) If (a,12) = 3, then ji12(a) generates Q(v/=3); over Q(v/—3) with
conductor f = 4[3, ac]. Furthermore, 3 ramifies in Q(v/=3) as [3,aa]?, and
hence 120k = 4[3, ac?.

REMARK 24. (1) In the case (a,12) = 2 and K = Q(v/—3), we see that
there is no « satisfying the hypothesis. For, otherwise, b? —4ac = —3 implies
that b> =5 (mod 8), which is absurd.
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(2) In the case (a,12) = 3 and K = Q(v/—1), no such « exists. Indeed,
otherwise, b2 —4ac = —4 implies that b> = 8 (mod 12), which is impossible,
too.

(3) In a similar way, in the cases (a,12) = 4,6 and 12, we see that there

exists no such a for both fields Q(v/—1) and Q(v/—3).

Proof (of Theorem 23). (1) The arguments from the beginning to the
nontriviality of I, are exactly the same as those in Theorem 21. Suppose
that « is equivalent to i under SLg(Z), in which case dg = —4. Put f =
6[2, acr]. Then we have, for (8) € Ix(12),

(B) € Pka1(f) & £8=1 (mod f) or £ i =1 (mod f)
& + [ €1+6[2,aa] or

—b b b
6| <2n+m> and 2<m— 2n> —n==+1 (mod 12).

Here, the second statement is due to the fact that aac = —b/2 + i and
b? — 4ac = —4. On the other hand,
(ﬁ) S Ker(@K(jl’lz(Q))/K) = .Aﬁ S :|:F1(12) - I,
& Ag € £11(12) or
As- (711 )) € £N1(12),

where o = ! for some v = (P 9) € SLy(Z). Since a is the root of the

T8
polynomial [1,0,1]0 (P ) (%) = (p* +1%)2% + 2(pg + rs)z + (¢* + s?), we get
a=p?>+r% b=2(pg+rs)and ¢ = ¢*> + s?. Thus we get

v <(1] _01> T <_2(?gq++7"28) _2(9((112++r22)> - <_Z/2 &;) :
Therefore,
A (7 (3 0)7) = (o™ i) (27 02)
b*n/2 —bm/2 — acn *> 7

- < (—abn/2 +am)N(B)~t *

where

Then we have
Ag € £I1(12) or Ag - (v (] 1)) € £11(12)
< 12]an, m € 1+ bn + 12Z, or

12|a<m— bn) and — b(m— bn) —n=+1 (mod 12)
2 2 2
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< 6|n, £6 € 1+ n(aa+b) + 12Z, or

6’<m—bn> and —b(m—bn>—nzi1 (mod 12)
2 2 2

& 0 €1+6[2,aa+b] =1+6[2,aa], or
6’ (m—bn> and b<m—bn> —n==1 (mod 12).
2 2 2

Consequently, we see that (8) € Ker(®x(j, 1,(a))/x) & (8) € Pra(f) N
Ik (12), and the result follows.

(2) Assume that « is equivalent to p under SL2(Z), in which case dx =

—3. Since I', = {:i:[g,j:(cl) _11),:|:(_11 (1))}, we see that

B (0 -1 (11
Fa—{ifmi’y (1 1 )%iv (1 0)7}
for some v € SLy(Z). Put f = 4[3,ac]. Then we have, for (8) € Ix(12),

(B) € Pka(f) & £ =1 (mod f) or £50=1 (mod )
or (0> =1 (mod f)
& £ el+4[3,aa], or

1 -1 2
4‘ bin—m andb m—b+3nzj:1 (mod 12), or
2 2 4

-1 1 2
4‘ <b2n—m> and —b;— m—|—b Isnzil (mod 12).

Here, the second argument is due to the fact that o = aa + (b — 1)/2,
0> = —aa — (b+1)/2 and b? — 4ac = —3. On the other hand,

(ﬂ) € Ker((pK(jl,lz(a))/K) =4 .Ag S :|:F1(12) - I,

& Ag e £ (12) or Ag- (v (1, 4)7) € £11(12)

or Ag- (v 1§ 7)) € £ (12),

where o« = y7!p for some v = (?9) € SLy(Z). Since a is the root of
the polynomial [1,1,1] o (?7)(5) = (p* + pr + r?)2® + (2pq + ps + rq +
2rs)z + (¢® + qs + s?), we get a = p?> + pr + 12, b = 2pq + ps + rq + 2rs
(=2(pg+ps+rs)—1=2(pg+rq+rs)+1)and c = ¢*> + ¢s + s>. Thus

(1 1 _( ps+tpgtrs q* + sq + s?
-1.0 —(* +rp+1?) —(gr+pg+rs)

- <(b+—?/2 - 1)/2> ’
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and
()
—bn+m —cn (b+1)/2 c
aN@) T mNE ) —d —p-1)2

Y (—bn+m) +acn  *
<(b‘2*'1n—m)aN(ﬂ)1 *)7

where

b+1
2

b+1 b—1 b’ +3
(=bn+m) +acn = —b e m) = m + R

In the same manner, we have

21 (0 =1\ _ (—=(pg+rs+rq) —(¢*+sq+s)
" 1 1 )77 P> +rp+1r? pq + ps + s

- <_(b;1)/2 (b!f)/z)

and
(0 -1 —2d(—bn+m) —acn  x
(0T )= (5 n)
(—Tn—f—m)aN(ﬂ) *
where
_b—1(_b+ ) aen = b—t ) bft 43
—5 (Fbntm)—acn=bl ——n-m 5 M "
So we get

Avexniaords- (L) §)) exnn)

or Ag - <7—1<(1) —11>,y> € +11(12)
b+1

@12‘@71, m € £1+bn+ 127, or 12’a<

1 —1 2
_b(b;n_m) _b2 ma 2 I3nzj:1 (mod 12), or

b—1 b—1 b+1 b2+ 3
12‘a<—2n—|—m> andb<2n—m>+ 5 m — 1 n

n — m> and

=41 (mod 12)

b+1
<:>4}n,m€:|:1—|—bn+12Z, 01“4‘ <;n—m> and
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1 —1 i
_b<lH2_n_m> _b2 m-|-b Zgnzil (mod 12), or

b—1 b—1 1 2
4} <2n+m> and b<2nm> +b; mfb Ign

=41 (mod 12)
& £ el+43,ax+b =1+4[3,aa], or

b+1 b—1 2
4}<—|2_n—m> and — 5 m+b2_3n5:|:1 (mod 12), or

b—1 b+1 i
4}<—2n—|—m) and —;— m—b Ignzil (mod 12).

Therefore, we see that

(8) € Ker(Prej, 1)/ 5) < (B) € Prca(f) N Ik (12),

and the theorem follows. m

ExaMpPLES. (1) Take K = Q(v/—1) and a = [1,(1 + v/—1)/2]. Then
a = (1++/—1)/2 satisfies 2X2? —2X +1 = 0. It follows from Theorem 23(1)
that j1,12((1 + v/—1)/2) generates Q(v/—1); over Q(v/—1) with conductor
f=3[2,14+ V-1

(2) Take K = Q(v/—3) and a = [3,(-3 + v/-3)/2]. Then a = (-3 +
V/—3)/6 satisfies 3X2 +3X + 1 = 0. We are certain by Theorem 23(2)
that j1,12((—3 + v/—3)/6) generates Q(v/—3); over Q(v/—3) with conductor
f=4[3,(=3+v=3)/2].

Table 1. Conductor f of K (j1,12(c))
(x means that there is no « satisfying the condition)

(a,12) =1 (a,12) = 2 (a,12) = 4

dg =0 (mod 4) (12) 3[2, aa]? X

dg =1 (mod 8) (12)  |3[2,a0a][2,aa + 1) | 3[2, acx + 1)
dg =5 (mod 8) (12) X X

(a,12) = 3 (a,12) = 12, (a,12) = 12,

dg =1 (mod 8) |dg #1 (mod 8)

b=0 (mod 3)| 4[3,aq] 2, aa + 1)?[3, ac] X
b=1 (mod 3) | 4[3,ac + 1] | [2, ac + 1]?[3, acx + 1] X
b=2 (mod 3) | 4[3,ac + 2] | [2, ac + 1]?[3, acx + 2] X
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Table 1 (cont.)

(a,12) =6, (a,12) =6,
dg #5 (mod 8) dg =5 (mod 8)
b=0 (mod 6) 2, aa]?[3, ac] X
b=1 (mod 6) | [2,aqa][2,ac + 1]*[3, ac + 1] X
b=2 (mod 6) 2, aa]?[3, acx + 2] X
b=3 (mod 6) | [2,a0][2,ac + 1)2[3,aq] X
b=4 (mod 6) 2, aa]?[3, ac + 1] X
b=5 (mod 6) | [2,ac][2, ac + 1]2[3, acx + 2] X

6. Explicit calculation of minimal polynomials. In this section,
we will find an explicit formula for the conjugates of j; 12(«) permitting the
numerical calculation of its minimal polynomial. Since t(«) := N(j1,12(0))
is an algebraic integer ([11], Corollary 7), it is more convenient to work
with ¢ than with j; 12 in realizing its minimal polynomial. Let Qg, (IN) be
the set of primitive quadratic forms [a/, V', ] having discriminant dx with
conditions a’ > 0 and (a/,N) = 1. For v € [H(N) and Q € Qg, (N),
Q o again belongs to Qg, (N). Hence the quotients Qg, (N)/Io(N) and
Qi (N)/I1(N) are well defined.

THEOREM 25. With K, a and a as before, let az® + bz 4+ c = 0 be the
equation of a such that a > 0 and (a,b,c) = 1. Suppose that (a,12) = 1.
Then:

(1) |Qa, (12)/11(12)| = 2h(O), where O = Z + 120k and h(O) denotes
the class number of O.
(2) Let {Qi}?i(lo) be a complete set of representatives for Qq, (12)/11(12).
Set
2h(0)
FX) = T[ (X =t(ra.))-
i=1
Then f(X) is the minimal polynomial of t(«) over K. Here, 1o, denotes
the root of the equation Q;(z,1) =0 in $. Moreover, f(X) € Z[X].
Proof. First, we recall from [1], Proposition 4.1, that there is a one-to-
one correspondence between Qg (12)/15(12) and Ik (12)/Pk z(12), which
maps [a,b,c] € Qq, (12)/I(12) to [a, (—=b + VdKk)/2] € Ix(12)/Pk 7z(12).
Hence the cardinality of Qg, (12)/I5(12) is equal to h(Q) because
Ik (12)/Pk z(12) = Gal(L/K),

where L is the ring class field of O = Z 4+ 120k over K.
Now let m : Qq, (12)/I1(12) — Qq4, (12)/I5(12) be the natural projec-
tion. Choose an element v in 1(12)\ +77(12), and consider the decomposi-
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tion I'o(12) = I'1(12)U yI'1(12) as transformation groups. It can be easily
shown that 7=1(Q) = {Q, Q o7} for each Q € Qq, (12)/IH(12). We claim
that Q cannot be equivalent to Q o~ under I(12). Indeed, if Q@ ~ Qo
under I (12), then Q@ = Qo~' for some 7' € IH(12)\+I7(12). Let 7o (€ 9)
be the root of Q(z,1) = 0. Then ' ~174 is the root of Q 0+’ in § and it
must be equal to 7g. On the other hand, we see that I'5(12) has no elliptic
element ([19], Proposition 1.43). Thus «/ turns out to be trivial, which is a
contradiction. This proves (1).

We note that the order O, of an Og-ideal a is O itself. Since O, =
Ok =[1,aa], ¥*— dac= dx < 0, (a,12) = 1 and (a,b,c) = 1, [a, b, ] belongs
to Qa, (12). Hence t(a) = t(1g,) for some i. So f(X) certainly has t(a) as
a root. Now we claim that the conjugate of t(«) over K must be of the form
t(7"), where 7’ is a root of a quadratic form [a/, V', '] € Qq,. (12). Indeed, let
o be an embedding of K(;2) over K. Then there exists an ideal a € Ix(12)
such that o = [a, K(12)/K]. Since t has rational coefficients, we get

t(a)? = t(a)[“’K“z)/K] =t(A- a)

for some A € Gy ([1], (3.7.3)). Since Thar = N(jo12) is a rational function
of t, it follows that T7,; = Ti27(7’), where 7/ = A - a. Define disc(7') =
disc Oy 1 = b2 —4d’c, where a'7"?+b'7'+¢ =0,/ > 0 and (a/, V', ') = 1.
Assume that A = (2 9) € My(Z) with (p,q,r,s) = 1. Put disc(r’) = m?dg.
Now, by Theorem 3.7.5(1) of [1], K(T12(7")) is the ring class field of an
order O" = Z + fOk, where f = m -12/(a’,12). On the other hand,
K (T127()) is the ring class field of O = Z + 120k. Since Ti97(7') is a
conjugate of Thar(a), the two fields K (T127(7")) and K(Ti2r(ar)) coincide,
so that m = (a/,12). Let A" = ( °, ;q) be the main involution of A and
Qo Az, 1) = a"2? + b2 + ", where Q = [a,b,c]. Since 7/ = A -« is
a root of the polynomial Q o A*(z,1) and a” is positive, it follows that
Qo A (z,1)/(a”,b", ") = a’2* + b’z + . By taking discriminants on both
sides, we get det(A)%-dx = (a”,b",¢")?-m? - dg, so that m divides det(A).
But (N(a),12) = 1 implies that (det(£,(s71)),12) = 1, where s is an idele
corresponding to a. Thus (det(.A),12) = 1 and so (m,12) = 1. Since m =
(a’,12), both m and (a’, 12) must be 1. This shows that [a/,V’, '] € Qq,. (12)
and t(7') = t(rg,) for some j. Since |Qq, (12)/I1(12)| = 2h(O) and there
are exactly 2h(Q) conjugates of ¢(«) (Theorem 20(2)), the first part of the
assertion (2) is proved.

For the second part of (2), let t(2) = ¢ '+, <, Hnq" (H, € Z) be the
Fourier expansion of t. Write g = x + iy € $ and consider

t(tg) = e—zm(m+iy)_|_z Hﬂm:f2m(ﬂ%y)+z H, e2min(—atiy)
n>1 n>1
=t(—z +1iy) = t(rg),




Modular function ji 12 281

where Q is defined to be [a, —b,c] when Q = [a,b,c]. Hence the complex
conjugate fixes the roots of f(X) and so f(X) € R[X]. But, since t(«)
is an algebraic integer and K is an imaginary quadratic field, f(X) lies in
(RNOK)[X]=Z[X]. =

ExAMPLE. Take K = Q(v/—1) and a = [1,/—1] = Ok. Then the
degree of K (j1,12(v/—1)) over K is 2h(Z + 120k ) = 16. Observe that

Qa,(12)/Iv(12) = {[1,0,1],[5,4,1],]5,6,2],[17,8, 1],
(17, -8, 1], [13,10,2], [37,12, 1], [25, 14, 2] }.
For any v € I(12)\ &+ I'1(12), we have
04 (12)/T1(12) = {Q, Q0| Q€ Qu, (12)/T(12)}.

Now Theorem 25(2) permits an explicit calculation of the minimal polyno-
mial of t(v/=1) = N(j1,12(v/—1)). In fact, by approximating ¢(7g,) with the
aid of computer, we can determine the coefficients of f(X) = [[,(X —t(7g,))
because we already know that f(X) is in Z[X]. Taking the representatives
of Q4,.(12)/I(12) as above and v = (172 471) € I'p(12)\£ I'1(12), we see that
the minimal polynomial of t(y/—1) is

X116 — 520X 15 — 8184 X ™ — 59840 X3 — 266800X 12 — 813984 X !
— 1810976 X0 — 3051904 X° — 3978144 X8 — 4039552 X" — 317504X°

— 1886208 X° — 803584X % — 218624 X3 — 26112X? + 2048 X + 256.

THEOREM 26. Let K, a and « be as in Theorem 25. Assume that (a,12) =
2 and dg = 0 (mod 4). Let Q((flz = {[a",V,] € Qu, | (¢/,12) = 2},
where Qg,. is the set of positive definite primitive quadratic forms having

discriminant dg. Then the quotient fo}i/rl(m) is well defined and its
cardinality is equal to the class number h(QO) of the order O = 7Z + 120k

Let {Qz};i?) be a complete set of representatives for Qig/ﬂ(lZ) and put
f(X) = Hh(o) (X —t(1g,;)). Then f(X) is the minimal polynomial of t(c)

i=1

over K and lies in Z[X].

Proof. We first construct a bijection between Q((ZZ /To(12) and Qq4,. (6)/

I't(6). Define ¢ : QEZ?/FO(IQ) — Q4,(6)/Iv(6) by sending a class of
[a', b, ] to that of [a'/2,V/,2¢/]. Observe that ¢ sends the class of [a’, b, ¢] o
(P9) (with (29) € Ip(12)) to the class of [a’/2,0',2¢] o (/] 2‘7), where

rs r/2 s

(r’/’2 28‘1) lies in IH(6). Thus ¢ is a well defined map. Conversely, we

define a map ¢ : Qg,(6)/Ip(6) — Q((ZE/FO(IQ) as follows: we observe
that any class in Qg, (6)/I0(6) contains a form [a”,b”,c"] with ¢’ even.
In fact, if [a”,b",c"] is a form in Qg, (6) with ¢’ odd, then we consider

[@”, 0" "] o (Zi) = [x,x,a” +b" + "]. Since dx = V'? — 4a"'¢" = 0
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(mod 4), b must be even. The fact that both a” and ¢” are odd im-
plies that a” +b"” + ¢’ is even, as desired. For such a [a”,b”, "], we define
P([a”,b", ")) = [2a",b", " /2]. For (Z“) € I5(6), let [a”,b", "o (27Y) =
[>i<,>i<,a”v2 + b'vr + c”x2] have a”v? + b"vr + ¢’2% even. Then the fact
that a” is odd and b”,c” are even implies that v should be even. Now
maps [a”, 0", ¢"]o (“7) to [2a”, 0", ¢" /2o (- V1), where (- V) € IH(12).
Hence 1 is also well defined. Further, ¢ and 1 are inverses of each other by

construction. Thus
10 /T5(12)| = |Quy (6)/To(6)] = h(Z + 60x) = h(Z + 120x) /2.

Now let 7 : fo}j/rl(m) (2) /T0(12) be the natural projection. Then it

can be easily seen that |7~ (Q) = 2 for each Q € Q((ZZ /T0(12). This proves
the first assertion.

For the second, we see that f(X) has t(«) as a root due to the conditions
on a, b, ¢ and dg. If we proceed in a similar manner as in Theorem 25(2), it
can be shown that the conjugates of ¢(«) over K must have the form t(7’)
with 7/ being a root of [a/,¥/, (] € QEZZ' Thus t(7') = t(rg,) for some j.
At this stage, we need to know the field degree of K (t(a)) over K. By [1],
Theorem 3.7.5(1), K(T12r(c)) is the ring class field of order Z + 60k . Since
[K(t(a)) : K] = 2W(Z 4 60k) = W(Z + 120k), each t(1g,) gives rise to all
the conjugates of ¢(«). Finally, the proof of the fact that f(X) € Z[X] is
completely the same as that in Theorem 25(2). m

EXAMPLES. (1) Take K = Q(v/—1) and a = [2,1 + v/—1]. Then the
degree of K (j112((1+ H)/2)) over K is h(Z + 120k ) = 8. Observe that

Q) /1y(12) = {[2,~2,1],[26, 10, 1], [10, 14, 5, [10, —14, 5]}.

Taking the representatives of Qd )/F0(12) in the above and v = (172 ‘71) in

I'v(12)\ £ I1(12), we come up with the following minimal polynomial of
t((1++v/=1)/2)
X% 4+ 28X7 +124X° + 304X° 4 448X " + 340X° + 208X > + 64X + 16.
(2) Take K =Q(+/—2) and a=2,y/—2]. Then the degree of j; 12(v/—2/2)
over K is h(Z + 120k) = 8. Observe that
Q'Y /Iy(12) = {[2,0,1], [22, —28,9], [86, 32, 3], [134, 40, 3]}.

Taking the representatives of Q,; ;3 /IT5(12) in the above and v = (172 471) in

I'v(12)\ £ I'1(12), we come up with the following minimal polynomial of
t(v/—2/2):
X® —80X" —416X° — 992X° — 1280X* — 896 X3 — 224X? + 64X + 16.

THEOREM 27. Notations being as in Theorem 26, assume that (a,12) = 2
and dg =1 (mod 8). Then:
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(1) |Qay /T1(12)] = 2h(O), where O = Z + 120k

(2) g(X) := H?Z(lo)(X —1t(7g,)) has t(a) as a root and lies in Z[X]. Let
f(X) € K[X] be the monic irreducible factor of g(X) having t(«) as a root.
Then f(X) is the minimal polynomial of t(a) over K and lies in Ok [X].

Proof. (1) We define ¢ : Q(2)/F0(12) — Q4,.(6)/1(6,2) by sending
the class of [a/, V', /] to that of [d’ / 2,0,2¢]. Observe that ¢ sends the class
of [a/,V/,c]o (27) (with (P?) € F0(12)) to that of [a'/2,V,2¢] o (7}/92 21),
where (T’/’2 S) lies in 1(6,2).
we define ¢ : Qg4,.(6)/16(6,2) — (2)/F0(12) as follows: we note that, for
any class [a”,b"”,c"] in QdK( )/To(6, 2) " is always even because a” is odd
and dg = V"% — 4a”¢’ = 1 (mod 8). Now 1 sends [a”,b",c"] o (47) to
[2a”,b",¢" /2] o (42 “/2), where (" Uf) € Ip(12). Hence 1 is also well

2w x 2w
defined. Moreover, ¢ and v are inverses of each other. Thus

10 /T0(12)] = |Quy (6)/T0(6,2)| = 2|Qa, (6)/T0(6)| = h(O).

This implies that |Q£i3 /I (12)] = 2h(0O), which proves (1).
(2) The assertion g(t(a)) = 0 and ¢g(X) € Z[X] can be proved by the
same method as in Theorem 26. The remaining assertions are obvious. m

ExaMPLE. Take K = Q(v/—7) and a = [2, (=1 + v/=7)/2]. The degree
of K(j112((—1++/=7)/4)) over K is h(Z + 120k) = 8. Observe that
(2)/F0(12) ={[2,1,1],[2,-1,1],[22,13,2], [22, —13,2],
(14,21, 8], [14, —21, 8], [106, 29, 2], [106, —29, 2]}.
Then we have an irreducible polynomial over Z,
g(X) = X1 48X +4104X 1 4 32656 X 1% 4 138848 X 12 + 401328 X !
4 866800X 10 + 1464128 X° + 1980720X® + 2173760X "
+ 1946944 X6 + 1423872 X5 + 843008 X% + 394240X3 + 138240X2
+ 32768X + 4096,

which has t(a) as a root. However, since the degree of K (t((—1++/—7)/4))
over K is 8, we must factor g(X) into two polynomials in O [X] and one
of them is the minimal polynomial of ¢(«)). Indeed, we come up with the
following minimal polynomial of ¢(«) over K:

X84 (4—24vV-7)X" + (28 — 96/ —T7) X5 4 (88 — 216v/—7) X5
+ (136 — 312v/=7)X* 4 (88 — 312/ —7) X3 — (8 + 216/ —7) X2
— (32 + 96V —T)X — (8 4 24v/=T7).

Lastly, for more practical and overall calculation of minimal polynomials,
we first need the following lemma.

Thus ¢ is a well defined map. Conversely,
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LEMMA 28. For each even integer N > 4, let

1 0 1 0 n+1 1

and

5 — <2m1+1 4m2+1> (1<m<N/2-1).
Then the set {y1,...,YN,01,-..,0n/2—1} is a subset of representatives for
I'(1)/I'o(N).

Proof. First, we check that ’y;lvj ¢ I[H(N) for distinct ¢ and j. We
have

n+1 1

_ _ 0
7217n+1=< 1 O>€F0(N) and 'Ym}H'YnJrl:(

n—m 1

>6FO(N)

if and only if n = m because 2 < n,m < N — 1. And v, '6,, = (5. 5) ¢
IH(N) since =N +2 < —2m < —2, and 6,,'6, = (4,0, 1) € To(N) if and
only if m = n owing to the fact that —(N —4) < 2(m —n) < N —4. Finally,
we get fy;ilém = (_Qn;knﬂ *) & I'y(N) because —2mn+ 1 is an odd integer.
This proves the lemma. =

For our case N = 12,

(10 (10 C(n+1 1

and
5 — <2m—|—1 4m—|—1) (1<m<5)
1 2
constitute a part of the set of representatives for I"(1)/Io(12).
Then from a direct computation we can show that

(1 -1 (7 2 (11 (2 -1
Y13 = 3 9/ Y14 = 3 1) 715 = 4 5/ Y16 = 5 92/
(41 (11 (2 -1
,‘)/17_ 7 2 I ,‘)/18_ 10 11 9 719_ 1 0

together with {v1,...,712,01,...,05} form a complete set of representa-

tives for I'(1)/T9(12). Define S = {y1,...,719,01,...,05}. Since (1724;) €
I5(12)\ £ I (12), we see that S’ = SUS( ! 4) is a complete set of repre-

w2), We 127
sentatives for I'(1)/1'1(12) as desired.

THEOREM 29. With K and « as before, let f(X) be the minimal polyno-
mial of t(a) over K and az? + bz + c = 0 the equation of o such that a > 0
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and (a,b,c) = 1. Let Qq,. /(1) = {Qj}?fl and I'(1)/T'1(12) = {v}32,
with v, € S’, where hx denotes the class number of K. Define

hx 48

H H =t TQJ )-
j=1k=1
Then:
(1) g(X) lies in Z[X] and is divisible by f(X).

g
(2) £(X) lies in Ox[X\R[X] if

(a,12) =2,4,12 and dxg =1 (mod 8),
(a,12) =3 and b # 0 (mod 3),
(a,12) =6 and b Z 0 (mod 6)

and lies in Z[X] if

) =1,

)=2 and dg =0 (mod 4),
)=3 and b=0 (mod 3),
)=6 and b=0 (mod 6).

)
J1(X)? f3(X)? if dg = =3
(X)? if dg = —4
FrX)™ (fo(X) f2(X))"™ (f3(X) f3(X))™ (fa(X) fa(X))"
X (f6(X) f6(X))" (fr2(X) f12(X)) ™2
if dgk =1 (mod 8), dxg=+1 (mod 12),
FX) fo(X) fo(X) f4(X) f1(X)  if dg=1 (mod 8), dx=+5 (mod 12),

J1(X) f2(X) f2(X) f3(X) fa(X) fa(X) f6 (X) f6 (X) f12(X) f12(X)
ifdg =1 (mod 8), dx =0 (mod 3),

f1(X) f3(X) f3(X) if dg =5 (mod 8), dx=+1 (mod 12),
f1(X) if dgk =5 (mod 8), dxg==+5 (mod 12),
J1(X) f3(X) if dg =5 (mod 8), dg =0 (mod 3),
J1(X) f2(X) f5(X) fo(X) if dx =0 (mod 4), dx =0 (mod 3),
Ji(X) f2(X) f3(X) f3(X) fo (X) f6(X)

if dg =0 (mod 4), dx =1 (mod 3),
| f1(X) f2(X) if dg =0 (mod 4), dx =2 (mod 3),
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where f;(X) (i =1,2,3,4,6,12) stands for the minimal polynomial of t(c)
over K with (a,12) = i, and f;(X) the complex conjugation of f;(X). In
the third case, each n; > 1 and

8(711 + ng + N3 + 7'L4) + 4(“6 + Tl12) = 48.

Proof. (1) Let m: Qq,. /I1(12) — Qq, /I'(1) be the natural projection.
Then for each Q; € Qq, /I'(1), 71 (Q;) = {Qjo0v | k =1,...,48}. Hence,
[a, b, c] is equivalent under I'1 (12) to Q; o~y for some j and k because [a, b, c|
belongs to Qq, . Since t(a) = t(v; 'To,), g(X) certainly has () as a root.
Moreover, the fact that g(X) € Z[X] can be proved in the same manner as
in Theorem 25(2).

(2) Let 7 be the map which gives the complex conjugation on K (t(«)).
Then it can be easily shown that

Ker(Px (t(a))7/x) = (Ker(Pr(i(a))/x))” = Pr1(f)”

where f is as in Table 1.

If (a,12) > 2 and the conditions in the first statement are satisfied,
then we can see from the proof of Theorem 21 that either 2 or 3 splits
completely in K, and so Pg 1(f)” = Px1(f") # Pk,1(f). This implies that
K(t(a))™ # K(t(a)). Moreover, f(X) differs from f(X) because K (t(«))
(resp. K(t(c))7) is the splitting field of f(X) (resp. f(X)). Therefore we
conclude that f(X) & R[X].

For the cases (a,12) =1, (a,12) = 2 and dxg =0 (mod 4), the assertion
follows from Theorems 25 and 26 (this can also be proved by the argument
below). For the other cases, we note that the conductors f are of the form
“an integer times a product of ramified prime ideals”. Therefore, f should
be invariant under the action of 7 and so

Gal(K (t())/K) = Ik(§)/Pra(f) = I (f7)/Pra(f7)
~ Gal(K (t(a))"/K).

Hence, it follows from the uniqueness theorem of class field theory that
K(t(a)) = K(t(a))" = K(t(a)").
Then, since both K(t(«)) and K(t(a)™) are splitting fields of f(X), they
are identical. This yields that
f(X)=T(X) and f(X) € (Ox NR)[X] = Z[X].

(3) If dg = —3 (resp. dx = —4), the decomposition of g(X) is im-
mediately obtained by factorizing the polynomial Higzl(X —t(v, 10)) (resp.
iszl(X—t(v,;l\/—l))) where o = €2™/3. Next, suppose that dg # —3, —4.
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Let f be as in Theorem 21. We then see that

(K5 : K] = [Kj : K(jo,12())][K (Jo,12()) : K] = 2[K (jo,12(ar)) : K]
=2h(Oy) by [1], Theorem 3.7.5(i),

for an imaginary quadratic order Oy = Z + fOg where f = 12/(a,12). As
for the computation of h(Oy), we recall from [16] or [19] that

R e )

plf

where h is the class number of K, O and (9? are the unit groups of Ok

and Oy, respectively, and (dTK) is the quadratic reciprocity, equal to 1 if
p splits completely in K, —1 if p inerts, and 0 if p ramifies in K. By the
assertion (1), the polynomials on the right hand side are factors of g(X).
Furthermore, we see by (7) that the sum of their degrees in each case is
equal to the degree of g(X), which is 48h k. This completes the proof. m

Given K and «, factorizing the polynomial g(X) in Theorem 29, we
obtain the following table for several dg > —7.

Table 2. Minimal polynomial of ¢(«)
dg = —3

a (a,12) f min(t(a), K)

X' 4 240X +2172X 10 4 9752 X7
8 7 6
C14yT + 27324Xr +52416X7 + 71520X
2 + 69696 X° + 47088 X% + 20480X3
+4800X2 + 384X + 64

SRR\ a3, 2] X 4eX 412X 12 18X 44

a (a,12) f min(t(a), K)

X16 _520x15 — 8184X ™ — 59840X 13
— 266800X 12 — 813984 1!
— 1810976 X 10 — 3051904 X

V-1 1 (12) — 3978144X°® — 40395527

— 317504X°% — 1886208 X°

— 803584X* — 218624 X3

—26112X2 + 2048X + 256

X8 4+ 28X7 + 124X + 304X° + 448X
+340X3 4+ 208X2 4 64X + 16

3
Ss o BE RN E A TRVES]
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Table 2

(cont.)
dg = —7

(a,12)

min(t(a), K)

—14+v/—=7 1
2

(12)

X161 4088X15 + 65544 X 14
+ 479296 X 13 + 2133968 X 12
+ 6508128 X M + 14487520 10
+ 24430208 XY + 31839840.X 8
+ 32289920X 7 + 25339264 X °
+15071232X° + 6495488 X *
+ 1845760X° + 268800.X 2
+ 2048X + 256

—14+v/—=7 9
1

3[2,

X [2,

—1+2ﬁ]

1+\F]2

X84+ (4—24/=T) X" +(28—96/—7)X©
+(88—216v/—7)X° +(136—312y/—7) X*
+ (88—312y/=7) X3 — (84+-216/—7) X 2
— (324 96v/—T)X — (84 24/—=7)

3[27
71+2ﬁ] 2

X [27

1+\2/f7]

X84 (4+24v/=7) X +(28+96v/~7) X6
+(88+2161/—7) X7 +(136+312y/—-7) X *
+ (88+4312¢/—=T7) X3 — (8—2161/—T7) X2
— (32 = 96V/—7)X — (8 — 24/—7)

—3+V/-7 4
8

X8 4 (723’32ﬁ>X7 (58 — 6y/—7)X°
+ (311’227ﬁ>X5 (467 SQF)X4
+ (371—39ﬁ>X3 <

—(2+6V=1)X

119— 27F)X2
3ﬁ>

+ (58 + GF)
+ (467+39F>X4

X84 (23+3f)
+ (311+227F>X
+ 371+329ﬁ>X3 (119+27F>X2

—(2-6v=T)X - (=55

Here min(¢(«), K) denotes the minimal polynomial of ¢(«) over K.

Appendix. In Table 3, we give the Hauptmoduln for the genus zero
N), due to K. Harada ([4]). Note that each Hauptmodul corre-

curves Xo(

sponds to the Thompson series as specified in the table ([2]).

For generation of generators of K (X;(V)), we used the functions:

® E4(Z)
weight 4,

1+ 240 3%

1‘73(

)q", the normalized Eisenstein series of
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Table 3
N Hauptmodul Type
2 % 2B
3 | Mk 3B
4| 2, iy 4C
5 | ey 5B
6 | e Ao meme 6B
7 | 2 7B
aEE z
o |2l 9B
10| 3 hattonr wswtiogs | 108
12| JUAED M), Ay | 1o
13 % 13B
16 77?2(3;% 16B
18| FESE ot sese | 18D
25 % 252

o 1(z) = e™#/ 12> (1 — ¢"), the Dedekind eta function,
o Ga(z) = 2¢(2) — 872 07 | o1(n)q", the Eisenstein series of weight 2,
e F5(z), the normalized Eisenstein series of weight 2,
o GY)(2) = Ga(2) — pGa(p) for a prime p,
Eép)( ) = FE3(2) — pEs(pz) for a prime p,

o Ggaha?) (mod N)(z), the level N Eisenstein series of weight 2.

In Table 4, we give the Hauptmoduln for genus zero curves X;(N), due
to Kim and Koo ([5]-[11]).

Since
(39 re (3 ) =no

and n(2)3/n(92)3 is the Hauptmodul of Xy(9), we see that j3(z) defined
above is the Hauptmodul of X (3). Here, Wy = ( v _01) is the Fricke invo-
lution.
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Table 4
N Hauptmodul Field generator
. . 02(2)*
2 | N(ja(2) = 722 - 8 jal2) = M) = 25
3
3 | N(ja(2)) = ja(2) G3(z) = ks (i)
01l
. , 05(2/2
4| N(ja(2) = 385 +2 jalz) = )
. 8 . 02(2)®
2 | N(j1,2(2)) = hiﬁ +24 Ji,2(2) = 942((%))3
. ; E
3 | N(j1a(2) = 7725 +9 a(2) = 545
. . 92 (22)*
4 | NGra() = 55 — 8 dra(z) = 2265
. _ . 5 5 52)°
5 | N(j15(2)) = 5iras — 5 () = (428 + B (2)) 1 255
: — 2 _ L o(2) = G2)=GY(32)
6 | N(jre(2)) = J1,6(2)—1 1 J16(2) = 26 (2)-G (2)
. _ 1 ) _ G(O,l) (mod 7)7G(D’2) (mod 7)
7 N(]L?(Z)) = WeGir(e))—1 3 ]1,7(2) = Ggo,l)(modn_GEo,s) (mod 7)
. . 0s(2
8 | N(j1s(2) = 5oiy=1 — | s(z) = £83
) _ 1 ) _ G(O,l) (mod 9)7G.(D'2) (mod 9)
9 1 N(1,9(2) = wagieey=t — 2 |J19(2) = Gg(),l)(modg)_GzoA) wod D)
. _1 ) GgO.l) (mod 10)7Gé0'2) (mod 10)
10 N(]LIO(Z)) = WioG110(2))—1 2 ]1,10(7«') = G(20,1) (mod 1o)_G<20,4) (mod 10)
. . 65(2
12| N(j112(2)) = 55157 J1a2(2) = 223
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