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Xiumin Ren (Jinan)

1. Introduction. It is conjectured that all sufficiently large integers
satisfying some necessary congruence conditions are sums of four cubes of
primes. Such a strong result is out of reach at present. The best result in
this direction is due to Hua and dates back to 1938 (see [4]):

• All sufficiently large integers are sums of nine cubes of primes;
• Almost all integers n in the set N = {n ≥ 1 : n 6≡ 0,±2 (mod 9)} can

be represented as sums of five cubes of primes, i.e.

n = p3
1 + p3

2 + . . .+ p3
5.(1.1)

To be more precise, let E(N) denote the number of integers n ∈ N not
exceeding N which cannot be written as (1.1). Then Hua’s second result
actually states that

E(N)� N log−AN,(1.2)

where A > 0 is arbitrary.
In this paper we give the following improvement on (1.2).

Theorem 1. For E(N) defined as above, we have

E(N)� N152/153.

We prove the theorem by the circle method. To get a result of this
strength, we have to deal with rather large major arcs, to which the Siegel–
Walfisz theorem does not apply. In contrast to the previous works (see, for
example, Montgomery–Vaughan [10], Gallagher [2], and Liu and Tsang [9])
which treat the enlarged major arcs by the Deuring–Heilbronn phenomenon,
we prove Theorem 1 by a different approach, which has recently been used
by Liu, Liu, and Zhan [8]. This approach reveals that in the situation of this
paper, the possible existence of a Siegel zero does not have special influence,
hence the Deuring–Heilbronn phenomenon can be avoided. The key point
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of this approach is that there are five prime variables in our problem (while
there are only two in [10] and [2]), and we can take advantage of this by
saving the factor r−3/2+ε

0 in Lemma 4.3(ii) below. With this saving, our
enlarged major arcs can be treated by the classical zero-density estimates
(in Lemma 3.3) and the zero-free region for the Dirichlet L-functions (defined
in (4.14)). Our methods not only give a better result (note that we can take,
for example, θ = 1/20 in (2.1)), but also lead us to a technically simpler
proof.

Notation. As usual, ϕ(n) and Λ(n) stand for the Euler and von Mangoldt
functions respectively, and d(n) is the divisor function. We use χ mod q and
χ0 mod q to denote a Dirichlet character and the principal character modulo
q, and L(s, χ) is the Dirichlet L-function. N is a large integer, L = logN ,
and r ∼ R means R < r ≤ 2R. If there is no ambiguity, we write a

b + θ as
a/b+ θ or θ + a/b. The same convention will be applied for quotients. The
letters ε and A denote positive constants which are arbitrarily small and
arbitrarily large respectively.

2. Outline of the method. In order to apply the circle method, for
large N > 0 we set

P = Nθ, Q = N1−θ,(2.1)

where θ is a positive constant satisfying θ < 1/19.08. Actually there is only
one place (in the estimation of K51 right after (4.12)) where θ < 1/19.08
is needed exactly. In other places, better ranges for θ suffice. By Dirichlet’s
lemma on rational approximations, each α ∈ [1/Q, 1 + 1/Q] may be written
in the form

α = a/q + λ, |λ| ≤ 1/(qQ),(2.2)

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by
M(q, a) the set of α satisfying (2.2), and write M for the union of all M(q, a)
with 1 ≤ a ≤ q ≤ P and (a, q) = 1. The minor arcs m are defined as the
complement of M in [1/Q, 1 + 1/Q]. It follows from 2P ≤ Q that the major
arcs M(q, a) are mutually disjoint. Let

U = (N/12)1/3,(2.3)

and define

S(α) =
∑

m∼U
Λ(m)e(m3α),(2.4)

where e(r) = exp(i2πr) for real r. Let

r(n) =
∑

n=m3
1+...+m3

5
mj∼U

Λ(m1) . . . Λ(m5).



Waring–Goldbach problem for cubes 289

Then

r(n) =
1\
0

S5(α)e(−nα) dα =
{ \

M

+
\
m

}
S5(α)e(−nα) dα.(2.5)

To handle the integral on the major arcs, we need to obtain the following

Theorem 2. Let N/2 ≤ n ≤ N. Then uniformly for θ < 1/19.08, we
have \

M

S5(α)e(−nα) dα = S(n)J(n) +O(U2L−A).(2.6)

Here S(n) is the singular series defined as in (4.3) satisfying S(n)� 1 for
n ∈ N, and J(n) = J(n; 1, . . . , 1) defined as in (4.4) satisfies

U2 � J(n)� U2.(2.7)

Sections 3 and 4 are devoted to the proof of Theorem 2.
Now Theorem 1 is an immediate consequence of Theorem 2.

Proof of Theorem 1. We start from (2.5). The contribution of the major
arcs is taken care of by Theorem 2. To treat the integral on the minor arcs,
we note that each α ∈ m can be written as (2.2) for some P < q ≤ Q and
1 ≤ a ≤ q with (q, a) = 1. We now apply Harman’s estimate [3], which
states that if |α− a/q| ≤ q−2, then

S(α)� U1+ε
(

1
q

+
1

U1/2
+

q

U3

)1/16

.

Hence,

sup
α∈m
|S(α)| � U1+εP−1/16.(2.8)

Also by Hua’s lemma (see [5], Theorem 4),
1\
0

|S(α)|8 dα� U5+ε.(2.9)

Thus, we deduce from Bessel’s inequality, (2.8), and (2.9) that

∑

N/2<n≤N

∣∣∣
\
m

∣∣∣
2
� max

α∈m
|S(α)|2

1\
0

|S(α)|8 dα� U7+3εP−1/8.(2.10)

By a standard argument, we find from (2.10) that for all n ∈ N ∩ (N/2, N ]
with at most O(U3+5εP−1/8) exceptions,

∣∣∣
\
m

∣∣∣� U2−ε.
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Consequently, by (2.5) and Theorem 2, for these unexceptional n,

r(n) = S(n)J(n) +O(U2L−A),

and therefore these n can be written as (1.1). Let F (N) be the number of
exceptional n above. Then

F (N)� U3+5εP−1/8 � N1−θ/8+2ε = N152/153

on taking θ = 1/19.125 + 16ε. The assertion of Theorem 1 now follows from
E(N) =

∑
j≥0 F (N/2j).

3. An explicit expression. The purpose of this section is to establish
in Lemma 3.1 an explicit expression for the left-hand side of (2.6).

For a Dirichlet character χmod q, define

C(χ, a) =
q∑

m=1

χ(m)e
(
am3

q

)
, C(q, a) = C(χ0, a),(3.1)

where χ0 denotes the principal character modulo q. Also, we define

Φ(λ) =
2U\
U

e(λu3) du, Ψ(λ, %) =
2U\
U

u%−1e(λu3) du.(3.2)

The next lemma gives an asymptotic formula for S(α) with α ∈M.

Lemma 3.1. Let T = P 9/10+2ε with θ < 1/19.08. Then for α = a/q+λ ∈
M, we have

S(α) = S1(λ) + S2(λ) + S3(λ)

with

S1(λ) =
C(q, a)
ϕ(q)

Φ(λ), S2(λ) = − 1
ϕ(q)

∑

χmod q

C(χ, a)
∑

|γ|≤T
Ψ(λ, %),

and

S3(λ) = O

{
q1/2+εU

T
(1 + |λ|U3)L2

}
,

where % = β + iγ denotes a non-trivial zero (possibly the Siegel zero) of the
Dirichlet L-function L(s, χ).

P r o o f. By introducing Dirichlet characters, the exponential sum S(α)
can be rewritten as (see [1], §26, (2))

S

(
a

q
+ λ

)
=

1
ϕ(q)

∑

χmod q

C(χ, a)
∑

m∼U
Λ(m)χ(m)e(m3λ) +O(L2).(3.3)
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Now we apply the explicit formula (see [1], §17, (9)–(10); §19, (4)–(9))
∑

m≤x
χ(m)Λ(m) = δχx−

∑

|γ|≤T

x%

%
+O

(
x(log qxT )2

T
+ (log qx)2

)
,

where δχ = 1 or 0 according as χ = χ0 or not, and % = β+ iγ is a non-trivial
zero of L(s, χ). The inner sum on the right-hand side of (3.3) is equal to

2U\
U

e(λu3) d
{∑

m≤u
χ(m)Λ(m)

}

= δχΦ(λ)−
∑

|γ|≤T
Ψ(λ, %) +O

{∣∣∣
2U\
U

e(λu3) dr(u)
∣∣∣
}
,

where r(x) is the error term in the explicit formula. The above O-term is

� |r(2U)|+ |r(U)|+ U3|λ|max
u∼U
|r(u)| � U

T
(1 + |λ|U3)L2.

Inserting this into (3.3) and then using the Vinogradov estimate (see for
example [14], Ch. VI, Problem 14b(α))

|C(χ, a)| � q1/2d2(q),(3.4)

we obtain the assertion of the lemma.

For j = 0, 1, . . . , 5 we define

Ij =
(

5
j

)∑

q≤P

q∑
a=1

(a,q)=1

e

(
−an
q

) ∞\
−∞

S5−j
1 (λ)Sj2(λ)e(−nλ) dλ.(3.5)

Now we state the main result of this section.

Lemma 3.2. Let θ and n be as in Theorem 2, and T = P 9/10+2ε as in
Lemma 3.1. Then\

M

S5(α)e(−nα) dα =
5∑

j=0

Ij +O(U2L−A).

To prove this result, we need the following lemma.

Lemma 3.3. Let N(σ, T, χ) denote the number of zeros of L(s, χ) in the
region σ ≤ Re s ≤ 1, |Im s| ≤ T. Define

N(σ, T, q) =
∑

χmod q

N(σ, T, χ), N∗(σ, T, x) =
∑

q≤x

∑∗

χmod q

N(σ, T, χ),

where ∗ means that the summation is restricted to primitive characters χ
mod q. Then

N(σ, T, q)� (qT )(12/5+ε)(1−σ), N∗(σ, T, x)� (x2T )(12/5+ε)(1−σ).
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It should be pointed out that the above log-free form of Lemma 3.3 is
unnecessary for our purpose, and the normal form of zero-density estimates
works equally well.

P r o o f. The lemma follows from (1.1) of Huxley [6] and Theorem 1 of
Jutila [7].

Proof of Lemma 3.2. We first show that for α = a/q + λ ∈M,

S1(λ), S2(λ)� q−1/2+ε min(U, |λ|−1/3)L2.(3.6)

To estimate S2(λ), one notes that

d

du

(
λu+

γ

6π
log u

)
= λ+

γ

6πu
,

d2

du2

(
λu+

γ

6π
log u

)
= − γ

6πu2 .

Thus by Lemmas 4.3 and 4.5 in Titchmarsh [12], we have

Ψ(λ, %) =
1
3

8U3\
U3

uβ/3−1e

(
λu+

γ

6π
log u

)
du(3.7)

� Uβ−3 min
(
U3,

U3

minU3≤u≤8U3 |γ + 6πλu| ,
U3
√
|γ|

)
.

Therefore,

(3.8)
∑

|γ|≤T
|Ψ(λ, %)|

�
∑

|γ|≤T
|γ|≤|λ|U3

Uβ−3 min
(
U3,

U3

minU3≤u≤8U3 |γ + 6πλu|
)

+
∑

|λ|U3<|γ|≤T
Uβ−3 min

(
U3,

U3
√
|γ|

)

�
∑

|γ|≤T
|γ|≤|λ|U3

Uβ−3 min
(
U3,

1
|λ|
)

+
∑

|λ|U3<|γ|≤T
Uβ−3 min

(
U3,

U3/2

|λ|1/2
)

� min(U, |λ|−1/3)
∑

|γ|≤T
Uβ−1,

on noting that

min
(
U,

1
|λ|U2

)
� min

(
U,

1
|λ|1/3

)
,

min
(
U,

1
|λ|1/2U1/2

)
� min

(
U,

1
|λ|1/3

)
.
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Hence one concludes from (3.8) and Vinogradov’s bound (3.4) that

S2(λ)� q−1/2+ε
∑

χmod q

∑

|γ|≤T
|Ψ(λ, %)|(3.9)

� q−1/2+ε min(U, |λ|−1/3)
∑

χmod q

∑

|γ|≤T
Uβ−1.

By Lemma 3.3, we have

∑

χmod q

∑

|γ|≤T
Uβ−1 = −

1\
1/2

Uσ−1 dN(σ, T, q)

� L max
1/2≤σ≤1

N (σ−1)/3(qT )(12/5+ε)(1−σ)

� L max
1/2≤σ≤1

N (114θ/25−1/3+ε)(1−σ),

where we have used q ≤ P = Nθ and T = P 9/10+2ε. The last maximum is
� 1 when θ < 1/19.08. This in combination with (3.9) gives (3.6) for S2(λ).

Using the elementary estimate

8U3\
U3

e(λu) du� min(U3, |λ|−1)

and integrating by parts, one has

Φ(λ) =
1
3

8U3\
U3

u−2/3e(λu) du� U−2 min(U3, |λ|−1)� min(U, |λ|−1/3).

Thus the estimate (3.6) for S1(λ) now follows from this and (3.4).
Secondly we show that, on substituting S1(λ) + S2(λ) for S(α) in the

integral in Lemma 3.2, the resulting error is acceptable, i.e.

(3.10)
\

M

S5(α)e(−nα) dα

−
∑

q≤P

q∑
a=1

(a,q)=1

e

(
−an
q

) 1/(qQ)\
−1/(qQ)

{S1(λ) + S2(λ)}5e(−nλ) dλ� U2L−A.

By Hölder’s inequality, the left-hand side of (3.10) is

�
∑

i+j+k=5
k≥1

∑

q≤P

q∑
a=1

(a,q)=1

e

(
−an
q

) 1/(qQ)\
−1/(qQ)

|S1|i|S2|j |S3|k dλ(3.11)
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�
∑

i+j+k=5
k≥1

∑

q≤P
ϕ(q)

{ 1/(qQ)\
−1/(qQ)

|S1|5 dλ
}i/5

×
{ 1/(qQ)\
−1/(qQ)

|S2|5 dλ
}j/5{ 1/(qQ)\

−1/(qQ)

|S3|5 dλ
}k/5

.

By (3.6),
1/(qQ)\
−1/(qQ)

|S1|5 dλ� q−5/2+5εL10
{U−3\

0

U5 dλ+
∞\
U−3

λ−5/3 dλ
}

� q−5/2+5εU2L10,

and similarly,
1/(qQ)\
−1/(qQ)

|S2|5 dλ� q−5/2+5εU2L10.

A similar argument also gives
1/(qQ)\
−1/(qQ)

|S3|5 dλ� q5/2+5εU
2

T 5L
10.

By inserting these estimates into (3.11), the left-hand side of (3.10) is esti-
mated as

� U2L10
∑

1≤k≤5

T−k
∑

q≤P
qk−3/2+5ε � U2L−A,

on recalling that T = P 9/10+2ε. This proves (3.10).
Finally we extend the interval of integration in the second integral in

(3.10) to (−∞,∞). By (3.6), the resulting error is

�
∑

q≤P

q∑
a=1

∞\
1/(qQ)

|S1(λ) + S2(λ)|5 dλ� L10
∑

q≤P
q−3/2+5ε

∞\
1/(qQ)

|λ|−5/3 dλ

� L10
∑

q≤P
q−5/6+5εQ2/3 � U2P−1/2+5εL10 � U2L−A.

Therefore (3.10) becomes\
M

S5(α)e(−nα) dα

=
∑

q≤P

q∑
a=1

(a,q)=1

e

(
−an
q

) ∞\
−∞
{S1(λ) + S2(λ)}5e(−nλ) dλ+O(U2L−A),

and Lemma 3.2 clearly follows.
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4. Estimation of Ij and the proof of Theorem 2. The purpose of
this section is to establish the following Lemmas 4.1 and 4.2. At the end of
this section, we derive Theorem 2 from these two lemmas.

Lemma 4.1. Let Ij be defined as in (3.5) with n and θ as in Theorem 2.
Then for all Ij with j = 1, . . . , 5, we have

Ij � U2L−A.(4.1)

Lemma 4.2. With the notation of Theorem 2, we have

I0 = S(n)J(n) +O(U2L−A),

where J(n) = J(n; 1, 1, . . . , 1) is defined as in (4.4), and satisfies U2 �
J(n)� U2.

We need some more notation. Let C(χ, a) and C(q, a) be defined as in
(3.1). If χ1, . . . , χ5 are characters mod q, then we write

(4.2)
B(n, q, χ1, . . . , χ5) =

q∑
a=1

(a,q)=1

e

(
−an
q

)
C(χ1, a) . . . C(χ5, a),

B(n, q) = B(n, q, χ0
1, . . . , χ

0
5),

and

A(n, q) =
B(n, q)
ϕ5(q)

, S(n) =
∞∑
q=1

A(n, q).(4.3)

This S(n) is the singular series appearing in Theorem 2.

Lemma 4.3. (i) We have

|A(n, q)| � q−3/2+ε.

(ii) Let χj mod rj with j = 1, . . . , 5 be primitive characters, r0 =
[r1, . . . , r5], and χ0 the principal character mod q. Then

∑

q≤x
r0|q

1
ϕ5(q)

|B(n, q, χ1χ
0, . . . , χ5χ

0)| � r
−3/2+ε
0 .

P r o o f. We only prove (ii), since the proof for (i) is similar. Using (3.4),
one has

B(n, q, χ1χ
0, . . . , χ5χ

0)�
q∑
a=1

(a,q)=1

5∏

j=1

|C(χjχ0, a)| � q7/2d10(q),
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and consequently,
∑

q≤x
r0|q

1
ϕ5(q)

|B(n, q, χ1χ
0, . . . , χ5χ

0)| �
∑

q≤x
r0|q

q7/2d10(q)
ϕ5(q)

�
∑

q≤x
r0|q

q−3/2+ε � r
−3/2+ε
0 ,

as required.

We record the following lemma, which is a modification of Lemma 4.7 of
Liu and Tsang [9].

Lemma 4.4. Let %j be any complex numbers with 0 < Re %j ≤ 1, j =
1, . . . , 5. Then

∞\
−∞

e(−nλ)
5∏

j=1

Ψ(λ, %j) dλ =
1
35

\
D

u
%1/3−1
1 . . . u

%5/3−1
5 du1 . . . du4(4.4)

=: J(n; %1, . . . , %5),

where

D = {(u1, . . . , u4) : U3 ≤ u1, . . . , u5 ≤ 8U3}(4.5)

with u5 = n− u1 − . . .− u4.

Now we establish the main results of this section.

Proof of Lemma 4.1. We treat the case j = 5 in (4.1) in detail. In other
cases, the proof for (4.1) is similar and better ranges of θ (in (2.1)) suffice,
so we will only give a sketch.

By (3.5), Lemma 4.4 and (4.2), we have

(4.6) I5 =
∑

q≤P

1
ϕ5(q)

q∑
a=1

(a,q)=1

e

(
−an
q

)

×
∞\
−∞

{ ∑

χmod q

C(χ, a)
∑

|γ|≤T
Ψ(λ, %)

}5
e(−nλ) dλ

=
∑

q≤P

∑

χ1 mod q

. . .
∑

χ5 mod q

B(n, q, χ1, . . . , χ5)
ϕ5(q)

∑

|γ1|≤T
. . .

∑

|γ5|≤T
J(n; %1, . . . , %5),

where J(n; %1, . . . , %5) denotes the quantity on the right hand side of (4.4)
with D defined by (4.5). Now we recall that if a primitive character χ mod r
induces a character ψ mod k, then r | k and ψ = χχ0, where χ0 is the princi-
pal character modulo k. Collecting all contributions made by an individual
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primitive character, and then appealing to Lemma 4.3 with r0 = [r1, . . . , r5],
one has

(4.7) I5 =
∑

r1≤P
. . .

∑

r5≤P

∑∗

χ1 mod r1

. . .
∑∗

χ5 mod r5

∑

|γ1|≤T
. . .

∑

|γ5|≤T
J(n; %1, . . . , %5)

×
∑

q≤P
r0|q

B(n, q, χ1χ
0, . . . , χ5χ

0)
ϕ5(q)

�
∑

r1≤P
. . .

∑

r5≤P
r
−3/2+ε
0

∑∗

χ1 mod r1

. . .
∑∗

χ5 mod r5

∑

|γ1|≤T
. . .

∑

|γ5|≤T
|J(n; %1, . . . , %5)|.

Now we come to an upper bound estimate for J(n; %1, . . . , %5). By defi-
nition,

J(n; %1, . . . , %5)

=
8U3\
U3

u
%1/3−1
1 du1

8U3\
U3

u
%2/3−1
2 du2 . . .

min(8U3,x−U3)\
max(U3,x−8U3)

u
%4/3−1
4 (x− u4)%5/3−1du4,

where we have written

x = n− u1 − . . .− u3.

Clearly, if x≤2U3 then x− U3≤U3, and hence the innermost integral is 0.
For x > 2U3, we make the substitution u4 = xu, so that

min(8U3,x−U3)\
max(U3,x−8U3)

u
%4/3−1
4 (x− u4)%5/3−1du4

� xβ4/3+β5/3−1
1−U3/x\

0

uβ4/3−1(1− u)β5/3−1 du

� Uβ4+β5−3
1\
0

u−5/6(1− u)−5/6 du� Uβ4+β5−3.

Estimating the other integrals in J(n; %1, . . . , %5) trivially, we obtain the
following bound:

J(n; %1, . . . , %5)� U2Uβ1+...+β5−5.(4.8)

Since r0 = [r1, . . . , r5] ≥ rj for j = 1, . . . , 5, one has

r
−3/2+ε
0 ≤ r−3/10+ε

1 . . . r
−3/10+ε
5 .(4.9)
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Inserting (4.8) and (4.9) into (4.7), one gets

I5 � U2
∑

r1≤P
r
−3/10+ε
1

∑∗

χ1 mod r1

∑

|γ1|≤T
Uβ1−1 . . .(4.10)

×
∑

r5≤P
r
−3/10+ε
5

∑∗

χ5 mod r5

∑

|γ5|≤T
Uβ5−1

� U2
{∑

r≤P
r−3/10+ε

∑∗

χmod r

∑

|γ|≤T
Uβ−1

}5

=: U2{J5 +K5}5,
where J5 and K5 denote the contribution from r ≤ LA and LA < r ≤ P
respectively. By Lemma 3.3, K5 can be easily estimated as

K5 =
∑

LA<r≤P
r−3/10+ε

∑∗

χmod r

∑

|γ|≤T
Uβ−1(4.11)

� L max
LA<R≤P

R−3/10+ε
∑

r∼R

∑∗

χmod r

∑

|γ|≤T
Uβ−1

� L max
LA<R≤P

max
1/2≤σ≤1

R−3/10+ε(R2T )(12/5+ε)(1−σ)Uσ−1.

The total exponent of R in the last line is

f(σ) :=
(

24
5

+ 2ε
)

(1− σ)− 3
10

+ ε,

say. Obviously f(σ) ≥ 0 for 1/2 ≤ σ ≤ σ0, and f(σ) < 0 for σ0 < σ ≤ 1,
where σ0 = (45 + 30ε)/(48 + 20ε). Thus, (4.11) becomes

K5 � L max
1/2≤σ≤σ0

P f(σ)T (12/5+ε)(1−σ)Uσ−1(4.12)

+ L max
σ0<σ≤1

LAf(σ)T (12/5+ε)(1−σ)Uσ−1

=: K51 +K52,

say. Clearly,

K51 � L max
1/2≤σ≤σ0

N{(174/25+8ε)(1−σ)−3/10+ε}θ−(1−σ)/3 � L−A

if θ < 1/19.08. We remark that it is this estimate for K51 that requires
θ < 1/19.08 exactly. To estimate K52, we note that

K52 � L max
σ0<σ≤99/100

N{(54/25+7ε)θ−1/3}(1−σ) + L max
99/100≤σ≤1

LAf(σ).

For σ0 < σ ≤ 99/100, the exponent of N above is ≤ −1/460; while for
99/100 ≤ σ ≤ 1, we have f(σ) ≤ −1/4. Hence, we have K52 � L−A/5, and
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consequently (4.12) becomes

K5 � L−A/5.(4.13)

Now we turn to J5. By Satz VIII.6.2 of Prachar [11], there exists a
positive constant c1 such that

∏
χmod q L(s, χ) is zero-free in the region

σ ≥ 1− c1/max{log q, log4/5N}, |t| ≤ N,(4.14)

except for the possible Siegel zero. But by Siegel’s theorem (see [1], §21),
the Siegel zero does not exist in this situation, since q ≤ LA. Let η(N) =
c1 log−4/5N. Then Lemma 3.3 gives

J5 �
∑

r≤LA

∑∗

χmod r

∑

|γ|≤T
Uβ−1(4.15)

� L max
1/2≤σ≤1−η(N)

(L2AT )(12/5+ε)(1−σ)Uσ−1

� L4A max
1/2≤σ≤1−η(N)

N (54θ/25−1/3+8ε)(1−σ) � L4AN−c2η(N)

� L4A exp{−c3L1/5}
provided θ < 1/19.08. Inserting (4.13) and (4.15) into (4.10), we get (4.1)
for j = 5. This completes the proof of Lemma 4.1 for j = 5.

To conclude the proof, we need to sketch how to estimate I1, . . . , I4. As
an example, we only consider I4. By definition, and an argument similar to
that leading to (4.6) and (4.7), we have

I4 = 5
∑

q≤P

5∑
a=1

(a,q)=1

e

(
−an
q

) ∞\
−∞

S1(λ)S4
2(λ)e(−nλ) dλ

= 5
∑

q≤P

∑

χ1 mod q

. . .
∑

χ4 mod q

B(n, q, χ1, . . . , χ4, χ
0)

ϕ5(q)

×
∑

|γ1|≤T
. . .

∑

|γ4|≤T
J(n; %1, . . . , %4, 1)

�
∑

r1≤P
. . .
∑

r4≤P
r
−3/2+ε
0

∑∗

χ1 mod r1

. . .
∑∗

χ4 mod r4

∑

|γ1|≤T
. . .

∑

|γ4|≤T
|J(n; %1, . . . , %4, 1)|,

where r0 = [r1, . . . , r4, 1]. Now instead of (4.8) and (4.9), we have respec-
tively

J(n; %1, . . . , %4, 1)� U2Uβ1+...+β4−4,

and

r
−3/2+ε
0 ≤ r−3/8+ε

1 . . . r
−3/8+ε
4 .
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So corresponding to (4.10), I4 can now be estimated as

I4 � U2
{∑

r≤P
r−3/8+ε

∑∗

χmod r

∑

|γ|≤T
Uβ−1

}4
.

Since r−3/8+ε ≤ r−3/10+ε, we have I4 � L−A for θ < 1/19.08 by the same
method as for J5 and K5 above. Actually a better range for θ suffices for
the purpose.

This completes the proof of Lemma 4.1.

Proof of Lemma 4.2. By (3.5),

I0 =
∑

q≤P

1
ϕ5(q)

q∑
a=1

(a,q)=1

C5(q, a)e
(
−an
q

) ∞\
−∞

Φ5(λ)e(−nλ) dλ.

Using Lemma 4.4 again, one gets

I0 =
∑

q≤P

B(n, q)
ϕ5(q)

J(n; 1, . . . , 1) = J(n)
∑

q≤P
A(n, q),(4.16)

where we recall that J(n) = J(n; 1, . . . , 1). By Lemma 4.3(i), we have
∑

q≤P
A(n, q) = S(n) +O(P−1/2+ε)

and consequently (4.16) becomes

I0 = S(n)J(n) +O(U2L−A).

Here in the O-term we have used the upper bound of the estimate

U2 � J(n)� U2,(4.17)

which will be established in the next paragraph.
We first note that the second inequality in (4.17) is a consequence of

(4.8). To bound J(n) from below, we define the set

D∗ = {(u1, . . . , u4) : U3 ≤ u1, . . . , u4 ≤ 5U3/4}.
For (u1, . . . , u4) ∈ D∗, one deduces from N/2 < n ≤ N that

U3 ≤ u5 = n− u1 − . . .− u4 ≤ 8U3.

Thus D∗ is a subset of the D in (4.5), and consequently,

J(n) ≥ 1
35

\
D∗
u
−2/3
1 . . . u

−2/3
4 u

−2/3
5 du1 . . . du4 � U2.

This proves (4.17) hence Lemma 4.2.

Proof of Theorem 2. The absolute convergence and positivity of S(n)
have been proved in Lemmas 8.10 and 8.12 of Hua [5] respectively. Other
assertions of Theorem 2 follow from Lemmas 3.2, 4.1, and 4.2.
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