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1. Introduction. Being still involved with the moments

(1) G(x, k) =
∑

0<a≤k
(a,k)=1

E2(x; a, k) =
∑

0<a≤k
(a,k)=1

(
θ(x; a, k)− x

φ(k)

)2

and

(2) S(x,Q) =
∑

k≤Q
G(x, k)

where
θ(x; a, k) =

∑

p≤x
p≡a,mod k

log p,

we continue by investigating a topic that may be seen as a synthesis of
those studied in I, II, and XII (as before, we refer to former papers with the
present title by the Roman number indicating their position in the series,
details of those cited being given in the list of references at the end). In the
first two of those papers we were mainly interested in Barban–Montgomery
asymptotic formulae (with remainder terms) of the type

(3) S(x,Q) ∼ Qx logQ

that were valid unconditionally for

(4) x log−A x < Q ≤ x
and also conditionally for

(5) x1/2+ε < Q ≤ x
on the extended Riemann hypothesis, while in the last paper, improving on
the work of Friedlander and Goldston [1], we shewed unconditionally that

(6) G(x, k) >
(

1
2 − ε

)
x log k (x > x0(ε))
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for

(7) xe−A1
√

log x < k ≤ x
and that

(8) G(x, k) >
(

3
2
− log x

log k
− ε
)
x log k

on the same hypothesis as before when

(9) x2/3+ε < k ≤ x.
We are thus prompted to study lower bounds for the sum S(x,Q) and, in
particular, to see whether we can improve Liu’s result [8] to the effect that

(10) S(x,Q) >
(

1
4 − ε

)
Qx logQ

for

(11) x exp(− log3/5−ε x) < Q ≤ x,
since the conditions governing results (3) and (6) above imply that the 1/4
in (10) may be replaced by 1 and 1/2 for the respective more limited ranges
(4) and

(12) xe−A2
√

log x < Q ≤ x.
Yet, before we describe what we shall obtain, we should mention that at-
tempts to derive comparable results about useful upper bounds are cur-
rently doomed to failure in the light of informal comments attributed to
Montgomery regarding the basic Barban–Davenport–Halberstam theorem.
Indeed, in the spirit of Montgomery’s observations, we must note that the
validity of any bound S(x,Q) < A3Qx logQ in a range wider than (4) would
certainly imply a refinement of the relation

E(x; a, k) = O

(
x

logA x

)

for all k ≤ x1/2, which phenomenon cannot be substantiated in our current
state of knowledge concerning possible exceptional zeros of the Dirichlet’s
L-functions formed with real characters.

The purpose of the present article is first to prove unconditionally that

S(x,Q) > (1− ε)Qx logQ (x > x0(ε))

in Liu’s range (11) and then to shew that

S(x,Q) > (2− 1/α− ε)Qx logQ (x > x0(ε))

for Q = xα and 1/2 < α ≤ 1 provided that the Riemann zeta function
ζ(s) have no zeros in the half-plane σ > 3/4. Thus the lower bound implied
by (3) remains true in a range of Q wider than (12), while the lower order
of magnitude more weakly implied still holds for (5) under an hypothesis
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much less stringent than before. In method as much as in subject matter, the
presentation embodies features common to I and XII, the basic technique
of I being combined inter alia with the use of Friedlander’s and Goldston’s
([2] and [1]) surrogate prime number function ΛR(n) that appeared in XII.
But the requisite properties of ΛR(n) that enter into the work are mostly
different from those needed before and we must therefore begin by establish-
ing two lemmata concerning them, one of which involves the application of
contour integral methods in a slightly unfamiliar context. Also, in contrast
with XII, it is necessary to bring in a method involving exponential sums
and a maximal large sieve in order to stretch the range of validity of our
conditional theorem down to Q > x1/2+ε; this is the complementary aspect
of a careful technique that allows us to replace the Riemann hypothesis by
our assumption of a weaker version thereof.

2. Notation. The letters a, d, k, l, n, q, δ, η denote positive integers; L
is a non-zero integer; b and m are integers that are positive save in the
statement and proof of Lemma 1; h is an integer; p is a (positive) prime
number; x is a positive real variable that is to be regarded as tending to
infinity.

The usual meaning was assigned to θ(x; a, k) in the introduction, the
customary notation θ(x) being used when k = 1.

The symbols A, A1, A2, . . . denote positive absolute constants, while
C1, C2, and C3 > 0 are definite constants whose actual values are irrele-
vant to our investigation; ε, ε1, ε2 are (small) positive constants that are
not necessarily the same at each occurrence; the constants implied by the
O-notation are usually absolute except in circumstances where they obvi-
ously may depend on ε.

When defined, the (positive) highest common factor and least common
multiple of integers r, s are denoted by (r, s) and [r, s], respectively; µ(n)
and d(n) denote the Möbius function and the divisor function.

3. Lemmata on a surrogate prime number function. As fore-
shadowed in the introduction, some of the properties demanded here of a
surrogate prime number function L(n) go beyond those needed in XII and
include two that are in no way implicit in the usual developments of sieve
methods such as Selberg’s. Of the two most obvious candidates

Λ∗R(n) =
∑

d|n
d≤R

µ(d) log
R

d

and
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(13) ΛR(n) = V (R)Λ′R(n) = V (R)
∑

d|n
d≤R

λd (as in XI (14))

for L(n), the first is the best choice for one of the new features required
but fails to be adequate for the other when the conditional part of the
treatment is reached. We therefore introduce ΛR(n) straightway into the
work, assuming where necessary any results stated in XII but noting at once
that extra initial preparations are made almost inevitable by the fact that
now R2 may exceed the limit x for n. Furthermore, lest there be any scope
for misunderstanding, we should stress that, regardless of its provenance or
application, the definition of λd in ΛR(n) depends only on d and R in the
manner indicated in Section 3 of XII.

Defined to be 1/2 − u for the intervals 0 ≤ u < 1 and 0 < u ≤ 1,
respectively, the familiar functions

(14) ψ(u) = [u] + 1/2− u
and ψ−(u) of period 1 play an important rôle in the conditional part of
the treatment and have their entrance in our first lemma about ΛR(n). The
subject of this, for

(15) (b, l) = b1

and

(16) l ≤ R,
is the sum

(17) ΥR(v, w; b, l) =
∑

v<m≤w
m≡b,mod l

ΛR(m),

which by (13) equals

(18) V (R)
∑

v<m≤w
m≡b,mod l

∑

d|m
d≤R

λd = V (R)
∑

d≤R
λd

∑

v<m≤w
m≡b,mod l
m≡0,mod d

1.

Since the congruences in the last inner sum are compatible if and only if
(d, l) | b and hence if and only if (d, l) | b1 by (15), we write

(19) l = ηl′, d = ηd′, m = ηm′ where η | b1 and (l′, d′) = 1,

deducing that in this instance

m′ ≡ b/η, mod l′ and m′ ≡ 0, mod d′.

The solutions of these, mod l′d′, being given by

m′ ≡ (b/η)d′d′, mod l′d′,
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when d′ is defined, mod l′, by

d′d′ ≡ 1, mod l′,

we end the first part of the estimation by inferring through (14) that the
final inner sum in (18) is

(20)
[
w/η − (b/η)d′d′

l′d′

]
−
[
v/η − (b/η)d′d′

l′d′

]

=
w − v
ηl′d′

+ ψ

(
w/η − (b/η)d′d′

l′d′

)
− ψ

(
v/η − (b/η)d′d′

l′d′

)
.

The influence on ΥR(v, w; b, l) of the first constituent on the second line
of (20) is seen by (18) to be

(21)
V (R)(w − v)

l

∑

d≤R
(d,l)|b1

λd
d

(d, l) =
(w − v)

l
ΣA, say,

to evaluate which we introduce the function

Φa(m) =
{
m if m | a,
0 otherwise,

that is to be expressed in the form
∑

δ|m
Ψa(δ).

Here, by the Möbius inversion formula,

Ψa(δ) =
∑

δ1|δ
µ

(
δ

δ1

)
Φa(δ1) =

∑

δ1|δ; δ1|a
µ

(
δ

δ1

)
δ1

is Ramanujan’s function cδ(a), and we deduce that

ΣA = V (R)
∑

d≤R

λd
d

∑

δ|d; δ|l
cδ(b1) = V (R)

∑

δ|l
cδ(b1)

∑

d≤R
d≡0,mod δ

λd
d

=
∑

δ|l

cδ(b1)µ(δ)
φ(δ)

by (16) and the well-known formula
∑

d≤R
d≡0,mod δ

λd
d

=
µ(δ)

V (R)φ(δ)
(δ ≤ R)

expressed in XII (10). Thus, since cp(b1) = −1 or p − 1 according as p - b1
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or p | b1,

ΣA =
∏

p|l

(
1− cp(b1)

p− 1

)
=

l

φ(l)
υ(b1)

where

(22) υ(a) =
{

1 if a = 1,
0 if a > 1,

the corresponding contribution to ΥR(v, w; b, l) being

(23)
(w − v)υ(b1)

φ(l)
=

(w − v)υ{(b, l)}
φ(l)

by (21) and (15).
On the other hand, since

(24) V (R)λd = O

(
log

2R
d

)

by XII (13), the contribution of the last two terms in (20) to ΥR(v, w; b, l)
is trivially

O

(∑

d≤R
log

2R
d

)
= O(R),

which on being combined with (23) in (18) yields the first part of

Lemma 1. Let ΥR(v, w; b, l) and υ(a) be defined as in (17) and (22),
respectively , and suppose that l ≤ R. Then

ΥR(v, w; b, l) =
(w − v)υ{(b, l)}

φ(l)
+O(R).

Also, if l′ denote l/η for any given positive divisor η of l, then the remainder
term above can be replaced by the (explicit) expression

(25) V (R)
∑

η|(b,l)

∑

d′≤R/η
(d′,l′)=1

λd′η

×
{
ψ

(
w/η − (b/η)d′d′

l′d′

)
− ψ

(
v/η − (b/η)d′d′

l′d′

)}
.

Furthermore, there are parallel results for sums that only differ from
ΥR(v, w; b, l) in the substitution of strict for unstrict or unstrict for strict
inequalities in the definition of the range of summation of m; if , for exam-
ple, the range of m is v < m < w, then the first ψ function in (25) must be
replaced by ψ−.

The second part, which has an obvious origin in (19) and (20), will be
needed in preference to the first part when we come on to the conditional
aspect of the treatment. A similar result is available for the corresponding
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sum formed with Λ∗R(n) instead of ΛR(n) save that one must include an
extra remainder term arising from the summation of a series containing the
Möbius function; this additional feature does not vitiate the unconditional
aspect of the proof but totally compromises the other part of the treatment
because even on the Riemann hypothesis the new arrival is too large.

The second lemma describes the behaviour for larger values of R of the
sum

Σx,R =
∑

n≤x
Λ2
R(n),

for which Selberg’s formula

(26) Σx,R = xV (R) +O(R2)

has already been stated in XII (15). But for R > x1/2 log1/2 x this result
becomes nugatory, a phenomenon that reflects the apparently growing dis-
association of the underlying sieve process with the formal sum

(27)
∑

d1,d2≤R

λd1λd2

[d1, d2]
=

1
V (R)

as R increases toward x. Indeed, since the genesis of (26) is the transforma-
tion of Σx,R into

(28) V 2(R)
∑

d1,d2≤R
λd1λd2

[
x

[d1, d2]

]
,

the most obvious portrayal of Σx,R for R ≥ x1/2 would contain an explicit
term

(29) xV 2(R)
∑

d1,d2≤R
[d1,d2]≤x

λd1λd2

[d1, d2]

in place of xV (R) even though the former is not easy to estimate directly in
terms of the already chosen values of λd. Also, while (28) is a conditionally
non-negative quadratic form in λd when λ1 = 1, the same cannot necessar-
ily be said of (29) in the absence of any prior knowledge of the difference
between it and (28). No relief, therefore, can be expected from an attempt
to adjust the values of λd to those answering to a conditional state of (29), a
realization that is strengthened by the fact that when R = x the minimum
of (28) becomes (the relatively very small) V 2(R) for values λd = µ(d) that
are a wholly unsuitable foundation for an ersatz von Mangoldt function.

We must therefore seek a more oblique method for estimating Σx,R for
larger values of R. Having rejected the idea of appealing to Graham’s asymp-
totic formula [3] ∑

n≤x
Λ∗2R (n) = x logR+O(x)
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because of an insufficiently close likeness between ΛR(n) and Λ∗R(n), we
suppose that

(30) R ≤ x
and adopt a complex variable method in which the starting point is the
study of the function LR(s) defined by the Dirichlet’s series

(31)
∞∑
n=1

Λ2
R(n)
ns

for σ > 1. This, much as in the development of Selberg’s method, is by (13)
equal to

(32) V 2(R)
∞∑
n=1

1
ns

∑

d1|n; d2|n
d1,d2≤R

λd1λd2

= V 2(R)
∑

d1,d2≤R
λd1λd2

∞∑
n=1

n≡0,mod [d1,d2]

1
ns

= ζ(s)V 2(R)
∑

d1,d2≤R

λd1λd2

[d1, d2]s
= ζ(s)V 2(R)FR(s), say,

which equation furnishes the analytic continuation of LR(s) over the entire
plane. Also, for σ < 1, (24) implies that

(33) V 2(R)FR(s) = O

(
log2R

∑

m≤R2

d3(m)
mσ

)
= O

(
R2(1−σ) log4R

1− σ
)

by partial summation, where here, as later, a little care must be taken be-
cause σ may be close to 1. Then, deciding to consider in the first place the
sum

Σ
(1)
x,R =

∑

n≤x
(x− n)Λ2

R(n)

instead of Σx,R for ease of treatment, we have at once from (32) that

Σ
(1)
x,R =

1
2πi

c+i∞\
c−i∞

LR(s)
xs+1

s(s+ 1)
ds

=
1

2πi

c+i∞\
c−i∞

ζ(s)V 2(R)FR(s)
xs+1

s(s+ 1)
ds

for c > 1 and, shifting the line of integration to σ = 1 − β for a suitably
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small positive value of β, infer that

Σ
(1)
x,R =

1
2
V 2(R)FR(1)x2 +

1
2πi

1−β+i∞\
1−β−i∞

ζ(s)V 2(R)FR(s)
xs

s(s+ 1)
ds

because ζ(s) has a pole with residue 1 at s = 1 and is

(34) O{(|t|+ 1)1/8}
along the second contour. Hence, by (32) and (27),

Σ
(1)
x,R =

1
2
V (R)x2 +

1
2πi

1−β+i∞\
1−β−i∞

ζ(s)V 2(R)FR(s)
xs

s(s+ 1)
ds(35)

=
1
2
V (R)x2 + Ix,R, say,

with which equation we end the initial and simpler part of the calculation.
To treat Ix,R we shall choose β and T in terms of x and R according to

the theory of ζ(s1) = ζ(σ1 + it1) in such a manner that (1)

(36) β = A4/log T

and that within the region

(37) |t1| ≤ 2T, σ1 ≥ 1− 2β,

we have

(38) ζ(s1)− 1
s1 − 1

= O{log(|t1|+ 2)} = O(log T ),
1

ζ(s1)
= O(log T ).

Then

Ix,R =
1

2πi

{ 1−β+iT\
1−β−iT

+
( 1−β−iT\

1−β−i∞
+

1−β+i∞\
1−β+iT

)}
ζ(s)V 2(R)FR(s)

xs+1

s(s+1)
ds(39)

=I
(1)
x,R + I

(2)
x,R, say,

wherein the second integral is dismissed at once by a crude argument in-
volving (33) and (34). Indeed, because we see that

(40) I
(2)
x,R = O

(
x2(R2/x)β log4R

β

∞\
T

dt

t15/8

)
= O

(
x2(R2/x)β log4 x

T 3/4

)

by (30) and (34), we are left with the term I
(1)
x,R in

(41) Ix,R = I
(1)
x,R +O

(
x2(R2/x)β log4 x

T 3/4

)

(1) The sharp form of the prime-number theorem cited later stems from an improve-
ment of what is possible under (36), (37), and (38); such improvements here, however,
have little influence on the quality of the lemma we are establishing.
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whose estimation involves the properties of ζ(s1) connected with (36) and
(37) above.

The most important element in the integrand of I(1)
x,R is FR(s), for which

(33) must be superseded on the relevant contour

(42) σ = 1− β, |t| ≤ T
by an estimate founded on the equation

V 2(R)FR(s) = V 2(R)
∑

d1,d2≤R

{(d1, d2)}sλd1λd2

ds1d
s
2

(43)

= V 2(R)
∑

d1,d2≤R

λd1λd2

ds1d
s
2

∑

%|d1; %|d2

φ(s, %)

=
∑

%≤R
µ2(%)φ(s, %)

(
V (R)

∑

d≤R
d≡0,mod %

λd
ds

)2

=
∑

%≤R

µ2(%)φ(s, %)
%2s

(
V (R)

∑

d′≤R/%
(d′,%)=1

λd′%
d′s

)

=
∑

%≤R

µ2(%)φ(s, %)
%2s Γ 2(s,R, %), say,

that is obtained in the customary way by setting

(44) φ(s, %) =
∑

∆|%
µ

(
%

∆

)
∆s =

∏

p|%
(ps − 1)

for square-free values of %. Next, by the formula

V (R)λd =
µ(d)d
φ(d)

∑

%′≤R/d
(%′,d)=1

µ2(%′)
φ(%′)

given for example on p. 9 of our tract [4],

Γ (s,R, %) =
µ(%)%
φ(%)

∑

d′≤R/%
(d′,%)=1

µ(d′)d′

φ(d′)d′s
∑

%′≤R/(d′%)
(%′,d′%)=1

µ2(%′)
φ(%′)

(45)

=
µ(%)%
φ(%)

∑

%′≤R/%
(%′,%)=1

µ2(%′)
φ(%′)

∑

d′≤R/(%%′)
(d′,%%′)=1

µ(d′)d′

φ(d′)d′s
,
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the inner sum being an example of the sums

(46) Mk(s, z) =
∑

m≤z
(m,k)=1

µ(m)m
φ(m)ms

that must now be estimated under the assumptions

(47) 1 ≤ z ≤ R
and (42).

First, by Euler’s theorem, the Dirichlet’s series

Gk(w) =
∞∑
m=1

(m,k)=1

µ(m)m
φ(m)mw

(w = υ + ιv)

associated with Mk(s) is equal to
∏

p-k

(
1− p

(p− 1)pw

)

=
∏

p|k

{
1−

(
1− 1

p

)−1 1
pw

}−1

× 1
ζ(w)

∏
p

{(
1−

(
1− 1

p

)−1 1
pw

)(
1− 1

pw

)−1}

=
1

ζ(w)

∏

p|k

{
1−

(
1− 1

p

)−1 1
pw

}∏
p

{
1− 1

pw(p− 1)

(
1− 1

pw

)−1}

=
1

ζ(w)
Hk(w)B(w), say,

for υ > 1, where actually B(w) is an absolutely bounded regular function
and

(48) Hk(w) = O{σ−3/4(k)}
for υ > 7/8. Secondly, supposing initially that z is the sum of 1/2 and
a positive integer M and then applying Perron’s formula to the function
Gk(s+ s′) quâ a Dirichlet’s series in s′, we have

(49) Mk(s, z) =
1

2πi

2β+iT\
2β−iT

1
ζ(s+ s′)

Hk(s+ s′)B(s+ s′)
zs
′

s′
ds′

+O

(
z2β

T

∞∑
m=1

µ2(m)
mβφ(m)|log(z/m)|

)
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=
1
ζ(s)

Hk(s)B(s) +
1

2πi

{−β+iT\
−β−iT

+
2β+iT\
−β+iT

+
2β−iT\
−β−iT

}

× 1
ζ(s+ s′)

Hk(s+ s′)B(s+ s′)
zs
′

s′
ds′ +O

(
z2β

T
ΣB

)
, say,

after we have moved the contour of integration leftward through the pole at
s′ = 0. The first term in this is

(50) O{σ−3/4(k) log T}
by (38), (48), and assumption (42); similarly, since s1 = s+s′ in the following
integrals adheres to the conditions |t+t′| ≤ 2T , σ+σ′ ≥ 1−2β corresponding
to (37), the sum of these integrals is

(51) O

(
z−βσ−3/4(k) log T

T\
0

dt

β + t

)
+O

(
βz2βσ−3/4(k) log T

T

)

= O(z−βσ−3/4(k) log2 T ) +O

(
z2βσ−3/4(k)

T

)
,

while

ΣB = O

( ∞∑
m=1

µ2(m)
mβφ(m)

)

+O

(
log log 10M

Mβ

∑

M/2≤m≤2m

1
|log{(M + 1/2)/m}|

)

= O

(
ζ(1 + β)

∞∑
m1=1

µ2(m1)

m1+β
1 φ(m1)

)
+O

(
log log 10M log 2M

Mβ

)

= O(1/β) +O

(
log2 2z
zβ

)
= O(log T ) +O

(
log2 2z
zβ

)

by a familiar procedure in the theory of the Riemann zeta function (see
Titchmarsh [10], p. 53 for an example). Let us then insert this with (50)
and (51) in (49) to obtain

Mk(s, z) = O{σ−3/4(k) log2 T}+O

(
z2βσ−3/4(k) log T

T

)
+O

(
zβ log2 2z

T

)

whenever (42) and (47) hold, wherefore, now setting

(52) T = eA5
√

log x

for a sufficiently large positive constant A5, we conclude that

Mk(s, z) = O{σ−3/4(k) log x}+O{σ−3/4(k)e−A6
√

log x}(53)

= O{σ−3/4(k) log x}
because of (36).
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The time has come to return to Γ (s,R, %) in (43) and to deduce from
(45) and (53) that it equals

O

(
µ2(%)% log x

φ(%)

∑

%′≤R/%
(%′,%)=1

µ2(%′)σ−3/4(%%′)
φ(%′)

)

= O

(
µ2(%)%σ−3/4(%) log x

φ(%)

∑

%′≤R/%

µ2(%′)σ−3/4(%′)
φ(%′)

)

= O{µ2(%)σ2
−3/4(%) log2 x},

which together with (43) and (44) shews that

V 2(R)FR(s) = O

(
log4 x

∑

%≤R

σ5
−3/4(%)

%1−β

)
= O

(
log4 x

∑

%≤R

σ−1/2(%)
%1−β

)

= O

(
log4 x

∑

%1≤R

1

%1−β
1

)
= O

(
Rβ log4 x

β

)

when s is on the contour of integration appertaining to I(1)
x,R in (39). There-

fore

I
(1)
x,R = O

(
Rβx2−β log4 x log T

β

∞\
0

dt

(1 + t)2

)

= O

(
x2(x/R)−β log4 x log T

β

)
= O(x2(x/R)−β log5 x)

by (39), (36), and (38) so that

(54) Ix,R = O(x2(x/R)−β log5 x) +O(x2e−A7
√

log x)

after estimating the last term in (41) as in the final derivation of (53).
The lemma is now available. Since certainly (x/R)β > log5 x when

R < x(log5 x)−(A5/A4)
√

log x

and hence when

R < 2x exp(− log3/5 x),

we infer from (35) and (54) that

Σ
(1)
x,R = 1

2V (R)x2 +O(x)

in the latter range of R. Hence, by a standard Tauberian argument involving
the non-negativity of Λ2

R(n), we gain
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Lemma 2. In the notation of (13) and of Section 3 of XII, we have
∑

n≤x
Λ2
R(n) = xV (R) +O(x log1/2 x)

for

(55) 1 ≤ R ≤ x exp(− log3/5 x).

Thus the values of Σx,R and xV (R) are still closely associated for R >

x log1/2 x despite the loss of formal connections between them that was
mentioned in the preface to the proof. Their underlying identification is
actually still to be foreseen once it is appreciated that our method can also
shew that the quadratic forms in (27) and (29) are still almost equal even
when R is large, a feature that could form a partial basis of an alternative
proof of the lemma provided we had recourse to a theorem of Axer’s type.
It is also worth observing that we can infer from the lemma that

π(x) <
(1 + ε)x

log x
(x > x0(ε)),

although we have of course used properties of ζ(s) that are tantamount to
the prime number theorem (with the usual remainder term).

Finally, an easy estimate implicit in XII (16) is stated as

Lemma 3. We have∑

p≤x
log pΛR(p) = x logR+O(x) +O(R logR)

for R ≤ x.

4. The preliminary treatment. Both the unconditional and condi-
tional treatments of the sum

S(x,Q) =
∑

k≤Q

∑

0<a≤k
(a,k)=1

E2(x; a, k) =
∑

k≤Q
G(x, k)

in (2) for the initially chosen convenient range x1/2 log9/2 x < Q ≤ x have
a common genesis involving two immediate simplifications of previous work
brought about by the diminution of requirement from asymptotic formulae
to lower bounds. First, since∑

0<a≤k
(a,k)=1

θ(x; a, k) =
∑

p≤x
p-k

log p = θk(x), say,

and
θk(x) = θ(x)−

∑

p≤x
p|k

log p = θ(x) +O(log k),
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we have

G(x, k) ≥
∑

0<a≤k
(a,k)=1

θ2(x; a, k)− θ2
k(x)
φ(k)

=
∑

0<a≤k
θ2(x; a, k)−

∑

p|k
log2 p− θ2(x)

φ(k)
+O

(
x log k
φ(k)

)

=
∑

0<a≤k
θ2(x; a, k)− θ2(x)

φ(k)
+O

(
x log k
φ(k)

)

for x1/2 < k ≤ x by the definition of E(x; a, k) implicit in (1) and by an
elementary result in the theory of probability. Hence, revising the notation
till the end of the proofs by writing Q = Q2 and

(56) Q1 = Q2/log x

so that

(57) x1/2 log9/2 x < Q2 ≤ x and Q1 > x1/2 log7/2 x,

we deduce that

S(x,Q2) ≥
∑

Q1<k≤Q2

G(x, k) ≥
∑

Q1<k≤Q2

∑

0<a≤k
θ2(x; a, k)(58)

− θ2(x)
∑

Q1<k≤Q2

1
φ(k)

+O

(
x
∑

k≤Q2

log k
φ(k)

)

=
∑

Q1<k≤Q2

∑

0<a≤k
θ2(x; a, k)− ζ(2)ζ(3)

ζ(6)
θ2(x) log

Q2

Q1

+O

(
x2 log x
Q1

)
+O(x log2 x)

= T (x;Q1, Q2)− ζ(2)ζ(3)
ζ(6)

θ2(x) log
Q2

Q1
+O(Q2x), say,

with the aid of the familiar asymptotic formula for
∑

k≤ξ

1
φ(k)

that is quoted, for example, in Lemma 1 of I.
To bound T (x;Q1, Q2) from below, we bring in the partial substitute (2)

(59) ΥR(x; a, k) = ΥR(0, x; a, k) =
∑

n≤x
n≡a,mod k

ΛR(n)

(2) We use the notation ΥR(x; a, k) of Lemma 1 in preference to ψR(x; a, k) in XII to
avoid confusion with the function ψ(u) in (14).
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for θ(x; a, k), where throughout R will be governed in particular by the
conditions

(60) R ≤ x exp(− log3/5 x), R > x/Q1

apart from any others to be imposed later. Then

{θ(x; a, k)− ΥR(x; a, k)}2 = θ2(x; a, k)− 2θ(x; a, k)ΥR(x; a, k) + Υ 2
R(x; a, k)

being non-negative as in Friedlander and Goldston [1] and XII, we have

T (x;Q1, Q2) ≥ 2
∑

Q1<k≤Q2

∑

0<a≤k
θ(x; a, k)ΥR(x; a, k)(61)

−
∑

Q1<k≤Q2

∑

0<a≤k
Υ 2
R(x; a, k)

= 2T1(x;Q1, Q2)− T2(x;Q1, Q2), say,

the sums Ti(x;Q1, Q2) in which are initially treated by a variant of a rou-
tine used in earlier members of this series. First, by (59), the inner sum in
T1(x;Q1, Q2) equals

∑

p−n≡0,mod k
p,n≤x

log pΛR(n) =
∑

p≤x
log pΛR(p) +

∑

p−n=Lk
p,n≤x

log pΛR(n)

and therefore

(62) T1(x;Q1, Q2)

= (Q2 −Q1 +O(1))
∑

p≤x
log pΛR(p) +

∑

Q1<k≤Q2

∑

p−n=Lk
p,n≤x

log pΛR(n)

= Q2x logR+O(Q1x logR) +O(Q2x) +
∑

Q1<k≤Q2

∑

p−n=Lk
p,n≤x

log pΛR(n)

= Q2x logR+O(Q2x) + J1(x;Q1, Q2), say,

by Lemma 3, (60), and (56). Similarly, taking advantage of Lemma 2 and
symmetry, we also find that

T2(x;Q1, Q2) ≤ Q2x logR+O(Q2x log1/2 x)(63)

+ 2
∑

Q1<k≤Q2

∑

n−m=lk>0
n,m≤x

ΛR(m)ΛR(n)

= Q2x logR+O(Q2x log1/2 x) + 2J2(x;Q1, Q2), say,

which combines with (62), (61), and (58) to yield our initial conclusion in
the form of the inequality
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S(x,Q2) ≥ Q2x logR+ 2J1(x;Q1, Q2)− 2J2(x;Q1, Q2)(64)

− ζ(2)ζ(3)
ζ(6)

θ2(x) log
Q2

Q1
+O(Q2x log1/2 x).

Finally, now temporarily redeploying when convenient the symbol Q to
denote either Q1 or Q2 with the result that

(65) x1/2 log7/2 x < Q ≤ x and R > x/Q

by (57) and (60), we set

(66) Ji(x,Q) = Ji(x;Q, x) (i = 1, 2)

in order to write

(67) Ji(x;Q1, Q2) = Ji(x,Q1)− Ji(x,Q2),

after which manœuvre it is best to let the exposition bifurcate into separate
treatments for the unconditional and conditional theorems.

5. The unconditional theorem. In deducing our first theorem from
(64), we generally follow the pattern of the parent paper I both to ease the
exposition and to highlight the effect of our reduced requirements on the
sharpness of our estimations in unconditional circumstances. Accordingly,
we shall still need the asymptotic formula

(68)
∑

l<ξ

(
1− l

ξ

)2 1
φ(l)

=
ζ(2)ζ(3)
ζ(6)

log ξ + C1 +
log ξ
ξ

+O(1/ξ)

that in slightly stronger form was stated in Lemma 1 of I, although the use
of the prime number theorem for arithmetical progressions will be replaced
by that of the prime number theorem itself in the strong forms

θ(u) = u+O{u exp(− log3/5−ε u)},(69)

θ1(u) =
u\
0

θ(t) dt =
1
2
u2 +O{u2 exp(− log3/5−ε u)}.(70)

First, (62) and (66) mean that J1(x,Q) is the sum of all terms log pΛR(n)
answering to all quadruplets k, l, p, n that satisfy either the conditions

(71) k > Q; p, n ≤ x; n− p = lk; l > 0

or the similar conditions
(72) k > Q; p, n ≤ x; p− n = lk; l > 0,

in both of which the inequality l < x/Q is implied. Secondly, the contribution
to J1(x,Q) related to (71) equals

(73) J∗1 (x,Q) =
∑

l<x/Q

∑

p<x−lQ
log p

∑

p+lQ<n≤x
n≡p,mod l

ΛR(n) =
∑

l<x/Q

ΣC , say,
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while that springing from (72) is likewise equal to

(74) J†1(x,Q) =
∑

l<x/Q

∑

lQ<p≤x
log p

∑

n<p−lQ
n≡p,mod l

ΛR(n) =
∑

l<x/Q

ΣD, say.

Since the innermost sum in the middle element of (73) is

(75)
(x− lQ− p)υ{(l, p)}

φ(l)
+O(R)

by Lemma 1 and (65), we have

ΣC =
1
φ(l)

∑

p<x−lQ
p-l

(x− lQ− p) log p+O(Rx)(76)

=
1
φ(l)

∑

p<x−lQ
(x− lQ− p) log p+O

(
x log l
φ(l)

)
+O(Rx)

=
θ1(x− lQ)

φ(l)
+O(Rx) =

(x− lQ)2

2φ(l)
+O{x2 exp(− log3/5−ε x)}

in view of (60) and (70); likewise, but slightly less easily, we also have from
(74) that

ΣD =
1
φ(l)

∑

lQ<p≤x
(p− lQ) log p+O

(
x log l
φ(l)

)
+O(Rx)(77)

=
1
φ(l)

(
(x− lQ)

∑

p≤x
log p−

∑

p≤x
(x− p) log p

+
∑

p≤lQ
(lQ− p) log p

)
+O(Rx)

=
1
φ(l)
{(x− lQ)θ(x)− θ1(x) + θ1(lQ)}+O(Rx)

=
1
φ(l)

{
(x− lQ)x− 1

2x
2 + 1

2 l
2Q2}+O{x2 exp(− log3/5−ε x)}

=
(x− lQ)2

2φ(l)
+O{x2 exp(− log3/5−ε x)}.

Hence, joining (73) and (74) together after the above estimates have been
embodied in them, we conclude that

(78) J1(x,Q) =
∑

l<x/Q

(x− lQ)2

φ(l)
+O

(
x3

Q
exp(− log3/5−ε x)

)
.

The estimation of J2(x,Q) is similar to that of J1(x,Q) save that there
is only one constituent to be treated. Being equal to the sum of all terms
Λk(m)ΛR(n) corresponding to the solutions of the conditions derived from
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(71) by substituting m for p, the sum J2(x,Q) is shewn by Lemma 1 to
equal

(79)
∑

l<x/Q

∑

m<x−lQ
ΛR(m)

∑

m+lQ<n≤x
n≡m,mod l

ΛR(n)

=
∑

l<x/Q

1
φ(l)

∑

m<x−lQ
(m,l)=1

(x− lQ−m)ΛR(m) +O
(
R
∑

l<x/Q

∑

m≤x
|ΛR(m)|

)

=
∑

l<x/Q

1
φ(l)

∑

m<x−lQ
(m,l)=1

(x− lQ−m)ΛR(m) +O

(
Rx2 log2 x

Q

)

because

(80) ΛR(m) = O{d(m) log x}
by (13) and (14) in XII. Next Lemma 1 also demonstrates that both

∑

m≤u
ΛR(m) = u+O(R)

and that ∑

m≤u
m≡0,mod δ

ΛR(m) = O(R)

when 1 < δ ≤ R and, in particular, when δ is a divisor of l exceeding 1.
Hence the inner sum on the final line of (79) is

1
2 (x− lQ)2 +O{Rxd(l)}

by a simple combinatorial argument followed by integration, wherefore (79)
produces

J2(x,Q) =
1
2

∑

l<x/Q

(x− lQ)2

φ(l)
+O

(
Rx2 log2 x

Q

)
+O

(
Rx

∑

l<x/Q

d(l)
φ(l)

)
(81)

=
1
2

∑

l<x/Q

(x− lQ)2

φ(l)
+O

(
Rx2 log2 x

Q

)
+O(Rx log2 x)

and hence via (60) the estimate

(82) J2(x,Q) =
1
2

∑

l<x/Q

(x− lQ)2

φ(l)
+O

(
x3

Q
exp(− log3/5−ε x)

)

that is parallel to (78).
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The proof is almost complete. All we have to do is first to deploy (78),
(82), and (68) in the evaluation of 2J1(x,Q)− 2J2(x,Q) as

∑

l<x/Q

(x− lQ)2

φ(l)
+O

(
x3

Q
exp(− log3/5−ε x)

)

=
ζ(2)ζ(3)
ζ(6)

x2 log
x

Q
+ C1x

2 +Qx log
x

Q
+O(xQ)

+O

(
x3

Q
exp(− log3/5−ε x)

)

and then to point this at (67) to shew that the quantity 2J1(x;Q1, Q2) −
2J2(x;Q1, Q2) in (64) equals

ζ(2)ζ(3)
ζ(6)

x2 log
Q2

Q1
−Q2x log

x

Q2
+O(Q1x log x) +O(Q2x)

+O

(
x3

Q1
exp(− log3/5−ε x)

)

=
ζ(2)ζ(3)
ζ(6)

x2 log
Q2

Q1
−Q2x log

x

Q2
+O(Q2x) +O

(
x3

Q2
exp(− log3/5−ε x)

)

in virtue of (56) and our conventions regarding the use of the ε symbol.
Thus, by the prime number theorem in (69), we infer that

S(x,Q2) > Q2x log
RQ2

x
+O(Q2x log1/2 x) +O

(
x3

Q2
exp(− log3/5−ε x)

)

+O(x2 exp(− log3/5−ε x)),

which for Q2 > x exp(− log3/5−ε1 x) implies that

S(x,Q2) > Q2x log
RQ2

x
+O(Q2x log1/2 x)

> (1− ε2)Q2x log x > (1− ε2)Q2x logQ2 (x > x0(ε1, ε2))

on our setting R = x exp(− log3/5 x) in conformity with (55). Thus, reverting
to the original meaning of Q, we have established

Theorem 1. Let E(x; a, k) be defined as in (1) above and suppose that
ε1, ε2 are any (arbitrarily small) positive constants. Then, for

x exp{− log3/5−ε1 x} < Q ≤ x and x > x0(ε1, ε2),

we have ∑

k≤Q

∑

0<a≤k
(a,k)=1

E2(x; a, k) > (1− ε2)Qx logQ.
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6. The conditional theorem—first part of the treatment. We now
consider the impact on our work of assuming a weak version of the Riemann
hypothesis to the effect that ζ(s) has no zeros % = β+ iγ for which β > 3/4,
which supposition implies that

(83) θ(x) = x+O(x3/4 log2 x)

by the classical theory. To take maximum advantage of the new circum-
stances it is necessary to reconsider the effect on our calculations of the
entry into our work of both the explicit (first) term and the remainder (sec-
ond) term in Lemma 1. So far as the main term is concerned, we need only
reappraise at (73), (74), (76), and (77) the previous treatment, which for
comparative reasons and lucidity had been modelled on that of I. On the
other hand, all of (76), (77), and (79) are involved when we usually employ
a large sieve method to assess the implication of replacing the remainder
term in Lemma 1 by its alternative formulation in terms of the functions
ψ(u) and ψ−(u).

The first category of revision arises at the second line of (76) and the first
line of (77), in each of which the first two terms flow from the explicit term
in Lemma 1. Since the second items O{x log l/φ(l)} produce a satisfactory
contribution

(84) O

(
x
∑

l<x/Q

log l
φ(l)

)
= O(x log2 x)

after summation over l, we are left with the sum over l < x/Q of

1
φ(l)

( ∑

p<x−lQ
(x− lQ− p) log p+

∑

lQ<p≤x
(p− lQ) log p

)
,

for which the previous method of development becomes inadequate unless it
be boosted by the use of the explicit formulae for θ(x) and θ1(x) in terms of
the zeros %. But such a procedure involves an unnecessary excursion and is
best avoided by changing the order of summations in p and l so as to obtain
the quantity

∑

p<x−Q
log p

∑

l<(x−p)/Q

x− p− lQ
φ(l)

+
∑

Q<p≤x
log p

∑

l<p/Q

p− lQ
φ(l)

,

wherein the inner sums are evaluated by the formula

∑

l<ξ

(
1− l

ξ

)
1
φ(l)

=
ζ(2)ζ(3)
ζ(6)

log ξ + C2 +
log ξ
2ξ

+O(1/ξ)



74 C. Hooley

that is similar to (68). Having thereby identified this contribution as

ζ(2)ζ(3)
ζ(6)

( ∑

p<x−Q
(x− p) log p log

C3(x− p)
Q

+
∑

Q<p≤x
p log p log

C3p

Q

)

+
1
2
Q

( ∑

p<x−Q
log p log

x− p
Q

+
∑

Q<p≤x
log p log

p

Q

)
+O

(
Q
∑

p≤x
log p

)

=
ζ(2)ζ(3)
ζ(6)

( ∑

p<x−Q
(x− p) log p log

C3(x− p)
Q

+
∑

p≤x
p log p log

C3p

Q

)

+
1
2
Q

( ∑

p<x−Q
log p log

x− p
Q

+
∑

p≤x
log p log

p

Q

)

+O

(
Q
∑

p≤Q
log p log

A8Q

p

)
+O(Qx),

we use the prime number theorem (in a simple unconditional form) with
partial summation (or parallel procedure) to estimate the antepenultimate
and penultimate parentheses as

x log
x

Q
+ x log

x

Q
+O(x) = 2x log

x

Q
+O(x)

and

O(Q2),

respectively, and consequently obtain

ζ(2)ζ(3)
ζ(6)

( ∑

p<x−Q
(x− p) log p log

C3(x− p)
Q

+
∑

p≤x
p log p log

C3p

Q

)

+Qx log
x

Q
+O(Qx),

the influence of which on J1(x;Q1, Q2) is

(85)
ζ(2)ζ(3)
ζ(6)

( ∑

p<x−Q1

(x− p) log p log
C3(x− p)

Q1

−
∑

p<x−Q2

(x− p) log p log
C3(x− p)

Q2
+ log

Q2

Q1

∑

p≤x
p log p

)

−Q2x log
x

Q2
+O(Q2x)

by (67) and (56). But the difference between the first two sums in this is
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log
Q2

Q1

∑

p<x−Q2

(x− p) log p+
∑

x−Q2≤p<x−Q1

(x− p) log p log
C3(x− p)

Q1

= log
Q2

Q1

∑

p≤x
(x− p) log p+O

(
x log x log

Q2

Q1

∑

x−Q2<p≤x
1
)

= log
Q2

Q1

∑

p≤x
(x− p) log p+O

(
Q2x log

Q2

Q1
· log x

logQ2

)

= log
Q2

Q1

∑

p≤x
(x− p) log p+O

(
Q2x log

Q2

Q1

)

by (56), (57), and an upper bound sieve method. Placed in (85), this together
with (84) produces

(86)
ζ(2)ζ(3)
ζ(6)

x log
Q2

Q1

∑

p≤x
log p−Q2x log

x

Q2
+O

(
Q2x log

Q2

Q1

)

+O(x log2 x) =
ζ(2)ζ(3)
ζ(6)

xθ(x) log
Q2

Q1
−Q2x log

x

Q2
+O

(
Q2x log

Q2

Q1

)

as the effect of the main term in Lemma 1 on our calculation of J1(x;Q1, Q2)
when (56) and (57) are still assumed.

In revising our assessment of the influence of Lemma 1 on our treatment
of J2(x;Q1, Q2), we only ignore at this stage its remainder term at its first
appearance in (79) because it merely creates at its second coming a contri-
bution O(Rx log2 x) in (81) of acceptable size. Thus the appropriate part of
J2(x;Q1, Q2) attained is the combination

(87)
ζ(2)ζ(3)

2ζ(6)
x2 log

Q2

Q1
− 1

2
Q2x log

x

Q2
+O(Q2x)

+O

(
Q1x log

x

Q1

)
+O(Rx log2 x)

=
ζ(2)ζ(3)

2ζ(6)
x2 log

Q2

Q1
− 1

2
Q2x log

x

Q2
+O(Q2x) + (Rx log2 x)

of the differences of the relevant terms on the right of (81) after (67) and
(68) have been applied.

Altogether, therefore, the culmination of substantially ignoring the re-
mainder term in Lemma 1 when estimating S(x,Q2) is the construction of
the portion

(88) Q2x logR− ζ(2)ζ(3)
ζ(6)

(x2 − 2xθ(x) + θ2(x)) log
Q2

Q1
−Q2x log

x

Q2

+O(Q2x log1/2 x) +O(Rx log2 x)
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= Q2x log
RQ2

x
− ζ(2)ζ(3)

ζ(6)
{x− θ(x)}2 log

Q2

Q1

+O(Q2x log1/2 x) +O(Rx log2 x)

= Q2x log
RQ2

x
+O(x3/2 log5 x) +O(Q2x log1/2 x) +O(Rx log2 x)

= Q2x log
RQ2

x
+O(Q2x log1/2 x) +O(Rx log2 x),

whether we arrive via (64), (86), (87), (83), and (57).

7. The application of the large sieve. If we shall benefit from the
improvements gained in the previous section through the weak form of the
Riemann hypothesis, we must now use the second form of Lemma 1 in
order to obtain better estimates in that part of the analysis that does not
appertain to the main term in that lemma. This aspect of the work is,
however, completely unconditional and depends mainly on a Fourier analysis
of the functions ψ(u), ψ−(u) and on a large sieve method, the main results
on which are given in the following lemmata.

Lemma 4. Let v1, . . . , vr, . . . , vs be a set of real numbers, each of which
is to be affected by a real weight wr. Then, for any positive integer N ≥ 2,
∑

1≤r≤s
wrψ(vr) = O

(
1
N

∑

1≤r≤s
|wr|

)

+O

{ ∑

1≤h≤N

1
h

(∣∣∣
∑

1≤r≤s
wre

2πihvr
∣∣∣+
∣∣∣
∑

1≤r≤s
|wr|e2πihvr

∣∣∣
)}
.

The function ψ(vr) in this formula may be replaced by ψ−(vr).

This supplies one of the more accurate estimates of its type, although
older results in the same genre would serve us equally well here. It depends
on Vaaler’s approximation to ψ(u) given in his Theorem A.6 of [11] and its
restatement as

ψ(u) =
∑

0<|h|≤N
che

2πihu +O

(
1
N

+
∑

0<h≤N
c′he

2πihu
)
,

wherein
ch, c

′
h = O(1/|h|)

and the trigonometrical series within the O-symbol is non-negative. This
shews that the left hand side of the proposed formula equals

∑

1≤r≤s
wr

∑

0<|h|≤N
che

2πihvr +O

{ ∑

1≤r≤s
|wr|

(
1
N

+
∑

0<|h|≤N
c′he

2πihvr

)}
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=
∑

0<|h|≤N
ch

∑

1≤r≤s
wre

2πihvr

+O

{
1
N

∑

1≤r≤s
|wr|+

∑

0<|h|≤N
c′h

∑

1≤r≤s
|wr|e2πihvr

}

=
(

1
N

∑

1≤r≤s
|wr|

)

+O

{ ∑

0<h≤N

1
h

(∣∣∣
∑

1≤r≤s
wre

2πihvr
∣∣∣+
∣∣∣
∑

1≤r≤s
|wr|e2πihvr

∣∣∣
)}

,

as required.

Lemma 5. If W (u, θ) be defined as either
∑

m≤u
ame

2πimθ or
∑
m<u

ame
2πimθ

for a sequence of real numbers a1, . . . , am, . . . , then

∑

q≤M

∑

0<a≤q
(a,q)=1

bd
0<u≤x

∣∣∣∣W
(
u,
a

q

)∣∣∣∣
2

= O
{

(x+M2)
∑

m≤x
a2
m

}
.

We have stated this best possible version of the maximal large sieve in-
equality in the form discovered and proved by Montgomery [9], even though
earlier estimates containing a superfluous logarithm would suffice in the
present context.

We first consider the sum J∗1 (x,Q) in (73) and appraise the consequence
of replacing for p - l the remainder term O(R) in (75) by the term

(89)
∑

d≤R
(d,l)=1

V (R)λd

{
ψ

(
x

ld
− pd

l

)
− ψ

(
Q

d
+
p

ld
− pd

l

)}

given in the second form of Lemma 1, noting that in the opposite case p | l
we may simply add the latter term to the right of (75) without disturbing
its validity. The contribution of the entities O(R) remaining being

(90) O
(
R
∑

l<x/Q

∑

p≤x
p|l

log p
)

= O
(
R
∑

l<x/Q

log l
)

= O

(
Rx log x

Q

)
,

we then prepare for the summation of (89) over p and l by observing that

ψ

(
Q

d
+
p

ld
− pd

l

)
= ψ

(
Q

d
+
pl

d

)
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because of the identical congruence dd + ll ≡ 1,mod dl, that involves solu-
tions d and l of the respective congruences dd ≡ 1, mod l, and ll ≡ 1, modd.
The donation to J∗1 (x,Q) to be considered is therefore

∑

l<x/Q

∑

d≤R
(d,l)=1

V (R)λd
∑

p<x−lQ
log pψ

(
x

ld
− pd

l

)

−
∑

l<x/Q

∑

d≤R
(d,l)=1

V (R)λd
∑

p<x−lQ
log pψ

(
Q

d
+
pl

d

)
,

which by Lemma 4 and XII (13) is equal to

(91) O

(
1
N

∑

l<x/Q

∑

d≤R
log

2R
d

∑

p≤x
log p

)

+O

(
log x

∑

0<h≤N

1
h

∑

l<x/Q

∑

d≤R
(d,l)=1

∣∣∣
∑

p<x−lQ
log p e2πihdp/l

∣∣∣
)

+O

(
log x

∑

0<h≤N

1
h

∑

l<x/Q

∑

d≤R
(d,l)=1

∣∣∣
∑

p<x−lQ
log p e2πihlp/d

∣∣∣
)

= O

(
x2R

QN

)
+O

(
log x

∑

0<h≤N

1
h
Σh,1

)
+O

(
log x

∑

0<h≤N

1
h
Σh,2

)

= O(1) +O{log xJ (1)
1 (x,Q)}+O{log xJ (2)

1 (x,Q)}, say,

when

(92) N = [x]3.

To handle the sums J (i)
1 (x,Q) let us specialize the subject W (u, θ) of

Lemma 5 as ∑
p<u

log p e2πipθ

and then write

Σh,1 =
∑

l<x/Q

∑

d≤R
(d,l)=1

∣∣∣∣W
(
x− lQ, hd

l

)∣∣∣∣(93)

=
∑

δ|h
δ<x/Q

∑

l<x/Q
(l,h)=δ

∑

d≤R
(d,l)=1

∣∣∣∣W
(
x− lQ, hd

l

)∣∣∣∣
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≤
∑

δ|h
δ<x/Q

∑

l1<x/(Qδ)
(l1,h/δ)=1

∑

d≤R
(d,l1)=1

∣∣∣∣W
(
x− l1δQ, (h/δ)d

l1

)∣∣∣∣

=
∑

δ|h
δ<x/Q

Σh,1,δ, say,

where d may now merely be defined, mod l1, by dd ≡ 1, mod l1. Next, since
the second part of (65) is yet assumed and since therefore the number (h/δ)d
related to the innermost sum ranges through at most 2R/l1 complete sets
of reduced residues, mod l1,

Σh,1,δ ≤ 2R
∑

l1<x/(Qδ)

1
l1

∑

0<a≤l1
(a,l1)=1

∣∣∣∣W
(
x− l1δQ, a

l1

)∣∣∣∣,

wherefore, by the Cauchy–Schwarz inequality and Lemma 5,

Σh,1,δ ≤ 2R
( ∑

l1<x/(Qδ)

1
l21

∑

0<a≤l1
1
)1/2

(94)

×
( ∑

l1<x/(Qδ)

∑

0<a≤l1
(a,l1)=1

∣∣∣∣W
(
x− l1δQ, a

l1

)∣∣∣∣
2)1/2

= O

{
R

( ∑

l1<x/(Qδ)

1
l1

)1/2(
x2

Q2δ2 + x

)1/2(∑

p≤x
log2 p

)1/2
}

= O(Rx log x)

because of the first part of (65). From this, (93), (91), and (92) we first infer
that

(95) Σh,1 = O(Rxd(h) log x)

and then that

(96) J
(1)
1 (x,Q) = O

(
Rx log x

∑

0<h≤N

d(h)
h

)
= O(Rx log3 x),

thus completing the estimation of the second constituent in (91).

The analysis of J (2)
1 (x,Q) resembles that of J (1)

1 (x,Q), although our
interchanging the rôles of l and d slightly lengthens the calculations. Now,
by (91) and an alteration in the order of summations,
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Σh,2 =
∑

d≤R

∑

l<x/Q
(l,d)=1

∣∣∣∣W
(
x− lQ, hl

d

)∣∣∣∣(97)

=
∑

δ|h
δ≤R

∑

d≤R
(d,h)=δ

∑

l<x/Q
(l,d)=1

∣∣∣∣W
(
x− lQ, hl

d

)∣∣∣∣

≤
∑

δ|h
δ≤R

∑

d1≤R/δ
(d1,h/δ)=1

∑

l<x/Q
(l,d1)=1

∣∣∣∣W
(
x− lQ, (h/δ)l

d1

)∣∣∣∣

=
∑

δ|h
δ≤R

Σh,2,δ, say,

the treatment of whose inner sum depends on whether R/δ ≤ x/Q or R/δ >
x/Q. In the former situation the estimate

Σh,2,δ ≤ 2x
Q

∑

d1≤R/δ

1
d1

∑

0<a≤d1
(a,d1)=1

bd
0<u≤x

∣∣∣∣W
(
u,

a

d1

)∣∣∣∣(98)

= O

{
x

Q

( ∑

d1≤R/δ

1
d1

)1/2(
R2

δ2 + x

)1/2(∑

p≤x
log2 p

)1/2
}

= O

(
x2 log x
Q

)

is obtained as in the derivation of (94). But in the latter situation we split
Σh,2,δ by the decomposition

(99) Σh,2,δ =
∑

d1≤x/Q
(d1,h/δ)=1

+
∑

x/Q<d1≤R/δ
(d1,h/δ)=1

= Σh,2,δ,1 +Σh,2,δ,2, say,

wherein the assessment

(100) Σh,2,δ,1 = O

(
x2 log x
Q

)

is a particular example of (98) with R/δ replaced by x/Q. As for the other
constituent in (99), on using the Cauchy–Schwarz inequality in a different
way from before, we obtain

Σh,2,δ,2 ≤
( ∑

d1≤R/δ
l<x/Q

1
)1/2

( ∑

x/Q<d1≤R/δ

∑

0<a≤d1
(a,d1)=1

bd
0<u≤x

∣∣∣∣W
(
u,
a

d

)∣∣∣∣
2)1/2
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= O

{(
Rx

Qδ

)1/2(
R2

δ2 + x

)1/2(∑

p≤x
log2 p

)1/2
}

= O

(
R3/2x log x
Q1/2δ3/2

)
+O

(
R1/2x3/2 log x
Q1/2δ1/2

)
.

The combination of this fact with (97) and (100), (99), (98), (65) first yields

Σh,2 = O

(
d(h)x2 log x

Q

)
+O

(
d(h)R3/2x log x

Q1/2

)
(101)

+O

(
d(h)R1/2x3/2 log x

Q1/2

)

= O

(
d(h)R3/2x log x

Q1/2

)
+O

(
d(h)R1/2x3/2 log x

Q1/2

)

and then (3), via (91),

J
(2)
1 (x,Q) = O

(
R3/2x log x

Q1/2

∑

1≤h≤N

d(h)
h

)
(102)

+O

(
R1/2x3/2 log x

Q1/2

∑

1≤h≤N

d(h)
h

)

= O

(
R3/2x log3 x

Q1/2

)
+O

(
R1/2x3/2 log3 x

Q1/2

)

because of (92) again.
Taken all together, (90), (91), (96), (102), and (65) imply that expression

(88) ignores the effect of a term

(103) O

(
Rx log x

Q

)
+O(Rx log4 x)

+O

(
R3/2x log4 x

Q1/2

)
+O

(
R1/2x3/2 log4 x

Q1/2

)

= O(Rx log4 x) +O

(
R3/2x log4 x

Q1/2

)

that emanates from J∗1 (x,Q).

(3) Since, ultimately, R will be chosen to exceed x1/2, it may be wondered why this
stipulation is not made now in order to simplify the calculations. The reason lies in our
intention to perform an analogous calculation later on which the quantity corresponding
to R may be considerably smaller than R.
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Flowing as it does from the replacement for p - l of the remainder term
O(R) in (75) by the expression

∑

d≤R
(d,l)=1

V (R)λd

{
ψ−
(
p− lQ
ld

− pd

l

)
− ψ

(
−pd
l

)}

=
∑

d≤R
(d,l)=1

V (R)λd

{
ψ−
(
−Q
d

+
pl

d

)
−ψ
(
−pd
l

)}
,

the comparable analysis bound up with J†1(x,Q) in (74) is very similar to
what has gone before and results in there being another indirect effect on
S(x;Q) of a contribution from J†1(x,Q) like (103) above.

The requisite improvement in the remainder term in the formula (79)
for J2(x,Q) is derived by following the previous methods, although an extra
entanglement is introduced because ΛR(n) is not necessarily non-negative
and need not be zero when (n, l) > 1 and n > l. Starting much as before,
we employ (25) in Lemma 1 to state the remainder term in (79) as∑

l<x/Q

∑

m<x−lQ
ΛR(m)

∑

η|(m,l)

∑

d′≤η/R
(d′,l′)=1

V (R)λd′η

×
{
ψ

(
x

ηl′d′
− (m/η)d′

l′

)
− ψ

(
m+ lQ

ηl′d′
− (m/η)d′

l′

)}

where l′ denotes l/η. Next, since the condition η | (m, l) is equivalent to the
simultaneous congruences m ≡ l ≡ 0, modη, this expression is seen to equal

(104)
∑

η<x/Q

∑

l′<x/(Qη)

∑

d′≤R/η
(d′,l′)=1

V (R)λd′η

×
∑

m′<(x−ηl′Q)/η

ΛR(ηm′)
{
ψ

(
x

ηl′d′
− m′d′

l′

)
− ψ

(
Q

d′
+
m′l′

d′

)}

through the use of the congruence d′d′ + l′l′ ≡ 1,mod d′l′, the innermost
sum being

(105) O

(
1
N

∑

m′<(x−ηl′Q)/η

|ΛR(ηm′)|
)

+O

( ∑

0<h≤N

1
h

∣∣∣
∑

m′<(x−ηl′Q)/η

ΛR(ηm′)e2πihd′m′/l′
∣∣∣
)

+O

( ∑

0<h≤N

1
h

∣∣∣
∑

m′<(x−ηl′Q)/η

|ΛR(ηm′)|e2πihd′m′/l′
∣∣∣
)
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+O

( ∑

0<h≤N

1
h

∣∣∣
∑

m′<(x−ηl′Q)/η

ΛR(ηm′)e2πihl′m′/d′
∣∣∣
)

+O

( ∑

0<h≤N

1
h

∣∣∣
∑

m′<(x−ηl′Q)/η

|ΛR(ηm′)|e2πihl′m′/d′
∣∣∣
)

by Lemma 4. The absence or presence of the modulus signs around ΛR(ηm′)
in these exponential sums is irrelevant to our estimations of the sums ob-
tained by replacing the innermost sum in (104) in turn by each of the last
four constituents in (105), whence it is enough for us to consider the sums

(106) log x
∑

0<h≤N
η<x/Q

1
h

∑

l′<x/(Qη)

∑

d′≤R/η
(d′,l′)=1

∣∣∣
∑

m′<(x−ηl′Q)/η

ΛR(ηm′)e2πihd′m′/l′
∣∣∣

= log x
∑

0<h≤N
η<x/Q

1
h
Σ

(η)
h,1 = log xJ I

2(x,Q), say,

and

(107) log x
∑

0<h≤N
η<x/Q

1
h

∑

d′≤R/η

∑

l′<x/(Qη)
(l′,d′)=1

∣∣∣
∑

m′<(x−ηl′Q)/η

ΛR(ηm′)e2πihl′m′/d′
∣∣∣

= log x
∑

0<h≤N
η<x/Q

1
h
Σ

(η)
h,2 = log xJ II

2 (x,Q), say,

together with the sum

log x
N

∑

η<x/Q

∑

l′<x/(Qη)
d′≤R/η

∑

m′≤x/η
|ΛR(ηm′)|

that is

(108) O

(
log2 x

N

∑

η<x/Q

d(η)
∑

l′<x/(Qη)
d′≤R/η

∑

m′≤x/η
d(m′)

)

= O

(
x2R log3 x

QN

∑

η<x/Q

d(η)
η3

)
= O

(
x2R log3 x

QN

)
= O(1)

by (80) and (92).
The sums appearing in (106) and (107) are, respectively, very similar to

those in (91) earlier on, save for the presence of the extra parameter η and
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the replacement of the prime number function in the innermost sums by

ΛR(ηm′) = O{log x d(η)d(m′)}.
Thus, on comparing Σ(η)

h,1 with the representation of Σh,1 on the first line of
(93), we see we can assess it exactly as the latter sum by allowing (4) x/η
and R/η to assume the rôles of x and R provided that we realize that the
large sieve inequality will entail the manifestation of the sum

∑

m′≤x/η
Λ2(ηm′) = O

(
d2(η) log2 x

∑

m′≤x/η
d2(m′)

)
= O

(
d2(η)x log5 x

η

)

instead of
∑
p≤x log2 p. Since R/η > (x/η)/Q by (65), the upshot is that we

gain the estimate

Σ
(η)
h,1 = O

(
d(η)d(h)Rx log3 x

η2

)

that is parallel to (95), whereupon we deduce from (106) that

(109) J I
2(x,Q) = O

(
Rx log3 x

∑

0<h≤N
η<x/Q

d(η)d(h)
η2h

)
= O(Rx log5 x).

Similarly, following the treatment of J (2)
1 (x,Q), we derive the analogue

Σ
(η)
h,2 = O

(
d(η)d(h)R3/2x log3 x

Q1/2η5/2

)
+O

(
d(η)d(h)R1/2x3/2 log3 x

Q1/2η2

)

of (101), whence on summation over h and η we conclude that

(110) J II
2 (x,Q) = O

(
R3/2x log5 x

Q1/2

)
+O

(
R1/2x3/2 log5 x

Q1/2

)

after taking (92) into account.
The other relevant sums analogous to those in (106) and (107) are es-

timated in identical manner. Therefore, with (109), (110), and two similar
majorizations, we deduce from (105) and (108) that the segment (88) also
ignores the influence of a term

(111) O(Rx log6 x) +O

(
R3/2x log6 x

Q1/2

)
+O

(
R1/2x3/2 log6 x

Q1/2

)

= O(Rx log6 x) +O

(
R3/2x log6 x

Q1/2

)

that proceeds from J2(x,Q). With this estimate, we have completed our
reassessment of the appropriate remainder terms in the analysis by means
of the second form of Lemma 1 and inequalities of large sieve type.

(4) Recall footnote (3).
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8. The conditional theorem. All that is left to be done is to combine
our conclusion in Section 6 with our assessment of the effect of the work of
Section 7 on J1(x;Q1, Q2) and J2(x;Q1, Q2). Recalling at once (88), (67),
and the definitions (73) and (74), we see immediately from (103), its ana-
logue for J†1(x,Q), and (111) that

S(x,Q2)

≥ Q2x log
RQ2

x
+O(Q2x log1/2 x) +O(Rx log6 x) +O

(
R3/2x log6 x

Q
1/2
1

)

≥ Q2x log
RQ2

x
+O(Q2x log1/2 x) +O(Rx log6 x) +O

(
R3/2x log13/2 x

Q
1/2
2

)

on the strength of (56). In this, it is easily confirmed that the last two
remainder terms can be absorbed by the first if R ≤ Q2 log−11/2 x, which
condition is not inconsistent with the requirement R > x/Q1 in (60) because
of (57). Hence, in the case where Q2 satisfies both (57) and

(112) Q2 ≤ x exp(− log3/5 x),

we deduce that

S(x,Q2) ≥ Q2x log
(

Q2
2

x log11/2 x

)
+O(Q2x log1/2 x)

by setting R = Q2 log−11/2 x, a comparable inequality being obtained when
(112) fails by the choice R = x exp(−2 log3/5 x). Changing Q2 into Q, we
thus deduce

Theorem 2. Suppose that the Riemann zeta function ζ(s) has no zeros
with real part exceeding 3/4. Then, for any real number α (possibly depending
on x) between 1/2 + ε1 and 1 and Q = xα, we have

∑

k≤Q

∑

0<a≤k
(a,k)=1

E2(x; a, k) > (2− 1/α− ε2)Qx logQ (x > x0(ε1, ε2))

in the notation of Theorem 1.
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