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1. Introduction. A natural number is called a congruent number if it
is the area of a right triangle with rational sides. It is well known that a
natural number is congruent if and only if the corresponding elliptic curve
has infinitely many rational points. There have been several interesting and
remarkable results about congruent numbers. For example, all natural num-
bers that are ≡ 5, 6 or 7 (mod 8) are congruent provided that the weak
Birch–Swinnerton-Dyer conjecture holds true.

In [6] Fujiwara extended the concept of congruent numbers by consid-
ering general (not necessarily right) triangles with rational sides. Let θ be
a real number with 0 < θ < π. In what follows, we call a triangle with
rational sides and an angle θ a rational θ-triangle. We note here that, for
such a triangle, cos θ is necessarily rational. A rational cos θ can be written
as cos θ = s/r, r, s ∈ Z, gcd(r, s) = 1, r > 0. We denote

√
r2 − s2 by αθ,

which is a rational or a quadratic real uniquely determined by θ.
θ-congruent numbers are defined as follows. Throughout our paper, θ is

always assumed to be 0 < θ < π and cos θ ∈ Q.

Definition. A natural number n is θ-congruent if nαθ is the area of a
rational θ-triangle.

θ-congruent numbers for θ = π/2 are nothing but ordinary congruent
numbers, since απ/2 = 1. Let En,θ be an elliptic curve defined by y2 =
x(x+ (r + s)n)(x− (r − s)n), where r and s are determined by θ as above.

Theorem (Fujiwara, [6]). Let n be any natural number. Then

(1) n is θ-congruent if and only if En,θ has a rational point of order
greater than 2.

(2) For n 6= 1, 2, 3, 6, n is θ-congruent if and only if En,θ has a positive
Q-rank.
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From this theorem, rational points on En,θ give us important information
on θ-congruent numbers. In this vein, primes ≡ 5, 7, 19 (mod 24) are shown
to be not π/3-congruent (Fujiwara, [6]). Our main results are the following.

Lemma. A square-free natural number n is θ-congruent if and only if n
is the square-free part of pq(p + q)(2rq + p(r − s)), where p, q are natural
numbers with gcd(p, q) = 1.

Remark. Fujiwara [6] showed that the following result (Thm. 2.1 of
[9]) on π/2-congruent numbers can be easily derived from the above lemma:
the numbers 1

2m1m2(m2
1 + m2

2) for integers m1m2>1, gcd(m1,m2) = 1 are
π/2-congruent. Using the above lemma, he also showed in [6] that, for any θ,
there are infinitely many θ-congruent numbers in each residue class modulo
8, which is a generalization of a result in Theorem 3 of [3].

Theorem. Suppose that p is a prime. Then p is not 2π/3-congruent if
p ≡ 7, 11, 13 (mod 24) and is 2π/3-congruent if p ≡ 23 (mod 24).

So far as sufficient conditions for congruence are concerned, it has been
proved, by analytic methods, that primes n ≡ 5, 6, 7 (mod 8) are π/2-
congruent ([1, 2, 6]). π/2-congruent numbers are relatively easier to handle
since En,π/2 has complex multiplication, whereas En,π/3 and En,2π/3 do not.
However, for θ = π/3 or 2π/3, we can make a reasonable conjecture based on
existing conjectures and computer calculation. For instance, Cassels proved
that dim2 X(E/Q)[2] is even for any elliptic curve E/Q provided that the
2-primary part of X(E/Q) is finite. Since X(E/Q) is conjectured to be
finite, the proposition of Section 2, the Birch–Swinnerton-Dyer conjecture
and computer calculation lead us to the following conjecture.

Conjecture. Let p be a prime number greater than 3. If p ≡ 11,
13, 17, 23 (mod 24), then p is π/3-congruent. If p≡ 5, 17, 19, 23 (mod 24),
then p is 2π/3-congruent.

The second part of our theorem constitutes a partial answer to the above
conjecture.

2. Proofs of the Lemma and of the first part of the Theorem

Proof of the Lemma. Consider the isogenous elliptic curve E∗n,θ : ny2 =
x(x+ 1)(2rx+ r − s) of En,θ given by the Q-isomorphism

(x, y) 7→
(
x− (r − s)n

2rn
,

y

2rn2

)
.

By Fujiwara’s theorem n is θ-congruent if and only if E∗n,θ has a rational
point (x, y) of order greater than 2, for which we can assume x > 0. (If not,
add 2-torsion point (−1, 0).) Put x = p/q with p, q ∈ N, gcd(p, q) = 1. Then
it is easily checked that n ≡ pq(p+ q)(2rq + p(r − s)) (mod Q∗2).
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Examples. (1) Taking p = 1, q = 1 and θ = π/2, we obtain a π/2-
congruent number 6. In fact, 6 is the area of a right triangle with sides 3, 4
and 5.

(2) Put p = 61991193600 = 210 · 32 · 52 · 72 · 172 · 19, q = 18357811081 =
1572 · 8632 and θ = 2π/3. Then 19 is 2π/3-congruent by the Lemma. In
fact, 19

√
3 is the area of a 2π/3-triangle with sides 544/105, 1995/136 and

254659/14280.

Here we restrict our attention to special cases θ = π/3 and 2π/3, and
will try to prove the first part of the main theorem. First we prove the next
proposition.

Proposition. Let p be a prime greater than 3 and X(E/Q) be the
Shafarevich–Tate group of E over Q. Then

rankEp,π/3(Q) + dim2 X(Ep,π/3/Q)[2]

=





0 for p ≡ 5, 7, 19 (mod 24),
1 for p ≡ 11, 13, 17, 23 (mod 24),
2 for p ≡ 1 (mod 24),

rankEp,2π/3(Q) + dim2 X(Ep,2π/3/Q)[2]

=





0 for p ≡ 7, 11 (mod 24),
1 for p ≡ 5, 17, 19, 23 (mod 24),
2 for p ≡ 1, 13 (mod 24),

where X(E/Q) is the Shafarevich–Tate group of E over Q. Furthermore
the rank of Ep,2π/3(Q) vanishes if p is congruent modulo 24 to 13.

P r o o f. First we notice the following: If θ = π/3 or 2π/3, then Ep,θ(Q)
has Z/2Z × Z/2Z as the torsion subgroup. This is immediately verified by
the well known facts ([10], for instance Mazur’s theorem (Thm. 7.5, p. 223))
and by the duplication formula.

Assume first that θ is 2π/3. Let φ be the two-isogeny of Ep,2π/3 defined
by

φ((x, y)) =
(
y2

x2 ,
−(x2 + 3p2)y

x2

)
,

and let E′p,2π/3 : y2 = x3 +4px2 +16p2x be the isogenous elliptic curve given
by φ. Then, by the well known fact (Prop. 4.9, p. 302, [10]), the φ-Selmer
group over Q satisfies

S(φ)(Ep,2π/3/Q) ∼= {d ∈ {±1,±2,±3,±6,±p,±2p,±3p,±6p} : Cd(Qp) 6= ∅
for all p ∈ {∞, 2, 3, p}},

where Cd is a curve given by dw2 = d2 + 4pdz2 + 16p2z4. We now check the
solubility of Cd in each local field and shall determine S(φ)(Ep,2π/3/Q).
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Suppose that d is negative and that Cd(R) 6= ∅. Then the left hand
side of Cd is negative, whereas the right hand side is not. It follows that
Cd has no solution in R. Suppose next that d = 2k with k = 1, 3, p, 3p and
that C2k(Q2) 6= ∅. Take the valuation v2 at 2 of both sides. Then v2(LHS) is
odd, while v2(RHS) is even, a contradiction. A similar argument tells us that
C3 and C3p do not have Q3-solutions. We now investigate the last possible
candidate d = p:

Cp : w2 = p+ 4pz2 + 16pz4.

Suppose that (w, z) ∈ Cp(Qp). If vp(w) ≤ 0, then vp(LHS) = vp(w2) is
even, while vp(RHS) = vp(16pz4) is odd. Thus we can set vp(w) > 0 and
vp(z) ≥ 0. Replacing w by pw, we obtain pw2 = 1+4z2+16z4, and vp(z) = 0.
Then pw2 = (1 + 2z2)2 + 12z4, and so p is congruent modulo 3 to 1.

Conversely, if p is congruent modulo 3 to 1, then the primitive third
root z0 of unity modulo p exists in the multiplicative group (Z/pZ)∗. In
particular z4

0 + z2
0 + 1 ≡ z0 + z2

0 + 1 ≡ 0 (mod p). Replacing z by z/2 in Cp
yields Cp : pw2 = z4 + z2 + 1. Hensel’s lemma now assures a solution in Qp,
since d

dz (z4 +z2 +1)
∣∣
z=z0

6≡ 0 (mod p). We thus conclude that Cp is soluble
in Qp if and only if p is congruent modulo 3 to 1.

Similarly p ≡ 1 (mod 3) suffices to yield a solution of Cp in the local
field Q3, while p ≡ 1, 3, or 5 (mod 8) suffices for Q2. To sum up all,

S(φ)(Ep,2π/3/Q) =
{ {1} for p ≡ 5, 7, 11, 17, 23 (mod 24),
{1, p} for p ≡ 1, 13, 19 (mod 24).

We can show similarly

S(φ̂)(E′p,2π/3/Q) =
{ {1,−3,−p, 3p} for p ≡ 7, 11, 19 (mod 24),
{±1,±3,±p,±3p} for p ≡ 1, 5, 13, 17, 23 (mod 24).

By the next 3 exact sequences

0→E′p,2π/3(Q)/φ(Ep,2π/3(Q))→ S(φ)(Ep,2π/3/Q)→X(Ep,2π/3/Q)[φ]→ 0,

0→
E′p,2π/3(Q)[φ̂]

φ(Ep,2π/3(Q)[2])
→

E′p,2π/3(Q)

φ(Ep,2π/3(Q))

φ̂→ Ep,2π/3(Q)
2Ep,2π/3(Q)

→ Ep,2π/3(Q)

φ̂(E′p,2π/3(Q))
→ 0,

0→X(Ep,2π/3/Q)[φ]→X(Ep,2π/3/Q)[2]→X(Ep,2π/3/Q)[φ̂]→ 0,

we have

rankEp,2π/3(Q) + dim2 X(Ep,2π/3/Q)[2]

=





0 for p ≡ 7, 11 (mod 24),
1 for p ≡ 5, 17, 19, 23 (mod 24),
2 for p ≡ 1, 13 (mod 24).
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A similar argument gives us the result for θ = π/3 and we have

rankEp,π/3(Q) + dim2 X(Ep,π/3/Q)[2]

=





0 for p ≡ 5, 7, 19 (mod 24),
1 for p ≡ 11, 13, 17, 23 (mod 24),
2 for p ≡ 1 (mod 24).

Note that necessary information for p ≡ 13 (mod 24), θ = 2π/3 is missing
above. For this case, we need to replace x by x− p in Ep,2π/3, and to check
that Cd(Q) and C ′d(Q) are empty for d = ±1,±2,±3,±6,±p,±2p,±3p,±6p,
where Cd : dw2 = d2 + 10pdz2 + 9p2z4, C ′d : dw2 = d2 − 5pdz2 + 4p2z4.

Suppose that p is congruent modulo 24 to 13 and that Cp has a rational
solution (w, z) = (l/k, e/M) ∈ Q2 where l, k, e,M ∈ Z\{0}, gcd(M, e) =
gcd(k, l) = 1. Replacing lM2/k by an integer N (k must divide M2 here),
we can reduce the problem to proving the non-existence of integral solutions
(M, e,N) of pN2 = M4 + 10M2e2 + 9e4 = (M2 + e2)(M2 + 9e2) with
gcd(M, e) = gcd(N, e) = gcd(M,N) = 1. There are 4 cases to consider:

(a)
{
M2 + e2 = pS2,
M2 + 9e2 = T 2,

(b)
{
M2 + e2 = S2,
M2 + 9e2 = pT 2,

gcd(S, T ) = 1, N = ST, gcd(S, T ) = 1, N = ST,

(c)
{
M2 + e2 = 2pS2,
M2 + 9e2 = 2T 2,

(d)
{
M2 + e2 = 2S2,
M2 + 9e2 = 2pT 2,

gcd(S, T ) = 1, N = 2ST, gcd(S, T ) = 1, N = 2ST.

(c) is insoluble modulo 3. (a), (b) and (d) are also insoluble modulo 24.
Therefore Cp has no rational solution.

Similarly we obtain Cd(Q) = ∅ and C ′d(Q) = ∅ for all d = ±1,±2,±3,
±6,±p,±2p,±3p,±6p. Thus the rank of Ep,2π/3(Q) is zero when p is con-
gruent modulo 24 to 13. This completes our proof.

The same argument tells us that the Q-rank of En,θ is 0 when n is 1, 2
or 3 and θ = π/3 or 2π/3. However 1 is π/3-congruent, as E1,π/3(Q) has a
rational point of order 8.

From the proposition, we obtain the following corollary, first half of which
was first proved in [6].

Corollary. Let p be a prime. If p ≡ 5, 7, 19 (mod 24), then p is not
π/3-congruent. If p ≡ 7, 11, 13 (mod 24), then p is not 2π/3-congruent.

3. Proof of the second part of the Theorem. In the last section
we showed the first half of our main theorem. In this section, we prove the
remaining part.
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Remark. The n-twist of an elliptic curve E : y2 = x3 + ax2 + bx+ c is
defined as E(n) : ny2 = x3 + ax2 + bx + c, which is isomorphic to E over
Q(
√
n). We usually identify all isomorphic elliptic curves over Q. In our case,

Ep,2π/3 is the (−p)-twist of E1,π/3.

Let us quote a theorem of B. J. Birch [1], which deals with Heegner
points, a special kind of non-trivial rational points.

Theorem (Birch, [1]). Let p be a prime congruent modulo 4 to 3 and
suppose that p = 96T 2−S2 is soluble with T, S ∈ Z. Then, for almost all p,
the (−p)-twist E(−p) of the elliptic curve E : Y 2 = (X − 1)(X2 − 4) has a
rational point of infinite order.

Proof of the second part of the Theorem. Assume that p is a prime con-
gruent modulo 24 to 23. Then p splits in Q(

√
6) and there exist integers S

and T satisfying S2 − 6T 2 = −p. (Note that Q(
√

6) is a PID.) If T were
odd, S2 − 6T 2 6≡ −p (mod 8), and thus S2 − 24T 2 = −p is soluble in Z. By
multiplying the fundamental unit 5+2

√
6 of Q(

√
6), we can assume T to be

even, again, without loss of generality. Therefore S2 − 96T 2 = −p is soluble
in integers.

As we saw in the above remark, the elliptic curve E in Birch’s theorem is
isomorphic over Q to E1,π/3 of which Ep,2π/3 is the (−p)-twist. We only have
to check whether our p is one of the exceptional primes in Birch’s theorem
or not. According to [1], exceptional primes are related to a map π from
a model X0(24) to Fricke’s quartic curve C24 ([1, 4]). For more details, we
now review Fricke’s work and apply it to our situation.

Let Γ0(24) be the congruence subgroup of SL2(Z) as usual, H be the
upper half plane, H∗ be its completion, and F0(24) be the fundamental
domain for Γ0(24) whose cusps are 0, 1/12, 1/8, 1/6, 1/4, 1/3, 1/2,∞ there.
Furthermore let j be a modular invariant of SL2(Z) and j24(z) = j(24z). The
functions j and j24 are known to satisfy an algebraic identity F24(j, j24) = 0,
and the curve J24 : F24(u, v) = 0 is a model of X0(24)=H∗/Γ0(24) ([1, 5]).
(j, j24) is actually a holomorphic map from X0(24) to J24 and can be rec-
ognized as a map from F0(24) to J24.

Here we must note that J24 has a singularity on the quadratic surd z
for which there exists an element z′ ∈ F0(24) such that z and z′ are not
equivalent by Γ0(24), whereas (j(z), j24(z)) = (j(z′), j24(z′)). Namely,

24az + 24b
cz + d

=
24Az +B

24Cz +D

holds for some integers a, b, c, d, A,B,C,D ∈ Z, ad − bc = AD − BC = 1,
not only a = A, 24b = B, c = 24C, d = D. This implies that the matrix

M =
(

24A B

24C D

)−1(24a 24b
c d

)
∈ SL2(Q)
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is elliptic on F0(24). It is a well known fact that any elliptic element M has
the property |trM | < 2, thus here, we can verify that the discriminant ∆(z)
of z must satisfy ∆(z) + 2304 = 576|trM |2, therefore −2304 ≤ ∆(z) < 0.

On the other hand, Fricke introduces two modular functions τ(z)
and σ(z) where τ(z) ∈ Q(j(z), j24(z)), τ(z) is symmetric in j(z) and
j24(z), σ(z)/(j(z) − j24(z)) ∈ Q(τ(z)), and σ2(z) = f(τ(z)) = τ4(z) −
12τ3(z) + 32τ2(z)− 24τ(z) + 4 ([5], p. 459, [1]). Then we can define a map
from F0(24) to Fricke’s quartic C24 : σ(z)2 = f(τ(z)) by z 7→ (τ(z), σ(z)),
where σ(z) =

√
f(τ(z)) (any one of the two branches) if |z| > √6/12 or

|z| = √6/12, Re(z) ≥ 0, and σ(z) = −
√
f(τ(z)) otherwise. Then we obtain

a commutative diagram

z ∈ F0(24)\{z∈F0(24) : (j(z), j24(z)) is singular on J24}

π : J24\{singular points} → C24

(j(z), j24(z)) 7→ (τ(z),σ(z))

wwooooooo LLLLLL&&

and this induces a well defined map π from J24\{singular points} to C24.
By Birch’s theorem ([1], Thm. 1), if −p = S2 − 96T 2 has an inte-

gral solution (S, T ), and if the map π is well defined at the point ω =
(S +

√−p)/(48T ) ∈ F0(24) (∆(ω) = −p), then ω certainly yields a non-
trivial rational point on our elliptic curve Ep,2π/3.

We have seen that π is well defined on J24\{singular points} and this
confirms our theorem for p > 2304.

For 42 primes p ≡ 23 (mod 24), 23 ≤ p < 2304, computer calculation
together with Theorem 7.3 of [7] assure that each elliptic curve E(−p) has
positive Mordell–Weil rank. This completes our proof.

Example. 23 is 2π/3-congruent. Indeed 23
√

3 is the area of a 2π/3-
rational triangle with sides 14/5, 230/7 and 1202/35. 2039 is also 2π/3-
congruent, since 2039

√
3 is the area of a 2π/3-rational triangle with sides

89133931107869573473198
7031144327156015001179

,
28673006566142229174807962

44566965553934786736599

and
203619325887790636644152984834372643535677913202

313356767033106103474434490264672606547450221
.

Acknowledgements. I would like to express special thanks to Professor
Masahiko Fujiwara for his heartful seminars and encouragement. In addition,
I would like to thank Professor Akira Kaneko and Professor Takaaki Kagawa
for their kind advice.



160 M. Kan

References

[1] B. J. Birch, Elliptic curves and modular functions, in: Symposia Math. IV (Roma,
1968/69), Academic Press, 1970, 27–32.

[2] —, Heegner points of elliptic curves, in: Symposia Math. XV (Roma, 1973),
Academic Press, 1975, 441–445.

[3] J. S. Chahal, On an identity of Desboves, Proc. Japan Acad. Ser. A 60 (1984),
105–108.

[4] G. Frey, Some aspects of the theory of elliptic curves over number fields, Exposi-
tion. Math. 4 (1986), 35–66.

[5] R. Fr icke, Lehrbuch der Algebra III , Braunschweig, 1928.
[6] M. Fuj iwara, θ-congruent numbers, in: Number Theory, K. Győry, A. Pethő, and
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