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Introduction. In this note we use the following standard notations:
π(x) is the number of primes not exceeding x, while θ(x) =

∑
p≤x log p.

The best known inequalities involving the function π(x) are the ones
obtained in [6] by B. Rosser and L. Schoenfeld:

x

log x− 1/2
< π(x) for x ≥ 67,(1)

x

log x− 3/2
> π(x) for x > e3/2.(2)

The proof of the above inequalities is not elementary and is based on the
first 25 000 zeros of the Riemann function ξ(s) obtained by D. H. Lehmer [4].
Then Rosser, Yohe and Schoenfeld announced that the first 3 500 000 zeros
of ξ(s) lie on the critical line [9]. This result was followed by two papers [7],
[10]; some of the inequalities they include will be used in order to obtain
inequalities (11) and (12) below.

In [6] it is proved that π(x) ∼ x/(log x− 1). Here we will refine this
expression by giving upper and lower bounds for π(x) which both behave as
x/(log x− 1) as x→∞.

New inequalities. We start by listing those inequalities in [6] and [10]
that will be used further:

θ(x) < x for x < 108,(3)

|θ(x)− x| < 2.05282
√
x for x < 108,(4)

|θ(x)− x| < 0.0239922
x

log x
for x ≥ 758 711,(5)

|θ(x)− x| < 0.0077629
x

log x
for x ≥ e22,(6)
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|θ(x)− x| < 8.072
x

log2 x
for x > 1.(7)

The above inequalities are used first to prove the following lemma:

Lemma 1. We have

θ(x) < x

(
1 +

1
3(log x)1.5

)
for x > 1,(8)

θ(x) > x

(
1− 2

3(log x)1.5

)
for x ≥ 6 400.(9)

P r o o f. For x ≥ e587 the inequality

8.072 <
1
3

(log x)0.5

holds and therefore, using (7), it follows that

(10) |θ(x)− x| < x

3(log x)1.5 .

For e22 ≤ x < e587 we have

0.0077629 <
1

3(log x)0.5

and by using (6) we obtain (10). For 757 711 ≤ x < e22 we have

0.0239922 <
1

3(log x)0.5

and by using (5) we obtain again (10) for x ≥ 757 711. These results, together
with inequality (3), obviously imply (8).

Let 6 400 ≤ x < 108. Then

2.05282 <
2
3
·
√
x

(log x)1.5

which implies (9) by using (4) and (10).

Lemma 1 helps us to prove

Theorem 1. We have

π(x) <
x

log x− 1− (log x)−0.5 for x ≥ 6,(11)

π(x) >
x

log x− 1 + (log x)−0.5 for x ≥ 59.(12)

P r o o f. We use the well-known identity

π(x) =
θ(x)
log x

+
x\
2

θ(t)

t log2 t
dt.
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By (8) we obtain

π(x) <
x

log x
+

x

3(log x)2.5 +
x\
2

dt

log2 t
+

1
3

x\
2

dt

(log t)3.5

=
x

log x

(
1 +

1
3(log x)1.5 +

1
log x

)
− 2

log2 2
+ 2

x\
2

dt

log3 t
+

1
3

x\
2

dt

(log t)3.5 .

Since

− 2

log2 2
+

1
3

x\
2

dt

(log t)3.5 <
1
3

x\
2

dt

log3 t

it follows that

π(x) <
x

log x

(
1 +

1
3(log x)1.5 +

1
log x

)
+

7
3

x\
2

dt

log3 t
.

For x ≥ e18.25 we define

f(x) =
2
3
· x

(log x)2.5 −
7
3

x\
2

dt

log3 t
.

Then

f ′(x) =
2 log x− 7(log x)0.5 − 5

3(log x)3.5 > 0,

which implies that f is an increasing function. For any convex function
g : [a, b]→ R we have

b\
a

g(x) dx ≤ b− a
n

(
g(a) + g(b) +

n−1∑

k=1

g

(
a+ k

b− a
n

))
.

For g(x) = 1/log3 x and n = 105, we can apply the above inequality on each
interval [2, e], [e, e2], . . . , [e17, e18], and [e18, e18.25] to get

e18.25\
2

dt

log3 t
< 16 870.

As the referee kindly pointed out, the above inequality may also be checked
using the software package Mathematica.

We have

f(e18.25) >
1
3

(118 507− 118 090) > 0.

Therefore f(x) > 0, which implies that for x ≥ e18.25,

π(x) <
x

log x

(
1 +

1
log x

+
1

(log x)1.5

)
<

x

log x− 1− (log x)−0.5 .



376 L. Panaitopol

Let now x ≤ e18.25 < 108. By using (3) we obtain

π(x) =
θ(x)
log x

+
x\
2

θ(t)

t log2 t
dt <

x

log x
+
x\
2

dt

log2 t

=
x

log x

(
1 +

1
log x

)
− 2

log2 2
+ 2

x\
2

dt

log3 t
.

For 4 000 ≤ x < 108 define

g(x) =
x

(log x)2.5 − 2
x\
2

dt

log3 t
+

2

log2 2
.

Since

g′(x) =
log x− 2(log x)0.5 − 2.5

(log x)3.5 > 0,

g is an increasing function,

g(e11) > 149− 2
e11\
2

dt

log3 t
> 149− 140 > 0,

hence for e11 ≤ x < 108 we have

π(x) <
x

log x

(
1 +

1
log x

+
1

(log x)1.5

)
<

x

log x− 1− (log x)−0.5 .

For x ≥ 6 it follows immediately that log x− 1− (log x)−0.5 > 0. Hence, for
6 ≤ x ≤ e11, the inequality to be proved is

h(x) =
x

π(x)
+ 1 + (log x)−0.5 − log x > 0.

If pn is the nth prime, then h is an increasing function in [pn, pn+1), so it
suffices to prove that h(pn) > 0. Since pn < e11, the inequality (log pn)−0.5 >
0.3 holds and therefore it suffices to prove that pn/n− log pn > −1.3, which
may be verified by computer for e11 > pn ≥ 7.

In order to prove inequality (12) we use (3), (9) and for x ≥ 6 400 we
have

π(x)− π(6 400) =
θ(x)
log x

− θ(6 400)
log 6 400

+
x\

6 400

θ(t)

t log2 t
dt.

Since π(6 400) = 834 and θ(6 400)/log 6 400 < 6 400/log 6 400 < 731 we have

π(x) > 103 +
θ(x)
x

+
x\

6 400

θ(t)

t log2 t
dt.
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From (9) it follows that

π(x) > 103 +
x

log x
− 2x

3 log2.5 x
+

x\
6 400

dt

log2 t
− 2

3

x\
6 400

dt

log3.5 t

= 103 +
x

log x
− 2x

3 log2.5 x
+

x

log2 x
− 6 400

log2 6 400

+ 2
x\

6 400

dt

log3 t
− 2

3

x\
6 400

dt

log3.5 t

>
x

log x

(
1 +

1
log x

− 2

3 log1.5 x

)
>

x

log x− 1 + (log x)−0.5 .

The last inequality is equivalent to

2z3 − 5z2 + 3z − 1 < 0 where z = (log x)−0.5 < 0.34.

Since z(1− z) < 1/4 it follows that z(1− z)(3− 2z) ≤ (3− z)/4 < 1 so that
the statement is proved for x ≥ 6 400. For x < 6 400 we have to prove that

α(x) = − x

π(x)
+ log x− 1 +

1√
log x

> 0.

On [pn, pn+1) the function is decreasing. The checking is made for the values
pn − 1. From pn − 1 ≤ 6 399 it follows that (log(pn − 1))−0.5 > 0.337 and
therefore it suffices that

log(pn − 1)
pn − 1

− pn − 1
n− 1

> 0.663,

which holds for n ≥ 36. Computer checking for n < 36 also gives that our
inequality holds for x ≥ 59.

Applications. From the large list of inequalities involving the function
π(x) we recall

(13) π(2x) < 2π(x) for x ≥ 3,

suggested by E. Landau and proved by Rosser and Schoenfeld in [8].
If a ≥ e1/4 and x ≥ 364 then

(14) π(ax) < aπ(x),

as proved by C. Karanikolov in [3].
If 0 < ε ≤ 1 and εx ≤ y ≤ x then

(15) π(x+ y) < π(x) + π(y)

for x and y sufficiently large, as proved by V. Udrescu in [11].
Next, we prove two inequalities that strengthen the above results and

make them more precise.
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Theorem 2. If a > 1 and x > e4(log a)−2
then π(ax) < aπ(x).

P r o o f. We use inequalities (11) and (12). For ax ≥ 6,

π(ax) <
ax

log ax− 1− (log ax)−0.5 .

For x ≥ 59,

aπ(x) >
ax

log x− 1 + (log x)−0.5 .

It remains to show that

log a > (log ax)−0.5 + (log x)−0.5.

Since x ≥ e4(log a)−2
it follows that log x ≥ 4(log a)−2 and therefore

(log ax)−0.5 + (log x)−0.5 < log a.

In addition, from x > e4(log a)−2
we obtain ax ≥ 6 too, and the proof is

complete.

Theorem 3. If a ∈ (0, 1] and x ≥ y ≥ ax, x ≥ e9a−2
, then

π(x+ y) < π(x) + π(y).

P r o o f. Since e9a−2
> 59, the inequalities (11) and (12) may be applied.

It suffices to prove that
x+ y

log(x+ y)− 1− (log(x+ y))−0.5

<
x

log x− 1 + (log x)−0.5 +
y

log y − 1 + (log y)−0.5 ,

i.e.

(16)
x

log x− 1 + (log x)−0.5

(
log
(

1 +
y

x

)
− log(x+ y)−0.5− (log x)−0.5

)

+
y

log y − 1 + (log y)−0.5

(
log
(

1+
x

y

)
− (log(x+y))−0.5− (log y)−0.5

)
> 0.

From x ≥ e9a−2
it follows that log x > 9/a2, i.e.

(log(x+ y))−0.5 + (log x)−0.5 < 2a/3.

We have the inequalities

log
(

1 +
y

x

)
≥ log(1 + a) >

2a
2a+ 1

≥ 2a
3
,

(log(x+ y))−0.5 < a/3, log y ≥ log a+ log x ≥ log a+ 9a−2 ≥ 9,

i.e.

(log(x+ y))−0.5 + (log y)−0.5 <
a

3
+

1
3
≤ 2

3
< log 2 ≤ log

(
1 +

x

y

)
.
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Therefore, the inequality (16) holds, since both expressions in parenthe-
ses are positive.

Remark. The inequalities (11) and (12) enable us to prove that π(x+y)
< π(x)+π(y) under less restrictive assumptions than in Theorem 3, but the
amount of computation is much larger.

Main result. The Hardy–Littlewood inequality π(x+ y) ≤ π(x) + π(y)
was proved in the last section under the very particular hypothesis ax ≤ y
≤ x. The only known result in which x and y are not imposed to satisfy such
a hypothesis, but instead they are integers with x ≥ 2, y ≥ 2, was obtained
by H. L. Montgomery and R. C. Vaughan [5]. They prove that

π(x+ y) < π(x) + 2π(y),

using the large sieve.
In [1] and [2], the authors take into account the possibility that the gen-

eral Hardy–Littlewood inequality might be false, and propose an alternative
(evidently weaker) conjecture

π(x+ y) ≤ 2π(x/2) + π(y).

Below, using inequalities (11) and (12), we prove the following

Theorem 4. If x and y are positive integers with x ≥ y ≥ 2 and x ≥ 6,
then

(17) π(x+ y) ≤ 2π(x/2) + π(y).

Before giving the proof, we note that the method we use cannot be
adapted to prove π(x+ y) < π(x) + π(y).

Lemma 2. If x ≥ y and x ≥ 7 500, y ≥ 2 000 then (17) holds.

P r o o f. Taking into account inequalities (11) and (12) it follows that

2π(x/2) + π(y)− π(x+ y)

>

x

(
log
(

1 +
y

x

)
+ log 2− 1√

log (x/2)
− 1√

log(x+ y)

)

(
log (x/2)− 1 +

1√
log(x/2)

)(
log(x+ y)− 1− 1√

log(x+ y)

)

+

y

(
log
(

1 +
x

y

)
− 1√

log y
− 1√

log(x+ y)

)

(
log y − 1 +

1√
log y

)(
log(x+ y)− 1− 1√

log(x+ y)

) .
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The lemma follows using the inequalities

1√
log y

+
1√

log (x+ y)
≤ 1√

log 2 000
+

1√
log 9 500

< log 2 ≤ log
(

1 +
x

y

)
,

1√
log(x/2)

+
1√

log(x+ y)
≤ 1√

log 3 750
+

1√
log 9 500

< log 2.

Lemma 3. If x ≥ 25 000, then

(18) π(x+ 2 000) < 2π(x/2).

P r o o f. Using again inequalities (11) and (12) we have

2π(x/2)− π(x+ 2 000) >
f(x)g(x)− 2 000

log(x+ 2 000)− 1− 1√
log(x+ 2 000)

where
f(x) =

x

log(x/2)− 1 +
1√

log (x/2)
and

g(x) = log
(

2 +
4 000
x

)
− 1√

log(x/2)
− 1√

log(x+ 2 000)
.

For x ≥ 195 000,

g(x) > log 2− 1√
log 97 500

− 1√
log 197 000

> 0.1116

and
f(x) > f(195 000) > 18084.6;

then f(x)g(x) > 2 000, therefore π(x+ 2 000) < 2π(x/2).
Computer check for prime x + 2 000 and x < 195 000 shows that the

inequality (18) holds for x ≥ 25 000.

Proof of Theorem 4. By Lemma 3 it follows that the inequality (17) holds
for x ≥ 25 000 and y < 2 000. By Lemma 3 it also holds for positive integers
x and y satisfying x ≥ 25 000.

Computer check for the cases y ≤ x < 25 000 completes the proof of the
theorem.

Remark. Because π(y) ≤ 2π(y/2) for y ≥ 6, after some easy computa-
tions using the former theorem we obtain the statement:

If x and y are positive integers with x, y ≥ 4 then

π(x+ y) ≤ 2(π(x/2) + π(y/2)).
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