On the vanishing of Iwasawa invariants of absolutely abelian p-extensions

by
Gen Yamamoto (Tokyo)

1. Introduction. Let p be a prime number and \mathbb{Z}_{p} the ring of p-adic integers. Let k be a finite extension of the rational number field \mathbb{Q}, k_{∞} a \mathbb{Z}_{p}-extension of k, k_{n} the nth layer of k_{∞} / k, and A_{n} the p-Sylow subgroup of the ideal class group of k_{n}. Iwasawa proved the following well-known theorem about the order $\# A_{n}$ of A_{n} :

Theorem A (Iwasawa). Let k_{∞} / k be a \mathbb{Z}_{p}-extension and A_{n} the p-Sylow subgroup of the ideal class group of k_{n}, where k_{n} is the nth layer of k_{∞} / k. Then there exist integers $\lambda=\lambda\left(k_{\infty} / k\right) \geq 0, \mu=\mu\left(k_{\infty} / k\right) \geq 0, \nu=\nu\left(k_{\infty} / k\right)$, and $n_{0} \geq 0$ such that

$$
\# A_{n}=p^{\lambda n+\mu p^{n}+\nu}
$$

for all $n \geq n_{0}$, where $\# A_{n}$ is the order of A_{n}.
These integers $\lambda=\lambda\left(k_{\infty} / k\right), \mu=\mu\left(k_{\infty} / k\right)$ and $\nu=\nu\left(k_{\infty} / k\right)$ are called Iwasawa invariants of k_{∞} / k for p. If k_{∞} is the cyclotomic \mathbb{Z}_{p}-extension of k, then we denote λ (resp. μ and ν) by $\lambda_{p}(k)$ (resp. $\mu_{p}(k)$ and $\left.\nu_{p}(k)\right)$.

Ferrero and Washington proved $\mu_{p}(k)=0$ for any abelian extension field k of \mathbb{Q}. On the other hand, Greenberg [4] conjectured that if k is a totally real, then $\lambda_{p}(k)=\mu_{p}(k)=0$. We call this conjecture Greenberg's conjecture.

In this paper, we determine all absolutely abelian p-extensions k with $\lambda_{p}(k)=\mu_{p}(k)=\nu_{p}(k)=0$ for an odd prime p, by using the results of G. Cornell and M. Rosen [1].
2. Main theorem. Throughout this section, we fix an odd prime number p. Let k be an abelian p-extension of \mathbb{Q} and m_{k} its conductor, i.e. m_{k} is the minimum positive integer with $k \subseteq \mathbb{Q}\left(\zeta_{m_{k}}\right)$, where $\zeta_{m_{k}}$ is a primitive m_{k} th root of unity. Then it follows easily that $m_{k}=p^{a} p_{1} \ldots p_{t}$, where a is a non-negative integer and p_{1}, \ldots, p_{t} are distinct primes which are congruent

[^0]to 1 modulo p. We denote by k_{G} the genus field of k / \mathbb{Q}. So k_{G} is the maximal unramified abelian extension of k such that k_{G} / \mathbb{Q} is an abelian extension. In general, if k / \mathbb{Q} is an abelian extension of odd degree, then it has been shown by Leopoldt that
$$
\left[k_{G}: k\right]=\frac{e_{1} \ldots e_{t}}{[k: \mathbb{Q}]}
$$
where e_{1}, \ldots, e_{t} are the ramification indices of the primes which ramify in k / \mathbb{Q}. Hence, in our case, k_{G} is also an abelian p-extension of \mathbb{Q}. Now, let x and y be integers. We denote by $\left(\frac{x}{y}\right)_{p}$ the p th power residue symbol. Namely, $\left(\frac{x}{y}\right)_{p}=1$ means that x is the p th power of some integer modulo y.

Theorem 1. Let k be an abelian p-extension of \mathbb{Q}, and $m_{k}=p^{a} p_{1} \ldots p_{t}$ the prime decomposition of its conductor, where the primes p_{1}, \ldots, p_{t} are distinct. If

$$
\begin{equation*}
\lambda_{p}(k)=\mu_{p}(k)=\nu_{p}(k)=0 \tag{1}
\end{equation*}
$$

then $t \leq 2$. Conversely, assume that $t \leq 2$.

- If $t=0$, then the condition (1) holds.
- If $t=1$, then the condition (1) holds if and only if $k_{G} \subseteq k_{\infty}$ and

$$
\begin{equation*}
\left(\frac{p}{p_{1}}\right)_{p} \neq 1 \quad \text { or } \quad p_{1} \not \equiv 1 \quad\left(\bmod p^{2}\right) . \tag{2}
\end{equation*}
$$

- If $t=2$, then the condition (1) holds if and only if $k_{G} \subseteq k_{\infty}$, and for $(i, j)=(1,2)$ or $(2,1)$,

$$
\begin{equation*}
\left(\frac{p}{p_{i}}\right)_{p} \neq 1, \quad\left(\frac{p_{i}}{p_{j}}\right)_{p} \neq 1, \quad p_{j} \not \equiv 1\left(\bmod p^{2}\right) \tag{3}
\end{equation*}
$$

and there exist $x, y, z \in \mathbb{F}_{p}$ such that
(4) $\left(\frac{p_{j} p^{x}}{p_{i}}\right)_{p}=1, \quad\left(\frac{p p_{i}^{y}}{p_{j}}\right)_{p}=1, \quad p_{i} p_{j}^{z} \equiv 1\left(\bmod p^{2}\right), \quad x y z \neq-1$ in \mathbb{F}_{p}.

In the case $t=2$, the conditions in Theorem 1 are complicated. So we will give an example. We consider the case $p=3, p_{1}=7$ and $p_{2}=19$. We denote by $k(7)$ (resp. $k(19)$) the subfield of $\mathbb{Q}\left(\zeta_{7}\right)$ (resp. $\mathbb{Q}\left(\zeta_{19}\right)$) with degree 3 over \mathbb{Q}. As for the condition $k_{G} \subseteq k_{\infty}$, we consider the following field F : There exists a field F such that $k(7) \subsetneq F \subsetneq k(7) k(19) \mathbb{Q}_{1}$ and $F \neq k(7) k(19), k(7) \mathbb{Q}_{1}$, where \mathbb{Q}_{1} is the first layer of the cyclotomic \mathbb{Z}_{3}-extension of \mathbb{Q}. Then $m_{F}=3 \cdot 7 \cdot 19$ and $k(7) k(19) \mathbb{Q}_{1} / F$ is a non-trivial unramified extension. Since $k(7) k(19) \mathbb{Q}_{1} / \mathbb{Q}$ is abelian, $F \subsetneq k(7) k(19) \mathbb{Q}_{1}$ $\subseteq F_{G}$. But, for $F_{1}=k(7) k(19) \mathbb{Q}_{1}$, it follows easily that $F_{1}=F_{1, G}$. Hence $F_{G} \subseteq F_{1, G}=F_{1} \subseteq F_{\infty}$. So, F satisfies the first condition of Theorem 1 (in the case of $t=2$).

If we consider only the case where p is unramified in k, i.e. $a=0$, then the statement $k_{G} \subseteq k_{\infty}$ can be simplified to $k=k_{G}$ because $k_{1}=k \mathbb{Q}_{1}$. This restriction is not very strong: In general, for an absolutely abelian p-extension field k, there exists an absolutely abelian extension field k^{\prime} such that p is unramified in k^{\prime} and $k_{\infty}=k_{\infty}^{\prime}$. For the above field $F, F^{\prime}=$ $k(7) k(19)$ satisfies $F_{\infty}=F_{\infty}^{\prime}$ (in fact we have $F_{1}=F_{1}^{\prime}$) and 3 is unramified in F^{\prime}.

We continue to examine the above example. If we put $(i, j)=(1,2)$, then $p_{j}=19 \equiv 1\left(\bmod 3^{2}\right)$, so the condition (3) is not satisfied. But if we put $(i, j)=(2,1)$, then we can verify that $p_{i}=19$ and $p_{j}=7$ satisfy the conditions (3) and (4). Therefore F satisfies $\lambda_{p}(F)=\mu_{p}(F)=\nu_{p}(F)=0$.

Also, if K is the maximal subfield of $\mathbb{Q}\left(\zeta_{7 \cdot 19}\right)$ which is a 3 -extension of \mathbb{Q}, then K satisfies the conditions of Theorem 1. (Note that, in general, if k is the maximal subfield of $\mathbb{Q}\left(\zeta_{m}\right)\left(m=p^{a} p_{1} \ldots p_{t}\right.$ as above) which is an abelian p-extension of \mathbb{Q}, then it follows that $k=k_{G}$.) Therefore we have

$$
\lambda_{p}(K)=\mu_{p}(K)=\nu_{p}(K)=0 .
$$

As for the Greenberg conjecture, we can also get the following: In general, it is known that if $L \subseteq M$ then $\lambda_{p}(L) \leq \lambda_{p}(M)$ and $\mu_{p}(L) \leq \mu_{p}(M)$ for number fields L, M. Hence for any subfield k of $\mathbb{Q}\left(\zeta_{7 \cdot 19}\right)$ which is a 3 -extension of \mathbb{Q}, i.e. $k \subseteq K$, we have $\lambda_{p}(k)=\mu_{p}(k)=0$. This consideration is generalized as follows:

Corollary 2. Let $m=p^{a} p_{1} \ldots p_{t}$ satisfy the condition either (2) (in the case $t=1$) or (3) and (4) (in the case $t=2$) of Theorem 1. Then for any subfield k of $\mathbb{Q}\left(\zeta_{m}\right)$ which is a p-extension of \mathbb{Q}, the Greenberg conjecture for k and p is valid.
3. The results of G. Cornell and M. Rosen. In this section, we recall some results of [1]. Let p be an odd prime number and K / \mathbb{Q} an abelian p-extension. Then the genus field K_{G} of K / \mathbb{Q} is also an abelian p-extension of \mathbb{Q}. If p does not divide the class number h_{K} of K, then K does not have any non-trivial unramified abelian p-extension by class field theory, hence $K_{G}=K$. In the following we will assume $K_{G}=K$. Furthermore, we introduce the central p-class field K_{C} of K, i.e. K_{C} is the maximal p extension of K such that K_{C} / K is an unramified abelian p-extension, K_{C} / \mathbb{Q} is Galois and $\operatorname{Gal}\left(K_{C} / K\right)$ is in the center of $\operatorname{Gal}\left(K_{C} / \mathbb{Q}\right)$. Since a p-group must have a lower central series that terminates in the identity, one sees that $p \nmid h_{K}$ if and only if $K_{C}=K$. We can reduce our problem to the case where $\operatorname{Gal}(K / \mathbb{Q})$ is an elementary abelian p-group by the following result:

Lemma 3 ([1], Theorem 1). Let K / \mathbb{Q} be an abelian p-extension with $K_{G}=K$. Let k be the maximal intermediate extension between \mathbb{Q} and K
such that $\operatorname{Gal}(k / \mathbb{Q})$ is an elementary abelian p-group. Then the p-rank of $\operatorname{Gal}\left(K_{C} / K\right)$ is equal to the p-rank of $\operatorname{Gal}\left(k_{C} / k\right)$.

Moreover, we have the following lemma by Furuta and Tate:
Lemma 4 ([1], Section 1). Let K be an absolutely abelian p-extension such that $\operatorname{Gal}(K / \mathbb{Q})$ is an elementary abelian p-group and $K_{G}=K$. Then

$$
\operatorname{Gal}\left(K_{C} / K\right) \simeq \operatorname{Coker}\left(\bigoplus_{i=1}^{n} \bigwedge^{2}\left(G_{i}\right) \rightarrow \bigwedge^{2}(G)\right)
$$

where G_{i} 's are the decomposition groups of the primes ramified in K / \mathbb{Q} and $G=\operatorname{Gal}(K / \mathbb{Q})$.

We assume $\operatorname{Gal}(K / \mathbb{Q}) \simeq(\mathbb{Z} / p \mathbb{Z})^{m}$. Let p_{1}, \ldots, p_{t} be the primes ramifying in K and h_{K} the class number of K. From genus theory, it follows that if h_{K} is not divisible by p, then $t=m$. It follows that if $m \geq 4$ then p divides h_{K} by Lemma 4. So, we assume $t=m$ and $m=2$ or 3 . (If $t=m=1$, then $p \nmid h_{K}$, cf. [5].)

Lemma 5 ([1], Proposition 2). Suppose $m=2$ and $p_{i} \neq p$ for $i=1,2$. Then $p \mid h_{K}$ if and only if $\left(\frac{p_{1}}{p_{2}}\right)_{p}=1$ and $\left(\frac{p_{2}}{p_{1}}\right)_{p}=1$.

Next, we consider the case where p ramifies in K / \mathbb{Q}. Suppose $m=2$ and primes p and p_{1} are the only primes ramified in K. Then $K=k\left(p_{1}\right) \mathbb{Q}_{1}$ and $p_{1} \equiv 1(\bmod p)$, where $k\left(p_{1}\right)$ is the unique subfield of $\mathbb{Q}\left(\zeta_{p_{1}}\right)$ which is cyclic over \mathbb{Q} of degree p, and \mathbb{Q}_{1} is the first layer of the cyclotomic \mathbb{Z}_{p}-extension of \mathbb{Q}.

Lemma 6 ([1], Proposition 3). Suppose $m=2$ and primes p and p_{1} are the only primes ramified in K. Then $p \mid h_{K}$ if and only if $\left(\frac{p}{p_{1}}\right)_{p}=1$ and $p_{1} \equiv 1\left(\bmod p^{2}\right)$.

Next, suppose that $t=m=3$ and p_{1}, p_{2} and p_{3} are all the primes ramified in K. Denote by $D_{p_{i}}$ the decomposition field of $p_{i}(i=1,2,3)$ in K. In [1], the following result is given:

Lemma 7 ([1], Theorem 2). Suppose $t=m=3$. Then the following statements are equivalent:
(a) h_{K} is not divisible by p.
(b) $\left[D_{p_{1}}: \mathbb{Q}\right]=\left[D_{p_{2}}: \mathbb{Q}\right]=\left[D_{p_{3}}: \mathbb{Q}\right]=p$ and $D_{p_{1}} D_{p_{2}} D_{p_{3}}=K$.

In the next section, we shall prove Theorem 1 using these results.
4. Proof of Theorem 1. Notations are as in the previous section.

First, suppose $\lambda_{p}(k)=\mu_{p}(k)=\nu_{p}(k)=0$. Clearly, this condition is equivalent to $A\left(k_{n}\right)=0$ for any sufficiently large n. Then k_{n} satisfies $k_{n}=$ $k_{n, G}$. So it follows easily that $k_{G} \subseteq k_{n, G}=k_{n} \subseteq k_{\infty}$. Since k_{n} is also an abelian p-extension of \mathbb{Q}, we can apply the results of Cornell-Rosen:

Let L be the maximal subfield of k_{n} such that $\operatorname{Gal}(L / \mathbb{Q})$ is an elementary abelian extension of \mathbb{Q}. Since $k_{n}=k_{n, G}, \operatorname{Gal}\left(k_{n} / \mathbb{Q}\right)$ is the direct sum of the inertia groups of primes ramified in k_{n} / \mathbb{Q}. Hence it follows that $L=$ $k\left(p_{1}\right) \ldots k\left(p_{t}\right) \mathbb{Q}_{1}$. By Lemma 3, $A\left(k_{n}\right)=0$ is equivalent to $p \nmid h_{L}$. Note that if $t \geq 3$ then we always have $p \mid h_{L}$ by Lemma 4 . Hence we may examine each case, $t=0$ or 1 or 2 .

If $t=0$ then $L=\mathbb{Q}_{1}$, hence it is well known that $A(L)=A\left(\mathbb{Q}_{1}\right)=0$ (cf. [5]).

If $t=1$ then $L=k\left(p_{1}\right) \mathbb{Q}_{1}$. By Lemma 6, we get the statement of Theorem 1.

In the following, we assume $t=2$. In this case, $L=k\left(p_{1}\right) k\left(p_{2}\right) \mathbb{Q}_{1}$. Let $G_{p}, G_{p_{i}}(i=1,2)$ be the decomposition groups for p, p_{i} in $\operatorname{Gal}(L / \mathbb{Q})$ and $D_{p}, D_{p_{i}}$ the fixed field of $G_{p}, G_{p_{i}}$, respectively. We note that $D_{p} \subset$ $k\left(p_{1}\right) k\left(p_{2}\right), D_{p_{1}} \subset k\left(p_{2}\right) \mathbb{Q}_{1}$ and $D_{p_{2}} \subset k\left(p_{1}\right) \mathbb{Q}_{1}$.

Now, $p \nmid h_{L}$ shows $\left[D_{p}: \mathbb{Q}\right]=\left[D_{p_{1}}: \mathbb{Q}\right]=\left[D_{p_{2}}: \mathbb{Q}\right]=p$ and $D_{p} D_{p_{1}} D_{p_{2}}$ $=L$ by Lemma 7. Here, we assume that either $\left(\frac{p}{p_{1}}\right)_{p}=1$ or $\left(\frac{p_{1}}{p_{2}}\right)_{p}=1$ or $p_{2} \equiv 1\left(\bmod p^{2}\right)$, and either $\left(\frac{p}{p_{2}}\right)_{p}=1$ or $\left(\frac{p_{2}}{p_{1}}\right)_{p}=1$ or $p_{1} \equiv 1\left(\bmod p^{2}\right)$. This is equivalent to

$$
\begin{equation*}
D_{p}=k\left(p_{i}\right) \text { or } D_{p_{i}}=k\left(p_{j}\right) \text { or } D_{p_{j}}=\mathbb{Q}_{1} \quad \text { for }(i, j)=(1,2) \text { and }(2,1), \tag{5}
\end{equation*}
$$ because $\left[D_{p}: \mathbb{Q}\right]=\left[D_{p_{1}}: \mathbb{Q}\right]=\left[D_{p_{2}}: \mathbb{Q}\right]=p$.

If $D_{p}=k\left(p_{1}\right)$, then $D_{p_{2}} \neq k\left(p_{1}\right)$ because $D_{p} D_{p_{1}} D_{p_{2}}=L$. Hence by (5) (put $(i, j)=(2,1)$), we have $D_{p_{1}}=\mathbb{Q}_{1}$. Then $D_{p_{2}} \subseteq k\left(p_{1}\right) \mathbb{Q}_{1}=D_{p} D_{p_{1}}$, a contradiction $D_{p} D_{p_{1}} D_{p_{2}}=L$. In the same way, if $D_{p}=k\left(p_{2}\right)$, then $D_{p_{1}} \neq$ $k\left(p_{2}\right)$ and we have $D_{p_{2}}=\mathbb{Q}_{1}$ by (5), a contradiction. Thus, it follows that the assumption (5) contradicts $D_{p} D_{p_{1}} D_{p_{2}}=L$. Therefore, for $(i, j)=(1,2)$ or $(2,1),\left(\frac{p}{p_{i}}\right)_{p} \neq 1,\left(\frac{p_{i}}{p_{j}}\right)_{p} \neq 1$, and $p_{j} \not \equiv 1\left(\bmod p^{2}\right)$.

Without loss of generality, we may assume $(i, j)=(1,2)$. Since $\left(\frac{p}{p_{1}}\right)_{p}$ $\neq 1, p$ is inert in $k\left(p_{1}\right)$. Hence $\sigma=\left(\frac{k\left(p_{1}\right) / \mathbb{Q}}{p}\right) \neq 1$, where $\left(\frac{k\left(p_{1}\right) / \mathbb{Q}}{p}\right)$ is the Artin symbol, and σ generates $\operatorname{Gal}\left(k\left(p_{1}\right) / \mathbb{Q}\right):\langle\sigma\rangle=\operatorname{Gal}\left(k\left(p_{1}\right) / \mathbb{Q}\right)$. We often regard $\langle\sigma\rangle=\operatorname{Gal}\left(k\left(p_{1}\right) k\left(p_{2}\right) / k\left(p_{2}\right)\right)$ or $\operatorname{Gal}\left(L / k\left(p_{2}\right) \mathbb{Q}_{1}\right)$ in the natural way. Similarly, we put $\tau=\left(\frac{k\left(p_{2}\right) / \mathbb{Q}}{p_{1}}\right)$ and $\eta=\left(\frac{\mathbb{Q}_{1} / \mathbb{Q}}{p_{2}}\right)$. Then $\langle\tau\rangle=\operatorname{Gal}\left(k\left(p_{2}\right) / \mathbb{Q}\right)$ and $\langle\eta\rangle=\operatorname{Gal}\left(\mathbb{Q}_{1} / \mathbb{Q}\right)$.

Since $\left(\frac{p}{p_{1}}\right)_{p} \neq 1$, there exists $x \in \mathbb{F}_{p}$ such that $\left(\frac{p_{2} p^{x}}{p_{1}}\right)_{p}=1$. Then

$$
\left(\frac{p_{2} p^{x}}{p_{1}}\right)_{p}=1 \Leftrightarrow\left(\frac{k\left(p_{1}\right) / \mathbb{Q}}{p_{2} p^{x}}\right)=\left(\frac{k\left(p_{1}\right) / \mathbb{Q}}{p_{2}}\right)\left(\frac{k\left(p_{1}\right) / \mathbb{Q}}{p}\right)^{x}=1 .
$$

Therefore $\left(\frac{k\left(p_{1}\right) / \mathbb{Q}}{p_{2}}\right)=\sigma^{-x}$. Similarly, there exist $y, z \in \mathbb{F}_{p}$ such that $\left(\frac{p p_{1}^{y}}{p_{2}}\right)_{p}$ $=1$ and $p_{1} p_{2}^{z} \equiv 1\left(\bmod p^{2}\right)$. Hence $\left(\frac{k\left(p_{2}\right) / \mathbb{Q}}{p}\right)=\tau^{-y}$ and $\left(\frac{\mathbb{Q}_{1} / \mathbb{Q}}{p_{1}}\right)=\eta^{-z}$.

Since $\left(\frac{k\left(p_{1}\right) k\left(p_{2}\right) / \mathbb{Q}}{p}\right)=\left(\frac{k\left(p_{1}\right) / \mathbb{Q}}{p}\right)\left(\frac{k\left(p_{2}\right) / \mathbb{Q}}{p}\right)=\sigma \tau^{-y}, D_{p}$ is the fixed field of $\left\langle\sigma \tau^{-y}\right\rangle$ in $k\left(p_{1}\right) k\left(p_{2}\right)$. Therefore, when we consider G_{p} in $\operatorname{Gal}(L / \mathbb{Q})$,

$$
G_{p}=\left\langle\eta, \sigma \tau^{-y}\right\rangle .
$$

And similarly,

$$
G_{p_{1}}=\left\langle\sigma, \tau \eta^{-z}\right\rangle \quad \text { and } \quad G_{p_{2}}=\left\langle\tau, \eta \sigma^{-x}\right\rangle,
$$

in $\operatorname{Gal}(L / \mathbb{Q})$. By a direct computation, $G_{p} \cap G_{p_{1}}=\left\langle\sigma \tau^{-y} \eta^{y z}\right\rangle$. Hence,

$$
\begin{aligned}
G_{p} \cap G_{p_{1}} \cap G_{p_{2}} & =\left\langle\sigma \tau^{-y} \eta^{y z}\right\rangle \cap\left\langle\tau, \eta \sigma^{-x}\right\rangle \\
& = \begin{cases}\{1\} & \text { if } x y z \neq-1, \\
\left\langle\sigma \tau^{-y} \eta^{y z}\right\rangle & \text { if } x y z=-1 .\end{cases}
\end{aligned}
$$

But our assumption $D_{p} D_{p_{1}} D_{p_{2}}=L$ implies $G_{p} \cap G_{p_{1}} \cap G_{p_{2}}=\{1\}$. Hence $x y z \neq-1$.

Conversely, we assume k satisfies the conditions of Theorem 1 in the case of $t=2$. Since $k_{G}=k_{\infty}$, it follows easily that $L=k\left(p_{1}\right) k\left(p_{2}\right) \mathbb{Q}_{1}$ is the maximal intermediate extension between \mathbb{Q} and k_{n} (for a sufficiently large n) such that $\operatorname{Gal}(L / \mathbb{Q})$ is an elementary abelian p-group. Without loss of generality, we may assume $(i, j)=(1,2)$. Since $\operatorname{Gal}\left(k\left(p_{1}\right) k\left(p_{2}\right) / \mathbb{Q}\right) \simeq$ $(\mathbb{Z} / p \mathbb{Z})^{2}$ and p is unramified in $k\left(p_{1}\right) k\left(p_{2}\right), p$ must decompose in $k\left(p_{1}\right) k\left(p_{2}\right)$. But the condition $\left(\frac{p}{p_{1}}\right)_{p} \neq 1$ implies that p is inert in $k\left(p_{1}\right) \subset k\left(p_{1}\right) k\left(p_{2}\right)$, hence we obtain $\left[D_{p}: \mathbb{Q}\right]=p$. Similarly, $\left(\frac{p_{1}}{p_{2}}\right)_{p} \neq 1$ and $p_{2} \not \equiv 1\left(\bmod p^{2}\right)$ imply $\left[D_{p_{1}}: \mathbb{Q}\right]=\left[D_{p_{2}}: \mathbb{Q}\right]=p$. Therefore, as in the above computation of $G_{p}, G_{p_{i}}$, we have $D_{p} D_{p_{1}} D_{p_{2}}=L$ by $x y z \neq-1$.
5. Remarks. The condition of Theorem 1 in [6] means $x y z=0$ which is a special case of $x y z \neq-1$. Hence, our Corollary 2 contains some known results and there exist infinitely many fields satisfying the conditions of Theorem 1 (cf. [6]).

If $K=k\left(p_{1}\right) k\left(p_{2}\right)$ satisfies the conditions of Theorem 1, then $\lambda_{p}(k)=$ $\mu_{p}(k)=0$ for any field $k \subseteq K$ with $[k: \mathbb{Q}]=p$. This is a result of Fukuda [2]. The case $x y z=-1$ is a more difficult case. But we have some results:

Proposition 8. Notations are as in Section 3. Assume that $\left(\frac{p}{p_{1}}\right)_{p} \neq 1$, $\left(\frac{p_{1}}{p_{2}}\right)_{p} \neq 1$, and $p_{2} \not \equiv 1\left(\bmod p^{2}\right)$. Then $\lambda_{p}(k)=\mu_{p}(k)=0$ for the decomposition field k of p in $k\left(p_{1}\right) k\left(p_{2}\right)$.

Proof. We apply a result of [3]:
Lemma 9 ([3]). Let k be a cyclic extension of \mathbb{Q} of degree p. Then the following conditions are equivalent:
(a) $\lambda_{p}(k)=\mu_{p}(k)=0$.
(b) For any prime ideal w of k_{∞} which is prime to p and ramified in $k_{\infty} / \mathbb{Q}_{\infty}$, the order of the ideal class of w is prime to p.

If $x y z \neq-1$ then $\lambda_{p}(k)=\mu_{p}(k)=0$ by Corollary 2 . So we only consider the case $x y z=-1$. In this case we have $k \neq k\left(p_{i}\right)(i=1,2)$. It follows easily that $A(k)$, the p-part of the ideal class group of k, is cyclic of order p, and it is generated by products of primes of k above p. On the other hand, for $i=1,2$, the prime \mathfrak{p}_{i} of k above p_{i} generates $A(k)$, and is inert in k_{∞} / k. Since the primes of k above p is principal for some k_{n} by the natural mapping $A(k) \rightarrow A\left(k_{n}\right)\left(\right.$ cf. [4]), \mathfrak{p}_{i} are principal in k_{∞}.

Since all the primes ramified in $k_{\infty} / \mathbb{Q}_{\infty}$ are \mathfrak{p}_{1} and \mathfrak{p}_{2}, which are principal in k_{∞}, we can apply Lemma 9 and obtain $\lambda_{p}(k)=\mu_{p}(k)=0$.

References

[1] G. Cornell and M. Rosen, The class group of an absolutely abelian l-extension, Illinois J. Math. 32 (1988), 453-461.
[2] T. Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of \mathbb{Q} with prime degree, Proc. Japan Acad. 73 (1997), 108-110.
[3] T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, On Iwasawa λ_{p}-invariants of relative real cyclic extension of degree p, Tokyo J. Math. 20 (1997), 475-480.
[4] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
[5] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[6] G. Yamamoto, On the vanishing of Iwasawa invariants of certain (p, p)-extensions of \mathbb{Q}, Proc. Japan Acad. 73A (1997), 45-47.

Department of Mathematics
Waseda University
3-4-1, Okubo Shinjuku-ku
Tokyo 169-8555, Japan
E-mail: 697m5068@mse.waseda.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 11R23; Secondary 11R18.

