On the vanishing of Iwasawa invariants of absolutely abelian *p*-extensions

by

Gen Yamamoto (Tokyo)

1. Introduction. Let p be a prime number and \mathbb{Z}_p the ring of p-adic integers. Let k be a finite extension of the rational number field \mathbb{Q} , k_{∞} a \mathbb{Z}_p -extension of k, k_n the *n*th layer of k_{∞}/k , and A_n the *p*-Sylow subgroup of the ideal class group of k_n . Iwasawa proved the following well-known theorem about the order $\#A_n$ of A_n :

THEOREM A (Iwasawa). Let k_{∞}/k be a \mathbb{Z}_p -extension and A_n the p-Sylow subgroup of the ideal class group of k_n , where k_n is the nth layer of k_{∞}/k . Then there exist integers $\lambda = \lambda(k_{\infty}/k) \ge 0$, $\mu = \mu(k_{\infty}/k) \ge 0$, $\nu = \nu(k_{\infty}/k)$, and $n_0 \ge 0$ such that

$$#A_n = p^{\lambda n + \mu p^n + \nu}$$

for all $n \ge n_0$, where $#A_n$ is the order of A_n .

These integers $\lambda = \lambda(k_{\infty}/k)$, $\mu = \mu(k_{\infty}/k)$ and $\nu = \nu(k_{\infty}/k)$ are called *Iwasawa invariants* of k_{∞}/k for p. If k_{∞} is the cyclotomic \mathbb{Z}_p -extension of k, then we denote λ (resp. μ and ν) by $\lambda_p(k)$ (resp. $\mu_p(k)$ and $\nu_p(k)$).

Ferrero and Washington proved $\mu_p(k) = 0$ for any abelian extension field k of \mathbb{Q} . On the other hand, Greenberg [4] conjectured that if k is a totally real, then $\lambda_p(k) = \mu_p(k) = 0$. We call this conjecture *Greenberg's conjecture*.

In this paper, we determine all absolutely abelian *p*-extensions k with $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$ for an odd prime p, by using the results of G. Cornell and M. Rosen [1].

2. Main theorem. Throughout this section, we fix an odd prime number p. Let k be an abelian p-extension of \mathbb{Q} and m_k its *conductor*, i.e. m_k is the minimum positive integer with $k \subseteq \mathbb{Q}(\zeta_{m_k})$, where ζ_{m_k} is a primitive m_k th root of unity. Then it follows easily that $m_k = p^a p_1 \dots p_t$, where a is a non-negative integer and p_1, \dots, p_t are distinct primes which are congruent

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R23; Secondary 11R18.

^[365]

to 1 modulo p. We denote by k_G the genus field of k/\mathbb{Q} . So k_G is the maximal unramified abelian extension of k such that k_G/\mathbb{Q} is an abelian extension. In general, if k/\mathbb{Q} is an abelian extension of odd degree, then it has been shown by Leopoldt that

$$[k_G:k] = \frac{e_1 \dots e_t}{[k:\mathbb{Q}]},$$

where e_1, \ldots, e_t are the ramification indices of the primes which ramify in k/\mathbb{Q} . Hence, in our case, k_G is also an abelian *p*-extension of \mathbb{Q} . Now, let x and y be integers. We denote by $\left(\frac{x}{y}\right)_p$ the *p*th power residue symbol. Namely, $\left(\frac{x}{y}\right)_p = 1$ means that x is the *p*th power of some integer modulo y.

THEOREM 1. Let k be an abelian p-extension of \mathbb{Q} , and $m_k = p^a p_1 \dots p_t$ the prime decomposition of its conductor, where the primes p_1, \dots, p_t are distinct. If

(1)
$$\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0,$$

then $t \leq 2$. Conversely, assume that $t \leq 2$.

- If t = 0, then the condition (1) holds.
- If t = 1, then the condition (1) holds if and only if $k_G \subseteq k_{\infty}$ and

(2)
$$\left(\frac{p}{p_1}\right)_p \neq 1 \quad or \quad p_1 \not\equiv 1 \pmod{p^2}$$

• If t = 2, then the condition (1) holds if and only if $k_G \subseteq k_{\infty}$, and for (i, j) = (1, 2) or (2, 1),

(3)
$$\left(\frac{p}{p_i}\right)_p \neq 1, \quad \left(\frac{p_i}{p_j}\right)_p \neq 1, \quad p_j \not\equiv 1 \pmod{p^2},$$

and there exist $x, y, z \in \mathbb{F}_p$ such that

(4)
$$\left(\frac{p_j p^x}{p_i}\right)_p = 1$$
, $\left(\frac{p p_i^y}{p_j}\right)_p = 1$, $p_i p_j^z \equiv 1 \pmod{p^2}$, $xyz \neq -1$ in \mathbb{F}_p .

In the case t = 2, the conditions in Theorem 1 are complicated. So we will give an example. We consider the case p = 3, $p_1 = 7$ and $p_2 = 19$. We denote by k(7) (resp. k(19)) the subfield of $\mathbb{Q}(\zeta_7)$ (resp. $\mathbb{Q}(\zeta_{19})$) with degree 3 over \mathbb{Q} . As for the condition $k_G \subseteq k_\infty$, we consider the following field F: There exists a field F such that $k(7) \subsetneq F \subsetneq k(7)k(19)\mathbb{Q}_1$ and $F \neq k(7)k(19), k(7)\mathbb{Q}_1$, where \mathbb{Q}_1 is the first layer of the cyclotomic \mathbb{Z}_3 -extension of \mathbb{Q} . Then $m_F = 3 \cdot 7 \cdot 19$ and $k(7)k(19)\mathbb{Q}_1/F$ is a non-trivial unramified extension. Since $k(7)k(19)\mathbb{Q}_1/\mathbb{Q}$ is abelian, $F \subsetneq k(7)k(19)\mathbb{Q}_1$ $\subseteq F_G$. But, for $F_1 = k(7)k(19)\mathbb{Q}_1$, it follows easily that $F_1 = F_{1,G}$. Hence $F_G \subseteq F_{1,G} = F_1 \subseteq F_\infty$. So, F satisfies the first condition of Theorem 1 (in the case of t = 2). If we consider only the case where p is unramified in k, i.e. a = 0, then the statement $k_G \subseteq k_\infty$ can be simplified to $k = k_G$ because $k_1 = k\mathbb{Q}_1$. This restriction is not very strong: In general, for an absolutely abelian p-extension field k, there exists an absolutely abelian extension field k' such that p is unramified in k' and $k_\infty = k'_\infty$. For the above field F, F' = k(7)k(19) satisfies $F_\infty = F'_\infty$ (in fact we have $F_1 = F'_1$) and 3 is unramified in F'.

We continue to examine the above example. If we put (i, j) = (1, 2), then $p_j = 19 \equiv 1 \pmod{3^2}$, so the condition (3) is not satisfied. But if we put (i, j) = (2, 1), then we can verify that $p_i = 19$ and $p_j = 7$ satisfy the conditions (3) and (4). Therefore F satisfies $\lambda_p(F) = \mu_p(F) = \nu_p(F) = 0$.

Also, if K is the maximal subfield of $\mathbb{Q}(\zeta_{7,19})$ which is a 3-extension of \mathbb{Q} , then K satisfies the conditions of Theorem 1. (Note that, in general, if k is the maximal subfield of $\mathbb{Q}(\zeta_m)$ $(m = p^a p_1 \dots p_t$ as above) which is an abelian p-extension of \mathbb{Q} , then it follows that $k = k_G$.) Therefore we have

$$\lambda_p(K) = \mu_p(K) = \nu_p(K) = 0.$$

As for the Greenberg conjecture, we can also get the following: In general, it is known that if $L \subseteq M$ then $\lambda_p(L) \leq \lambda_p(M)$ and $\mu_p(L) \leq \mu_p(M)$ for number fields L, M. Hence for any subfield k of $\mathbb{Q}(\zeta_{7.19})$ which is a 3-extension of \mathbb{Q} , i.e. $k \subseteq K$, we have $\lambda_p(k) = \mu_p(k) = 0$. This consideration is generalized as follows:

COROLLARY 2. Let $m = p^a p_1 \dots p_t$ satisfy the condition either (2) (in the case t = 1) or (3) and (4) (in the case t = 2) of Theorem 1. Then for any subfield k of $\mathbb{Q}(\zeta_m)$ which is a p-extension of \mathbb{Q} , the Greenberg conjecture for k and p is valid.

3. The results of G. Cornell and M. Rosen. In this section, we recall some results of [1]. Let p be an odd prime number and K/\mathbb{Q} an abelian p-extension. Then the genus field K_G of K/\mathbb{Q} is also an abelian p-extension of \mathbb{Q} . If p does not divide the class number h_K of K, then K does not have any non-trivial unramified abelian p-extension by class field theory, hence $K_G = K$. In the following we will assume $K_G = K$. Furthermore, we introduce the central p-class field K_C of K, i.e. K_C is the maximal p-extension of K such that K_C/K is an unramified abelian p-extension, K_C/\mathbb{Q} is Galois and $\operatorname{Gal}(K_C/K)$ is in the center of $\operatorname{Gal}(K_C/\mathbb{Q})$. Since a p-group must have a lower central series that terminates in the identity, one sees that $p \nmid h_K$ if and only if $K_C = K$. We can reduce our problem to the case where $\operatorname{Gal}(K/\mathbb{Q})$ is an elementary abelian p-group by the following result:

LEMMA 3 ([1], Theorem 1). Let K/\mathbb{Q} be an abelian p-extension with $K_G = K$. Let k be the maximal intermediate extension between \mathbb{Q} and K

such that $\operatorname{Gal}(k/\mathbb{Q})$ is an elementary abelian p-group. Then the p-rank of $\operatorname{Gal}(K_C/K)$ is equal to the p-rank of $\operatorname{Gal}(k_C/k)$.

Moreover, we have the following lemma by Furuta and Tate:

LEMMA 4 ([1], Section 1). Let K be an absolutely abelian p-extension such that $\operatorname{Gal}(K/\mathbb{Q})$ is an elementary abelian p-group and $K_G = K$. Then

$$\operatorname{Gal}(K_C/K) \simeq \operatorname{Coker}\left(\bigoplus_{i=1}^n \bigwedge^2(G_i) \to \bigwedge^2(G)\right),$$

where G_i 's are the decomposition groups of the primes ramified in K/\mathbb{Q} and $G = \operatorname{Gal}(K/\mathbb{Q})$.

We assume $\operatorname{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^m$. Let p_1, \ldots, p_t be the primes ramifying in K and h_K the class number of K. From genus theory, it follows that if h_K is not divisible by p, then t = m. It follows that if $m \ge 4$ then p divides h_K by Lemma 4. So, we assume t = m and m = 2 or 3. (If t = m = 1, then $p \nmid h_K$, cf. [5].)

LEMMA 5 ([1], Proposition 2). Suppose m = 2 and $p_i \neq p$ for i = 1, 2. Then $p \mid h_K$ if and only if $\left(\frac{p_1}{p_2}\right)_p = 1$ and $\left(\frac{p_2}{p_1}\right)_p = 1$.

Next, we consider the case where p ramifies in K/\mathbb{Q} . Suppose m = 2 and primes p and p_1 are the only primes ramified in K. Then $K = k(p_1)\mathbb{Q}_1$ and $p_1 \equiv 1 \pmod{p}$, where $k(p_1)$ is the unique subfield of $\mathbb{Q}(\zeta_{p_1})$ which is cyclic over \mathbb{Q} of degree p, and \mathbb{Q}_1 is the first layer of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} .

LEMMA 6 ([1], Proposition 3). Suppose m = 2 and primes p and p_1 are the only primes ramified in K. Then $p \mid h_K$ if and only if $\left(\frac{p}{p_1}\right)_p = 1$ and $p_1 \equiv 1 \pmod{p^2}$.

Next, suppose that t = m = 3 and p_1, p_2 and p_3 are all the primes ramified in K. Denote by D_{p_i} the decomposition field of p_i (i = 1, 2, 3) in K. In [1], the following result is given:

LEMMA 7 ([1], Theorem 2). Suppose t = m = 3. Then the following statements are equivalent:

(a) h_K is not divisible by p.

(b) $[D_{p_1}:\mathbb{Q}] = [D_{p_2}:\mathbb{Q}] = [D_{p_3}:\mathbb{Q}] = p \text{ and } D_{p_1}D_{p_2}D_{p_3} = K.$

In the next section, we shall prove Theorem 1 using these results.

4. Proof of Theorem 1. Notations are as in the previous section.

First, suppose $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$. Clearly, this condition is equivalent to $A(k_n) = 0$ for any sufficiently large n. Then k_n satisfies $k_n = k_{n,G}$. So it follows easily that $k_G \subseteq k_{n,G} = k_n \subseteq k_{\infty}$. Since k_n is also an abelian *p*-extension of \mathbb{Q} , we can apply the results of Cornell–Rosen: Let L be the maximal subfield of k_n such that $\operatorname{Gal}(L/\mathbb{Q})$ is an elementary abelian extension of \mathbb{Q} . Since $k_n = k_{n,G}$, $\operatorname{Gal}(k_n/\mathbb{Q})$ is the direct sum of the inertia groups of primes ramified in k_n/\mathbb{Q} . Hence it follows that $L = k(p_1) \dots k(p_t)\mathbb{Q}_1$. By Lemma 3, $A(k_n) = 0$ is equivalent to $p \nmid h_L$. Note that if $t \geq 3$ then we always have $p \mid h_L$ by Lemma 4. Hence we may examine each case, t = 0 or 1 or 2.

If t = 0 then $L = \mathbb{Q}_1$, hence it is well known that $A(L) = A(\mathbb{Q}_1) = 0$ (cf. [5]).

If t = 1 then $L = k(p_1)\mathbb{Q}_1$. By Lemma 6, we get the statement of Theorem 1.

In the following, we assume t = 2. In this case, $L = k(p_1)k(p_2)\mathbb{Q}_1$. Let G_p, G_{p_i} (i = 1, 2) be the decomposition groups for p, p_i in $\operatorname{Gal}(L/\mathbb{Q})$ and D_p, D_{p_i} the fixed field of G_p, G_{p_i} , respectively. We note that $D_p \subset k(p_1)k(p_2), D_{p_1} \subset k(p_2)\mathbb{Q}_1$ and $D_{p_2} \subset k(p_1)\mathbb{Q}_1$.

Now, $p \nmid h_L$ shows $[D_p : \mathbb{Q}] = [D_{p_1} : \mathbb{Q}] = [D_{p_2} : \mathbb{Q}] = p$ and $D_p D_{p_1} D_{p_2} = L$ by Lemma 7. Here, we assume that either $\left(\frac{p}{p_1}\right)_p = 1$ or $\left(\frac{p_1}{p_2}\right)_p = 1$ or $p_2 \equiv 1 \pmod{p^2}$, and either $\left(\frac{p}{p_2}\right)_p = 1$ or $\left(\frac{p_2}{p_1}\right)_p = 1$ or $p_1 \equiv 1 \pmod{p^2}$. This is equivalent to

(5)
$$D_p = k(p_i)$$
 or $D_{p_i} = k(p_j)$ or $D_{p_j} = \mathbb{Q}_1$ for $(i, j) = (1, 2)$ and $(2, 1)$,
because $[D_p : \mathbb{Q}] = [D_{p_1} : \mathbb{Q}] = [D_{p_2} : \mathbb{Q}] = p$.

If $D_p = k(p_1)$, then $D_{p_2} \neq k(p_1)$ because $D_p D_{p_1} D_{p_2} = L$. Hence by (5) (put (i, j) = (2, 1)), we have $D_{p_1} = \mathbb{Q}_1$. Then $D_{p_2} \subseteq k(p_1)\mathbb{Q}_1 = D_p D_{p_1}$, a contradiction $D_p D_{p_1} D_{p_2} = L$. In the same way, if $D_p = k(p_2)$, then $D_{p_1} \neq k(p_2)$ and we have $D_{p_2} = \mathbb{Q}_1$ by (5), a contradiction. Thus, it follows that the assumption (5) contradicts $D_p D_{p_1} D_{p_2} = L$. Therefore, for (i, j) = (1, 2) or (2, 1), $\left(\frac{p}{p_i}\right)_p \neq 1$, $\left(\frac{p_i}{p_j}\right)_p \neq 1$, and $p_j \neq 1 \pmod{p^2}$.

Without loss of generality, we may assume (i, j) = (1, 2). Since $\left(\frac{p}{p_1}\right)_p \neq 1$, p is inert in $k(p_1)$. Hence $\sigma = \left(\frac{k(p_1)/\mathbb{Q}}{p}\right) \neq 1$, where $\left(\frac{k(p_1)/\mathbb{Q}}{p}\right)$ is the Artin symbol, and σ generates $\operatorname{Gal}(k(p_1)/\mathbb{Q})$: $\langle \sigma \rangle = \operatorname{Gal}(k(p_1)/\mathbb{Q})$. We often regard $\langle \sigma \rangle = \operatorname{Gal}(k(p_1)k(p_2)/k(p_2))$ or $\operatorname{Gal}(L/k(p_2)\mathbb{Q}_1)$ in the natural way. Similarly, we put $\tau = \left(\frac{k(p_2)/\mathbb{Q}}{p_1}\right)$ and $\eta = \left(\frac{\mathbb{Q}_1/\mathbb{Q}}{p_2}\right)$. Then $\langle \tau \rangle = \operatorname{Gal}(k(p_2)/\mathbb{Q})$ and $\langle \eta \rangle = \operatorname{Gal}(\mathbb{Q}_1/\mathbb{Q})$.

Since $\left(\frac{p}{p_1}\right)_p \neq 1$, there exists $x \in \mathbb{F}_p$ such that $\left(\frac{p_2 p^x}{p_1}\right)_p = 1$. Then

$$\left(\frac{p_2 p^x}{p_1}\right)_p = 1 \Leftrightarrow \left(\frac{k(p_1)/\mathbb{Q}}{p_2 p^x}\right) = \left(\frac{k(p_1)/\mathbb{Q}}{p_2}\right) \left(\frac{k(p_1)/\mathbb{Q}}{p}\right)^x = 1$$

Therefore $\left(\frac{k(p_1)/\mathbb{Q}}{p_2}\right) = \sigma^{-x}$. Similarly, there exist $y, z \in \mathbb{F}_p$ such that $\left(\frac{pp_1^y}{p_2}\right)_p = 1$ and $p_1 p_2^z \equiv 1 \pmod{p^2}$. Hence $\left(\frac{k(p_2)/\mathbb{Q}}{p}\right) = \tau^{-y}$ and $\left(\frac{\mathbb{Q}_1/\mathbb{Q}}{p_1}\right) = \eta^{-z}$.

Since $\left(\frac{k(p_1)k(p_2)/\mathbb{Q}}{p}\right) = \left(\frac{k(p_1)/\mathbb{Q}}{p}\right) \left(\frac{k(p_2)/\mathbb{Q}}{p}\right) = \sigma \tau^{-y}$, D_p is the fixed field of $\langle \sigma \tau^{-y} \rangle$ in $k(p_1)k(p_2)$. Therefore, when we consider G_p in $\operatorname{Gal}(L/\mathbb{Q})$,

$$G_p = \langle \eta, \sigma \tau^{-y} \rangle.$$

And similarly,

$$G_{p_1} = \langle \sigma, \tau \eta^{-z} \rangle$$
 and $G_{p_2} = \langle \tau, \eta \sigma^{-x} \rangle$

in Gal (L/\mathbb{Q}) . By a direct computation, $G_p \cap G_{p_1} = \langle \sigma \tau^{-y} \eta^{y_2} \rangle$. Hence,

$$G_p \cap G_{p_1} \cap G_{p_2} = \langle \sigma \tau^{-y} \eta^{yz} \rangle \cap \langle \tau, \eta \sigma^{-x} \rangle$$
$$= \begin{cases} \{1\} & \text{if } xyz \neq -1, \\ \langle \sigma \tau^{-y} \eta^{yz} \rangle & \text{if } xyz = -1. \end{cases}$$

But our assumption $D_p D_{p_1} D_{p_2} = L$ implies $G_p \cap G_{p_1} \cap G_{p_2} = \{1\}$. Hence $xyz \neq -1$.

Conversely, we assume k satisfies the conditions of Theorem 1 in the case of t = 2. Since $k_G = k_\infty$, it follows easily that $L = k(p_1)k(p_2)\mathbb{Q}_1$ is the maximal intermediate extension between \mathbb{Q} and k_n (for a sufficiently large n) such that $\operatorname{Gal}(L/\mathbb{Q})$ is an elementary abelian p-group. Without loss of generality, we may assume (i, j) = (1, 2). Since $\operatorname{Gal}(k(p_1)k(p_2)/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^2$ and p is unramified in $k(p_1)k(p_2)$, p must decompose in $k(p_1)k(p_2)$. But the condition $\left(\frac{p}{p_1}\right)_p \neq 1$ implies that p is inert in $k(p_1) \subset k(p_1)k(p_2)$, hence we obtain $[D_p:\mathbb{Q}] = p$. Similarly, $\left(\frac{p_1}{p_2}\right)_p \neq 1$ and $p_2 \not\equiv 1 \pmod{p^2}$ imply $[D_{p_1}:\mathbb{Q}] = [D_{p_2}:\mathbb{Q}] = p$. Therefore, as in the above computation of G_p, G_{p_i} , we have $D_p D_{p_1} D_{p_2} = L$ by $xyz \neq -1$.

5. Remarks. The condition of Theorem 1 in [6] means xyz = 0 which is a special case of $xyz \neq -1$. Hence, our Corollary 2 contains some known results and there exist infinitely many fields satisfying the conditions of Theorem 1 (cf. [6]).

If $K = k(p_1)k(p_2)$ satisfies the conditions of Theorem 1, then $\lambda_p(k) = \mu_p(k) = 0$ for any field $k \subseteq K$ with $[k : \mathbb{Q}] = p$. This is a result of Fukuda [2]. The case xyz = -1 is a more difficult case. But we have some results:

PROPOSITION 8. Notations are as in Section 3. Assume that $\left(\frac{p}{p_1}\right)_p \neq 1$, $\left(\frac{p_1}{p_2}\right)_p \neq 1$, and $p_2 \not\equiv 1 \pmod{p^2}$. Then $\lambda_p(k) = \mu_p(k) = 0$ for the decomposition field k of p in $k(p_1)k(p_2)$.

Proof. We apply a result of [3]:

LEMMA 9 ([3]). Let k be a cyclic extension of \mathbb{Q} of degree p. Then the following conditions are equivalent:

(a) $\lambda_p(k) = \mu_p(k) = 0.$

370

(b) For any prime ideal w of k_{∞} which is prime to p and ramified in $k_{\infty}/\mathbb{Q}_{\infty}$, the order of the ideal class of w is prime to p.

If $xyz \neq -1$ then $\lambda_p(k) = \mu_p(k) = 0$ by Corollary 2. So we only consider the case xyz = -1. In this case we have $k \neq k(p_i)$ (i = 1, 2). It follows easily that A(k), the *p*-part of the ideal class group of k, is cyclic of order p, and it is generated by products of primes of k above p. On the other hand, for i = 1, 2, the prime \mathfrak{p}_i of k above p_i generates A(k), and is inert in k_{∞}/k . Since the primes of k above p is principal for some k_n by the natural mapping $A(k) \to A(k_n)$ (cf. [4]), \mathfrak{p}_i are principal in k_{∞} .

Since all the primes ramified in $k_{\infty}/\mathbb{Q}_{\infty}$ are \mathfrak{p}_1 and \mathfrak{p}_2 , which are principal in k_{∞} , we can apply Lemma 9 and obtain $\lambda_p(k) = \mu_p(k) = 0$.

References

- G. Cornell and M. Rosen, The class group of an absolutely abelian l-extension, Illinois J. Math. 32 (1988), 453-461.
- [2] T. Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of Q with prime degree, Proc. Japan Acad. 73 (1997), 108–110.
- [3] T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, On Iwasawa λ_p -invariants of relative real cyclic extension of degree p, Tokyo J. Math. 20 (1997), 475–480.
- R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
- [6] G. Yamamoto, On the vanishing of Iwasawa invariants of certain (p, p)-extensions of Q, Proc. Japan Acad. 73A (1997), 45–47.

Department of Mathematics Waseda University 3-4-1, Okubo Shinjuku-ku Tokyo 169-8555, Japan E-mail: 697m5068@mse.waseda.ac.jp

> Received on 19.4.1999 and in revised form on 29.11.1999

(3586)