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A conditional density theorem for the zeros
of the Riemann zeta-function

by

Alessandro Zaccagnini (Parma)

1. Introduction. Let % := β + iγ denote the generic non-trivial zero of
the Riemann ζ-function,

N(σ, T ) := |{% = β + iγ : β ≥ σ, |γ| ≤ T and ζ(%) = 0}|
and

Θ := sup{β ≤ 1 : ζ(β + iγ) = 0}.
Our aim is to study the relation between bounds for N(σ, T ) and bounds
for the Selberg integral

J(x, θ) :=
2x\
x

|ψ(t)− ψ(t− θt)− θt|2 dt.

It is well known, and comparatively easy to prove, that if Θ < 1, then

(1) J(x, θ)� x(θx)2Θ(log x)B ,

for some absolute constant B, uniformly for xε−1 ≤ θ ≤ 1, for any fixed
ε > 0 (we have assumed the Density Hypothesis, for simplicity). On the
Riemann Hypothesis (i.e., Θ = 1/2), (1) holds with B = 2 and uniformly
for x−1 ≤ θ ≤ 1 (see e.g. Saffari & Vaughan [6], Lemma 6). Also, it is
known that (1) holds unconditionally with Θ = 1 and any fixed B > −2
in the range x−5/6−ε(x) ≤ θ ≤ 1, provided that ε(x) → 0 as x → ∞ (see
Zaccagnini [9]). It is also well known that any bound of the type

(2) N(σ, T )� TC(1−σ)(log T )B

for T ≥ 2, coupled with a suitable zero-free region for the Riemann zeta-
function, leads to

J(x, θ) = o(x3θ2)
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uniformly for x−2/C+ε ≤ θ ≤ 1, for any fixed ε > 0 (see [6], Lemma 5). The
best known value for C is 12/5 (Huxley [4]).

We want to prove a sort of converse to the above results, and we study
consequences of bounds for J(x, θ). We show below that a very strong bound
for J(x, θ) like (1) (even if only for θ = 1) is essentially equivalent to the
quasi Riemann Hypothesis, in the sense that J(x, 1)� xδ for some δ ∈ [2, 3]
implies that Θ ≤ 1

2 (δ − 1). Hence we can confine our attention to the case
where the saving over the trivial estimate J(x, θ)� x3θ2, stemming from the
Brun–Titchmarsh inequality, is comparatively small. As may be expected
from the foregoing discussion, our results will depend both on the strength
of the bound for J and on the degree of uniformity in θ we have. In order
to fix notation, we assume that

(3) J(x, θ)� x3θ2

F (θx)

uniformly for

(4) G(x)−1 ≤ θ ≤ 1,

where F and G are positive, strictly increasing functions, unbounded as x
tends to infinity. Our main result is the following

Theorem. There exist absolute constants B0 ≥ 2 and C0 ≥ 1 such that
if (3) holds uniformly in the range (4) for G(x) = xβ , with a fixed β ∈ (0, 1],
then for any B ≥ max(B0, β

−1) and any C > C0 we have

N(σ, T )�B,C
TBC(1−σ)

min(F (TB−1), T )
.

We remark that, since we can assume that F (x)� xε for every ε > 0, in
the above hypotheses the denominator is F (TB−1). Actually, we can give this
result a more general form (see (13) below), which gives interesting results
also in the case G(x) = oε(xε) for every ε > 0; for this, see Corollary 2.
Some admissible numerical values for B0 and C0 will be obtained below. We
now examine some consequences of the Theorem; the general philosophy is
that good estimates for J yield good zero-free regions for zeta.

Corollary 1. If (3) holds for some function F with F (x) � xε for
every ε > 0 and G(x) = xβ for some β ∈ (0, 1], then for every B > B0 and
t > 2 the Riemann zeta-function has no zeros in the region

σ > 1− B − 1
BC0

· logF (t)
log t

.

The general version referred to above also yields the following special
result.
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Corollary 2. Let B0 and C0 denote the constants in the Theorem. If
(3) and (4) hold with F (x) = exp(log x)α and G(x) = exp(log x)β for some
fixed α, β ∈ (0, 1], then the Riemann zeta-function has no zeros in the region

σ > 1− 1 + o(1)
B0C0(log(2 + |t|))r(α,β)

,

where r(α, β) := (1−min(α, β))β−1.

It should be observed that if, for example, F (x) = (log x)A then from
Corollary 1 we simply recover Littlewood’s zero-free region, which is needed
in the proof, while arguing as in the proof of Corollary 2 we can show that one
recovers the Korobov–Vinogradov zero-free region from (13), provided that
one can take F (x) = G(x) = exp((log x)3/5(log log x)−1/5). We also remark
that if F were bounded (that is, if we had only the trivial bound for J)
this is essentially Bombieri’s proof of his Density Theorem (see Theorem 14
in [2]).

The main defect of our Theorem, apart from the fact that B0 and C0 are
very large, is that the range of uniformity (4) cannot be too small in order
to exploit the full force of (3). Essentially, our Theorem yields better results
if G(x) ≥ F (x). This is due to the use of the Brun–Titchmarsh inequality
as a universal upper bound for ψ(t)− ψ(t− θt) outside the range (4), as in
the proof of Lemmas 5 and 6.

Some improvement on the values of the constants is possible, provided
one can avoid the use of the Brun–Titchmarsh inequality when estimating
the error terms arising from Gallagher’s lemma and elsewhere (see Lem-
ma 6). Actually, the numerical values that we obtain are rather large, since
the proof yields that the above results hold for some B0 ≤ 40000 and C0 ≤
2000 log 16e. This means, for example, that using our main result, even a
very strong bound like (3) with F (x) = x/(log x)2 (which is known to hold
under RH for xε−1 ≤ θ ≤ 1) does not lead to a strong Density Theorem,
unless β is rather large, and, indeed, we need an alternative argument in
order to show the complete equivalence with RH.

It will be clear from the proof how the upper bounds for B0 and C0

depend on other number-theoretic constants. We note that it would be pos-
sible in principle to improve on the numerical values given above, though
we do not pursue this matter further. It is not difficult to see that a density
bound like ours implies estimates for J(x, θ) like (3), although weaker.

For the proof we use the Second Main Theorem of Turán (Theorem 8.1
of Turán [8]), modifying Bombieri’s proof of his Density Theorem (Theorem
14 of [2]). The fact that the zeta-function is of finite order in the critical
strip also plays a crucial rôle. These results should be viewed in the light of
the papers of Bazzanella & Perelli [1] and Goldston & Montgomery [3].
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It is a pleasure to record my thanks to Jerzy Kaczorowski and Alberto
Perelli for several conversations on these topics.

2. Preliminary lemmas. We start with the remark alluded to above,
concerning strong bounds for J(x, 1): assume that

(5) J(x, 1)� xδ

for some δ ∈ [2, 3]. Then Θ ≤ 1
2 (δ − 1). In fact, writing ∆(x) := ψ(x) − x,

one has the well known integral representation

(6) −ζ
′

ζ
(s) =

s

s− 1
+ s

∞\
1

∆(x)
xs+1 dx =

s

s− 1
+ sH(s),

say, in σ > 1, to begin with. But by the Cauchy inequality

|H(s)| ≤
∞\
1

|∆(x)|
xσ+1 dx ≤

{∞\
1

|∆(x)|2
xα

dx

∞\
1

dx

x2σ+2−α

}1/2

.

By (5), splitting the half line [1,∞) into the dyadic intervals [2n, 2n+1], it
is easily seen that the first integral converges if α > δ, while the second
integral converges absolutely if α < 2σ + 1. If σ > 1

2 (δ − 1) we can find α
satisfying both conditions, and hence H(s) represents an analytic function
in σ > 1

2 (δ − 1). By (6), the only singularity of ζ ′/ζ in this half plane can
occur at σ = 1, and therefore ζ cannot vanish.

We prove or quote from the literature some results we need later, in order
to fix notation. For brevity we write L := log T . We write our inequalities
with explicit, absolute constants (unless stated otherwise). Hence, from now
on cj will denote a positive, absolute constant. We assume throughout that
T is sufficiently large, 2 ≤ |t| ≤ T and write w := 1 + it.

Lemma 1. There exists an absolute constant c0 > 0 such that for L−1 ≤
r ≤ 1/4 the Riemann zeta-function has ≤ c0rL zeros in the circle |s − w|
≤ r.

This follows from the “Lemme de Densité” in §6 of [2].

Lemma 2. There exists an absolute constant c1 > 0 such that if zn ∈ C
for n = 1, . . . , N and K ∈ N, then there exists k ∈ N with K+1 ≤ k ≤ K+N
such that

|zk1 + . . .+ zkN | ≥ 2
(

c1N

K +N

)N
|z1|k.

This is a corollary of the Second Main Theorem of Turán (Theorem 8.1
of [8]). Kolesnik & Straus [5] give the numerical value c1 = (4e)−1. Now let

F (s) := −ζ(s)− ζ ′(s)
ζ(s)

.
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Lemma 3. Let c1 be the constant in Lemma 2. There exists an absolute
constant c2 > 0 with the following property : let L−1 ≤ r ≤ c1/(16e) and
K ≥ c2rL. If the Riemann zeta-function has a zero in the circle |s−w| ≤ r,
then there exists an integer k such that K ≤ k ≤ 2K and

1
k!
|F (k)(w + r)| ≥ 2

c1

(
c1
4r

)k+1

.

P r o o f. It is well known (see e.g. Titchmarsh [7], Theorem 9.6A) that

(7)
ζ ′(s)
ζ(s)

=
∑

|%−w|≤1

1
s− % +R1(L),

with |R1(L)| ≤ c3L, in |s − w| ≤ 1/2. Let λ := Ar for some constant
A to be chosen later, and s0 := w + r. We assume that K is an integer
satisfying K ≥ c2rL, where c2 will be chosen eventually. Following the proof
of Lemma A in §6 of Bombieri [2], we prove that there exists an absolute
constant c4 > 0 such that if the Riemann zeta-function has a zero in the
circle |s− w| ≤ r, then for a suitable integer k ∈ [K,K +N − 1], we have

(8)
1
k!

∣∣∣∣
(
d

ds

)k
ζ ′

ζ
(s0)

∣∣∣∣ ≥ 2
(

c1N

K +N

)N
(2r)−k−1 − c4λ−kL,

provided that λ ≤ 1/4. For the proof, which gives also the bound c4 ≤
4c0 + c3, we need Lemma 1, Lemma 2, (7) and the Cauchy inequalities for
the derivatives of holomorphic functions. For y > 0 define

M(y) := max
|s−s0|≤y

|ζ(s)|,

so that, by the Cauchy inequalities again, we have

(9)
1
k!
|ζ(k)(s0)| ≤ (Br)−kM(Br)

for any fixed B > 0. We remark that the simpler inequality |ζ(k)(s0)| �
k!r−k−1 would not suffice for our purposes. By Theorem 3.5 of [7] and the
Phragmén–Lindelöf principle there exists c5 > 0 such that

|ζ(σ + it)| ≤ c5 ·
{
|t|c6(1−σ) log |t| for σ ∈ [1/2, 1] and |t| ≥ 2,
log |t| for σ ≥ 1 and |t| ≥ 2,

where c6 is any constant> 2µ(1/2), µ being the order function (as a Dirichlet
series) for the Riemann ζ-function (see [7], Chapter 5). This and (9) yield
at once

1
k!
|ζ(k)(s0)| ≤ c5(Br)−kT c6(B−1)rL =

4c5
c1

(
c1
4r

)k+1( 4
c1B

)k
T c6(B−1)rrL.
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But for B ≥ 4c−1
1 we have

(10)
(

4
c1B

)k
≤
(

4
c1B

)K
≤
(

4
c1B

)c2rL

and

(11)
1
k!
|ζ(k)(s0)| ≤ 4c5

c1

(
c1
4r

)k+1

exp
{(

c6(B − 1)− c2 log
c1B

4

)
rL
}
rL.

Using (10) with B replaced by A we prove that, if A ≥ 4c−1
1 , we have

(12) c4λ
−kL ≤ 4c4

c1

(
c1
4r

)k+1

exp
{
−c2 log

c1A

4
rL
}
rL.

We finally remark that
(

c1N

K +N

)N
≥
(
c1
2

)K
≥
(
c1
2

)k

for all K ≥ N and k ≥ K, since c1 ≤ 2e−1. Hence, by (8), the proof is
complete if we show that the sum of the right hand sides of (11) and (12)
is ≤ 2c−1

1 (c1/(4r))k+1. This is easily accomplished choosing first A = B =
4ec−1

1 and then c2 large, using the fact that rL ≥ 1.

Lemma 4. There exist absolute constants A0 ≥ 1, B0 ≥ 1 and C0 ≥ 2
with the following property. Let L−1 ≤ r ≤ c1/(16e). If the zeta-function
has a zero in the circle |s − w| ≤ r, then for all x ≥ TB0 and C > C0 we
have

xA0\
x

∣∣∣∣
∑

n∈[x,y]

Λ(n)− 1
nw

∣∣∣∣
2
dy

y
�C (log x)3x−Cr.

P r o o f. This is proved essentially as Lemma B in §6 of [2], using Lemma 3
above. We just remark that the proof gives B0 ≥ c2, the latter being the
constant in Lemma 3, and that A0 = 40000 and C0 = 4000 log(4c−1

1 ) are
admissible values.

Lemma 5. Uniformly for xε−1 ≤ θ ≤ 1/2 we have

2x\
x

∣∣∣∣
∑

n∈(t−θt,t]

Λ(n)− 1
n

∣∣∣∣
2
dt

t
�ε x

−3J(x, θ) + θ4.

P r o o f. For brevity we write I := (t− θt, t]. First we observe that

∑

n∈I

Λ(n)− 1
n

=
∑

n∈I

Λ(n)− 1
t

+
∑

n∈I
(Λ(n)− 1)

(
1
n
− 1
t

)
= Σ1 +Σ2,
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say. But by the Brun–Titchmarsh inequality we have

Σ2 � θt

t(t− θt)
∑

n∈I
(Λ(n) + 1)�ε θ

2.

Finally, since |a+ b|2 � |a|2 + |b|2, we have

2x\
x

|Σ1 +Σ2|2 dt
t
�ε

2x\
x

|Σ1|2 dt
t

+ θ4 �ε x
−3J(x, θ) + θ4.

Lemma 6. For τ = exp θ we have

θ−1\
−θ−1

∣∣∣∣
∑

n∈(x,y]

Λ(n)− 1
n

niu
∣∣∣∣
2

du� θ−2
y\
x

∣∣∣∣
∑

n∈(u,τu]

Λ(n)− 1
n

∣∣∣∣
2
du

u
+ θ.

P r o o f. We use Gallagher’s Lemma (in the form given in [2], Théorè-
me 9), putting

an :=

{
Λ(n)− 1

n if n ∈ (x, y],

0 otherwise.
This gives the first term at once. The other term arises from the ranges
(x− θx, x) and (y − θy, y), where we use the Brun–Titchmarsh inequality.

3. Conclusion of the proof. We follow the proof of Theorem 14 in
§6 of Bombieri [2], replacing the large sieve by Lemma 6 with T := θ−1.
Let % := β + iγ be a non-trivial zero of ζ, with β > σ ≥ 1/2. We take
r := c7(1 − σ) with c7 ≥ 2 and remark that L−1 ≤ r ≤ c1/(16e) provided
that 1 − c1/(16ec7) ≤ σ ≤ 1 − (c7L)−1. The latter inequality obviously
follows from Littlewood’s zero-free region if T is large enough. We have

|%− (1 + it)| ≤ 1− β + |t− γ| ≤ 1
2r + |t− γ| ≤ r

for |γ − t| ≤ r/2. From Lemma 4 we have

xA0\
x

γ+r/2\
γ−r/2

∣∣∣∣
∑

n∈(x,y]

Λ(n)− 1
n1+iv

∣∣∣∣
2

dv
dy

y
� r(log x)3x−Cr,

for any C > C0, and, summing over zeros,

N(σ, T )r(log x)3x−Cr � r log T
xA0\
x

T+r\
−T−r

∣∣∣∣
∑

n∈(x,y]

Λ(n)− 1
n1+iu

∣∣∣∣
2

du
dy

y
,

since each point of the interval (−T − r, T + r) belongs to at most c0rL
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intervals of type (γ − r/2, γ + r/2), by Lemma 1. Hence

N(σ, T )� log T
(log x)3x

Cr
xA0\
x

T+r\
−T−r

∣∣∣∣
∑

n∈(x,y]

Λ(n)− 1
n1+iu

∣∣∣∣
2

du
dy

y

� log T
(log x)3x

Cr

{
θ−2

xA0\
x

y\
x

∣∣∣∣
∑

n∈(u,τu]

Λ(n)− 1
n

∣∣∣∣
2
du

u

dy

y
+ θ log x

}
,

by Lemma 6 with T = θ−1, τ = exp θ. The inner integral is

� log x max
x≤t≤y

2t\
t

∣∣∣∣
∑

n∈(u,τu]

Λ(n)− 1
n

∣∣∣∣
2
du

u

� log x max
x≤t≤y

{J(t, τ − 1)t−3 + θ4},

by Lemma 5. By our hypothesis (3) and our choice of T , we finally have

N(σ, T )� log T
log x

xCr
{

1
F (θx)

+
θ

log x
+ θ2

}
(13)

� log T
log x

xCr
{

1
F (xT−1)

+ T−1
}
.

This is our main estimate, subject to the conditions x ≥ max(TB0 , G−1(T ))
and θ = T−1, where G−1 denotes the inverse function of G.

The proof of Theorem 1 is completed by choosing x = TB , with B ≥ B0

and B ≥ β−1.

Proof of Corollary 2. If α > β then our hypotheses imply that the right-
most expression in curly brackets in (13) is� T−1. We choose x as small as
possible (that is, x = exp(log T )1/β) and obtain the result. If, instead, α ≤ β,
the expression considered above is � F (xT−1), and a simple computation,
again with x = exp(log T )1/β , gives the zero-free region

σ > 1− (log T )α/β(1 + o(1))
C(log T )1/β

.

This concludes the proof.
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