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1. Introduction. Let p be a prime number and Zp the ring of p-adic
integers. Let k be a finite extension of the rational number field Q, k∞ a
Zp-extension of k, kn the nth layer of k∞/k, and An the p-Sylow subgroup
of the ideal class group of kn. Iwasawa proved the following well-known
theorem about the order #An of An:

Theorem A (Iwasawa). Let k∞/k be a Zp-extension and An the p-Sylow
subgroup of the ideal class group of kn, where kn is the nth layer of k∞/k.
Then there exist integers λ = λ(k∞/k) ≥ 0, µ = µ(k∞/k) ≥ 0, ν = ν(k∞/k),
and n0 ≥ 0 such that

#An = pλn+µpn+ν

for all n ≥ n0, where #An is the order of An.

These integers λ = λ(k∞/k), µ = µ(k∞/k) and ν = ν(k∞/k) are called
Iwasawa invariants of k∞/k for p. If k∞ is the cyclotomic Zp-extension of k,
then we denote λ (resp. µ and ν) by λp(k) (resp. µp(k) and νp(k)).

Ferrero and Washington proved µp(k) = 0 for any abelian extension field
k of Q. On the other hand, Greenberg [4] conjectured that if k is a totally
real, then λp(k) = µp(k) = 0. We call this conjecture Greenberg’s conjecture.

In this paper, we determine all absolutely abelian p-extensions k with
λp(k) = µp(k) = νp(k) = 0 for an odd prime p, by using the results of
G. Cornell and M. Rosen [1].

2. Main theorem. Throughout this section, we fix an odd prime num-
ber p. Let k be an abelian p-extension of Q and mk its conductor, i.e. mk

is the minimum positive integer with k ⊆ Q(ζmk), where ζmk is a primitive
mkth root of unity. Then it follows easily that mk = pap1 . . . pt, where a is a
non-negative integer and p1, . . . , pt are distinct primes which are congruent
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to 1 modulo p. We denote by kG the genus field of k/Q. So kG is the maximal
unramified abelian extension of k such that kG/Q is an abelian extension.
In general, if k/Q is an abelian extension of odd degree, then it has been
shown by Leopoldt that

[kG : k] =
e1 . . . et
[k : Q]

,

where e1, . . . , et are the ramification indices of the primes which ramify in
k/Q. Hence, in our case, kG is also an abelian p-extension of Q. Now, let x
and y be integers. We denote by

(
x
y

)
p

the pth power residue symbol. Namely,(
x
y

)
p

= 1 means that x is the pth power of some integer modulo y.

Theorem 1. Let k be an abelian p-extension of Q, and mk = pap1 . . . pt
the prime decomposition of its conductor , where the primes p1, . . . , pt are
distinct. If

(1) λp(k) = µp(k) = νp(k) = 0,

then t ≤ 2. Conversely , assume that t ≤ 2.

• If t = 0, then the condition (1) holds.
• If t = 1, then the condition (1) holds if and only if kG ⊆ k∞ and

(2)
(
p

p1

)

p

6= 1 or p1 6≡ 1 (mod p2).

• If t = 2, then the condition (1) holds if and only if kG ⊆ k∞, and for
(i, j) = (1, 2) or (2, 1),

(3)
(
p

pi

)

p

6= 1,
(
pi
pj

)

p

6= 1, pj 6≡ 1 (mod p2),

and there exist x, y, z ∈ Fp such that

(4)
(
pjp

x

pi

)

p

= 1,
(
ppyi
pj

)

p

= 1, pip
z
j ≡ 1 (mod p2), xyz 6= −1 in Fp.

In the case t = 2, the conditions in Theorem 1 are complicated. So we
will give an example. We consider the case p = 3, p1 = 7 and p2 = 19.
We denote by k(7) (resp. k(19)) the subfield of Q(ζ7) (resp. Q(ζ19)) with
degree 3 over Q. As for the condition kG ⊆ k∞, we consider the follow-
ing field F : There exists a field F such that k(7) ( F ( k(7)k(19)Q1

and F 6= k(7)k(19), k(7)Q1, where Q1 is the first layer of the cyclotomic
Z3-extension of Q. Then mF = 3 · 7 · 19 and k(7)k(19)Q1/F is a non-trivial
unramified extension. Since k(7)k(19)Q1/Q is abelian, F ( k(7)k(19)Q1

⊆ FG. But, for F1 = k(7)k(19)Q1, it follows easily that F1 = F1,G. Hence
FG ⊆ F1,G = F1 ⊆ F∞. So, F satisfies the first condition of Theorem 1 (in
the case of t = 2).
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If we consider only the case where p is unramified in k, i.e. a = 0, then
the statement kG ⊆ k∞ can be simplified to k = kG because k1 = kQ1.
This restriction is not very strong: In general, for an absolutely abelian
p-extension field k, there exists an absolutely abelian extension field k′ such
that p is unramified in k′ and k∞ = k′∞. For the above field F , F ′ =
k(7)k(19) satisfies F∞ = F ′∞ (in fact we have F1 = F ′1) and 3 is unramified
in F ′.

We continue to examine the above example. If we put (i, j) = (1, 2),
then pj = 19 ≡ 1 (mod 32), so the condition (3) is not satisfied. But if we
put (i, j) = (2, 1), then we can verify that pi = 19 and pj = 7 satisfy the
conditions (3) and (4). Therefore F satisfies λp(F ) = µp(F ) = νp(F ) = 0.

Also, if K is the maximal subfield of Q(ζ7·19) which is a 3-extension of
Q, then K satisfies the conditions of Theorem 1. (Note that, in general, if
k is the maximal subfield of Q(ζm) (m = pap1 . . . pt as above) which is an
abelian p-extension of Q, then it follows that k = kG.) Therefore we have

λp(K) = µp(K) = νp(K) = 0.

As for the Greenberg conjecture, we can also get the following: In general,
it is known that if L ⊆ M then λp(L) ≤ λp(M) and µp(L) ≤ µp(M)
for number fields L,M . Hence for any subfield k of Q(ζ7·19) which is a
3-extension of Q, i.e. k ⊆ K, we have λp(k) = µp(k) = 0. This consideration
is generalized as follows:

Corollary 2. Let m = pap1 . . . pt satisfy the condition either (2) (in
the case t = 1) or (3) and (4) (in the case t = 2) of Theorem 1. Then for any
subfield k of Q(ζm) which is a p-extension of Q, the Greenberg conjecture
for k and p is valid.

3. The results of G. Cornell and M. Rosen. In this section, we
recall some results of [1]. Let p be an odd prime number and K/Q an abelian
p-extension. Then the genus field KG of K/Q is also an abelian p-extension
of Q. If p does not divide the class number hK of K, then K does not
have any non-trivial unramified abelian p-extension by class field theory,
hence KG = K. In the following we will assume KG = K. Furthermore,
we introduce the central p-class field KC of K, i.e. KC is the maximal p-
extension of K such that KC/K is an unramified abelian p-extension, KC/Q
is Galois and Gal(KC/K) is in the center of Gal(KC/Q). Since a p-group
must have a lower central series that terminates in the identity, one sees
that p -hK if and only if KC = K. We can reduce our problem to the case
where Gal(K/Q) is an elementary abelian p-group by the following result:

Lemma 3 ([1], Theorem 1). Let K/Q be an abelian p-extension with
KG = K. Let k be the maximal intermediate extension between Q and K
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such that Gal(k/Q) is an elementary abelian p-group. Then the p-rank of
Gal(KC/K) is equal to the p-rank of Gal(kC/k).

Moreover, we have the following lemma by Furuta and Tate:

Lemma 4 ([1], Section 1). Let K be an absolutely abelian p-extension
such that Gal(K/Q) is an elementary abelian p-group and KG = K. Then

Gal(KC/K) ' Coker
(⊕n

i=1

∧2(Gi)→
∧2(G)

)
,

where Gi’s are the decomposition groups of the primes ramified in K/Q and
G = Gal(K/Q).

We assume Gal(K/Q) ' (Z/pZ)m. Let p1, . . . , pt be the primes ramifying
in K and hK the class number of K. From genus theory, it follows that if
hK is not divisible by p, then t = m. It follows that if m ≥ 4 then p divides
hK by Lemma 4. So, we assume t = m and m = 2 or 3. (If t = m = 1, then
p -hK , cf. [5].)

Lemma 5 ([1], Proposition 2). Suppose m = 2 and pi 6= p for i = 1, 2.
Then p |hK if and only if

(
p1
p2

)
p

= 1 and
(
p2
p1

)
p

= 1.

Next, we consider the case where p ramifies in K/Q. Suppose m = 2 and
primes p and p1 are the only primes ramified in K. Then K = k(p1)Q1 and
p1 ≡ 1 (mod p), where k(p1) is the unique subfield of Q(ζp1) which is cyclic
over Q of degree p, and Q1 is the first layer of the cyclotomic Zp-extension
of Q.

Lemma 6 ([1], Proposition 3). Suppose m = 2 and primes p and p1 are
the only primes ramified in K. Then p |hK if and only if

(
p
p1

)
p

= 1 and
p1 ≡ 1 (mod p2).

Next, suppose that t = m = 3 and p1, p2 and p3 are all the primes
ramified in K. Denote by Dpi the decomposition field of pi (i = 1, 2, 3) in
K. In [1], the following result is given:

Lemma 7 ([1], Theorem 2). Suppose t = m = 3. Then the following
statements are equivalent :

(a) hK is not divisible by p.
(b) [Dp1 : Q] = [Dp2 : Q] = [Dp3 : Q] = p and Dp1Dp2Dp3 = K.

In the next section, we shall prove Theorem 1 using these results.

4. Proof of Theorem 1. Notations are as in the previous section.
First, suppose λp(k) = µp(k) = νp(k) = 0. Clearly, this condition is

equivalent to A(kn) = 0 for any sufficiently large n. Then kn satisfies kn =
kn,G. So it follows easily that kG ⊆ kn,G = kn ⊆ k∞. Since kn is also an
abelian p-extension of Q, we can apply the results of Cornell–Rosen:
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Let L be the maximal subfield of kn such that Gal(L/Q) is an elementary
abelian extension of Q. Since kn = kn,G, Gal(kn/Q) is the direct sum of
the inertia groups of primes ramified in kn/Q. Hence it follows that L =
k(p1) . . . k(pt)Q1. By Lemma 3, A(kn) = 0 is equivalent to p -hL. Note that
if t ≥ 3 then we always have p |hL by Lemma 4. Hence we may examine
each case, t = 0 or 1 or 2.

If t = 0 then L = Q1, hence it is well known that A(L) = A(Q1) = 0
(cf. [5]).

If t = 1 then L = k(p1)Q1. By Lemma 6, we get the statement of
Theorem 1.

In the following, we assume t = 2. In this case, L = k(p1)k(p2)Q1.
Let Gp, Gpi (i = 1, 2) be the decomposition groups for p, pi in Gal(L/Q)
and Dp, Dpi the fixed field of Gp, Gpi , respectively. We note that Dp ⊂
k(p1)k(p2), Dp1 ⊂ k(p2)Q1 and Dp2 ⊂ k(p1)Q1.

Now, p -hL shows [Dp : Q] = [Dp1 : Q] = [Dp2 : Q] = p and DpDp1Dp2

= L by Lemma 7. Here, we assume that either
(
p
p1

)
p

= 1 or
(
p1
p2

)
p

= 1 or

p2 ≡ 1 (mod p2), and either
(
p
p2

)
p

= 1 or
(
p2
p1

)
p

= 1 or p1 ≡ 1 (mod p2).
This is equivalent to

(5) Dp = k(pi) or Dpi = k(pj) or Dpj = Q1 for (i, j) = (1, 2) and (2, 1),

because [Dp : Q] = [Dp1 : Q] = [Dp2 : Q] = p.
If Dp = k(p1), then Dp2 6= k(p1) because DpDp1Dp2 = L. Hence by (5)

(put (i, j) = (2, 1)), we have Dp1 = Q1. Then Dp2 ⊆ k(p1)Q1 = DpDp1 , a
contradiction DpDp1Dp2 = L. In the same way, if Dp = k(p2), then Dp1 6=
k(p2) and we have Dp2 = Q1 by (5), a contradiction. Thus, it follows that
the assumption (5) contradicts DpDp1Dp2 = L. Therefore, for (i, j) = (1, 2)
or (2, 1),

(
p
pi

)
p
6= 1,

(
pi
pj

)
p
6= 1, and pj 6≡ 1 (mod p2).

Without loss of generality, we may assume (i, j) = (1, 2). Since
(
p
p1

)
p

6= 1, p is inert in k(p1). Hence σ =
(k(p1)/Q

p

) 6= 1, where
(k(p1)/Q

p

)
is the

Artin symbol, and σ generates Gal(k(p1)/Q): 〈σ〉 = Gal(k(p1)/Q). We often
regard 〈σ〉 = Gal(k(p1)k(p2)/k(p2)) or Gal(L/k(p2)Q1) in the natural way.
Similarly, we put τ =

(k(p2)/Q
p1

)
and η =

(Q1/Q
p2

)
. Then 〈τ〉 = Gal(k(p2)/Q)

and 〈η〉 = Gal(Q1/Q).
Since

(
p
p1

)
p
6= 1, there exists x ∈ Fp such that

(
p2p

x

p1

)
p

= 1. Then
(
p2p

x

p1

)

p

= 1⇔
(
k(p1)/Q
p2px

)
=
(
k(p1)/Q

p2

)(
k(p1)/Q

p

)x
= 1.

Therefore
(k(p1)/Q

p2

)
= σ−x. Similarly, there exist y, z ∈ Fp such that

(ppy1
p2

)
p

= 1 and p1p
z
2 ≡ 1 (mod p2). Hence

(k(p2)/Q
p

)
= τ−y and

(Q1/Q
p1

)
= η−z.
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Since
(k(p1)k(p2)/Q

p

)
=
(k(p1)/Q

p

)(k(p2)/Q
p

)
= στ−y, Dp is the fixed field

of 〈στ−y〉 in k(p1)k(p2). Therefore, when we consider Gp in Gal(L/Q),

Gp = 〈η, στ−y〉.
And similarly,

Gp1 = 〈σ, τη−z〉 and Gp2 = 〈τ, ησ−x〉,
in Gal(L/Q). By a direct computation, Gp ∩Gp1 = 〈στ−yηyz〉. Hence,

Gp ∩Gp1 ∩Gp2 = 〈στ−yηyz〉 ∩ 〈τ, ησ−x〉

=
{ {1} if xyz 6= −1,
〈στ−yηyz〉 if xyz = −1.

But our assumption DpDp1Dp2 = L implies Gp ∩ Gp1 ∩ Gp2 = {1}. Hence
xyz 6= −1.

Conversely, we assume k satisfies the conditions of Theorem 1 in the
case of t = 2. Since kG = k∞, it follows easily that L = k(p1)k(p2)Q1 is
the maximal intermediate extension between Q and kn (for a sufficiently
large n) such that Gal(L/Q) is an elementary abelian p-group. Without
loss of generality, we may assume (i, j) = (1, 2). Since Gal(k(p1)k(p2)/Q) '
(Z/pZ)2 and p is unramified in k(p1)k(p2), p must decompose in k(p1)k(p2).
But the condition

(
p
p1

)
p
6= 1 implies that p is inert in k(p1) ⊂ k(p1)k(p2),

hence we obtain [Dp : Q] = p. Similarly,
(
p1
p2

)
p
6= 1 and p2 6≡ 1 (mod p2)

imply [Dp1 : Q] = [Dp2 : Q] = p. Therefore, as in the above computation of
Gp, Gpi , we have DpDp1Dp2 = L by xyz 6= −1.

5. Remarks. The condition of Theorem 1 in [6] means xyz = 0 which
is a special case of xyz 6= −1. Hence, our Corollary 2 contains some known
results and there exist infinitely many fields satisfying the conditions of
Theorem 1 (cf. [6]).

If K = k(p1)k(p2) satisfies the conditions of Theorem 1, then λp(k) =
µp(k) = 0 for any field k ⊆ K with [k : Q] = p. This is a result of Fukuda
[2]. The case xyz = −1 is a more difficult case. But we have some results:

Proposition 8. Notations are as in Section 3. Assume that
(
p
p1

)
p
6= 1,(

p1
p2

)
p
6= 1, and p2 6≡ 1 (mod p2). Then λp(k) = µp(k) = 0 for the decompo-

sition field k of p in k(p1)k(p2).

P r o o f. We apply a result of [3]:

Lemma 9 ([3]). Let k be a cyclic extension of Q of degree p. Then the
following conditions are equivalent :

(a) λp(k) = µp(k) = 0.
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(b) For any prime ideal w of k∞ which is prime to p and ramified in
k∞/Q∞, the order of the ideal class of w is prime to p.

If xyz 6= −1 then λp(k) = µp(k) = 0 by Corollary 2. So we only consider
the case xyz = −1. In this case we have k 6= k(pi) (i = 1, 2). It follows
easily that A(k), the p-part of the ideal class group of k, is cyclic of order
p, and it is generated by products of primes of k above p. On the other
hand, for i = 1, 2, the prime pi of k above pi generates A(k), and is inert in
k∞/k. Since the primes of k above p is principal for some kn by the natural
mapping A(k)→ A(kn) (cf. [4]), pi are principal in k∞.

Since all the primes ramified in k∞/Q∞ are p1 and p2, which are principal
in k∞, we can apply Lemma 9 and obtain λp(k) = µp(k) = 0.
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