Inequalities concerning the function $\pi(x)$: Applications

by
Laurenţiu Panaitopol (Bucureşti)

Introduction. In this note we use the following standard notations: $\pi(x)$ is the number of primes not exceeding x, while $\theta(x)=\sum_{p \leq x} \log p$.

The best known inequalities involving the function $\pi(x)$ are the ones obtained in [6] by B. Rosser and L. Schoenfeld:

$$
\begin{array}{ll}
\frac{x}{\log x-1 / 2}<\pi(x) & \text { for } x \geq 67 \\
\frac{x}{\log x-3 / 2}>\pi(x) & \text { for } x>e^{3 / 2} \tag{2}
\end{array}
$$

The proof of the above inequalities is not elementary and is based on the first 25000 zeros of the Riemann function $\xi(s)$ obtained by D. H. Lehmer [4]. Then Rosser, Yohe and Schoenfeld announced that the first 3500000 zeros of $\xi(s)$ lie on the critical line [9]. This result was followed by two papers [7], [10]; some of the inequalities they include will be used in order to obtain inequalities (11) and (12) below.

In [6] it is proved that $\pi(x) \sim x /(\log x-1)$. Here we will refine this expression by giving upper and lower bounds for $\pi(x)$ which both behave as $x /(\log x-1)$ as $x \rightarrow \infty$.

New inequalities. We start by listing those inequalities in [6] and [10] that will be used further:

$$
\begin{align*}
\theta(x) & <x & & \text { for } x<10^{8} \tag{3}\\
|\theta(x)-x| & <2.05282 \sqrt{x} & & \text { for } x<10^{8} \tag{4}\\
|\theta(x)-x| & <0.0239922 \frac{x}{\log x} & & \text { for } x \geq 758711, \tag{5}\\
|\theta(x)-x| & <0.0077629 \frac{x}{\log x} & & \text { for } x \geq e^{22}, \tag{6}
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
|\theta(x)-x|<8.072 \frac{x}{\log ^{2} x} \quad \text { for } x>1 \tag{7}
\end{equation*}
$$

\]

The above inequalities are used first to prove the following lemma:
Lemma 1. We have

$$
\begin{array}{ll}
\theta(x)<x\left(1+\frac{1}{3(\log x)^{1.5}}\right) & \text { for } x>1 \\
\theta(x)>x\left(1-\frac{2}{3(\log x)^{1.5}}\right) & \text { for } x \geq 6400 \tag{9}
\end{array}
$$

Proof. For $x \geq e^{587}$ the inequality

$$
8.072<\frac{1}{3}(\log x)^{0.5}
$$

holds and therefore, using (7), it follows that

$$
\begin{equation*}
|\theta(x)-x|<\frac{x}{3(\log x)^{1.5}} \tag{10}
\end{equation*}
$$

For $e^{22} \leq x<e^{587}$ we have

$$
0.0077629<\frac{1}{3(\log x)^{0.5}}
$$

and by using (6) we obtain (10). For $757711 \leq x<e^{22}$ we have

$$
0.0239922<\frac{1}{3(\log x)^{0.5}}
$$

and by using (5) we obtain again (10) for $x \geq 757711$. These results, together with inequality (3), obviously imply (8).

Let $6400 \leq x<10^{8}$. Then

$$
2.05282<\frac{2}{3} \cdot \frac{\sqrt{x}}{(\log x)^{1.5}}
$$

which implies (9) by using (4) and (10).
Lemma 1 helps us to prove
Theorem 1. We have

$$
\begin{array}{ll}
\pi(x)<\frac{x}{\log x-1-(\log x)^{-0.5}} & \text { for } x \geq 6 \\
\pi(x)>\frac{x}{\log x-1+(\log x)^{-0.5}} & \text { for } x \geq 59 \tag{12}
\end{array}
$$

Proof. We use the well-known identity

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t \log ^{2} t} d t
$$

By (8) we obtain

$$
\begin{aligned}
\pi(x) & <\frac{x}{\log x}+\frac{x}{3(\log x)^{2.5}}+\int_{2}^{x} \frac{d t}{\log ^{2} t}+\frac{1}{3} \int_{2}^{x} \frac{d t}{(\log t)^{3.5}} \\
& =\frac{x}{\log x}\left(1+\frac{1}{3(\log x)^{1.5}}+\frac{1}{\log x}\right)-\frac{2}{\log ^{2} 2}+2 \int_{2}^{x} \frac{d t}{\log ^{3} t}+\frac{1}{3} \int_{2}^{x} \frac{d t}{(\log t)^{3.5}} .
\end{aligned}
$$

Since

$$
-\frac{2}{\log ^{2} 2}+\frac{1}{3} \int_{2}^{x} \frac{d t}{(\log t)^{3.5}}<\frac{1}{3} \int_{2}^{x} \frac{d t}{\log ^{3} t}
$$

it follows that

$$
\pi(x)<\frac{x}{\log x}\left(1+\frac{1}{3(\log x)^{1.5}}+\frac{1}{\log x}\right)+\frac{7}{3} \int_{2}^{x} \frac{d t}{\log ^{3} t}
$$

For $x \geq e^{18.25}$ we define

$$
f(x)=\frac{2}{3} \cdot \frac{x}{(\log x)^{2.5}}-\frac{7}{3} \int_{2}^{x} \frac{d t}{\log ^{3} t}
$$

Then

$$
f^{\prime}(x)=\frac{2 \log x-7(\log x)^{0.5}-5}{3(\log x)^{3.5}}>0
$$

which implies that f is an increasing function. For any convex function $g:[a, b] \rightarrow \mathbb{R}$ we have

$$
\int_{a}^{b} g(x) d x \leq \frac{b-a}{n}\left(g(a)+g(b)+\sum_{k=1}^{n-1} g\left(a+k \frac{b-a}{n}\right)\right)
$$

For $g(x)=1 / \log ^{3} x$ and $n=10^{5}$, we can apply the above inequality on each interval $[2, e],\left[e, e^{2}\right], \ldots,\left[e^{17}, e^{18}\right]$, and $\left[e^{18}, e^{18.25}\right]$ to get

$$
\int_{2}^{e^{18.25}} \frac{d t}{\log ^{3} t}<16870
$$

As the referee kindly pointed out, the above inequality may also be checked using the software package Mathematica.

We have

$$
f\left(e^{18.25}\right)>\frac{1}{3}(118507-118090)>0
$$

Therefore $f(x)>0$, which implies that for $x \geq e^{18.25}$,

$$
\pi(x)<\frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{1}{(\log x)^{1.5}}\right)<\frac{x}{\log x-1-(\log x)^{-0.5}}
$$

Let now $x \leq e^{18.25}<10^{8}$. By using (3) we obtain

$$
\begin{aligned}
\pi(x) & =\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t \log ^{2} t} d t<\frac{x}{\log x}+\int_{2}^{x} \frac{d t}{\log ^{2} t} \\
& =\frac{x}{\log x}\left(1+\frac{1}{\log x}\right)-\frac{2}{\log ^{2} 2}+2 \int_{2}^{x} \frac{d t}{\log ^{3} t} .
\end{aligned}
$$

For $4000 \leq x<10^{8}$ define

$$
g(x)=\frac{x}{(\log x)^{2.5}}-2 \int_{2}^{x} \frac{d t}{\log ^{3} t}+\frac{2}{\log ^{2} 2} .
$$

Since

$$
g^{\prime}(x)=\frac{\log x-2(\log x)^{0.5}-2.5}{(\log x)^{3.5}}>0
$$

g is an increasing function,

$$
g\left(e^{11}\right)>149-2 \int_{2}^{e^{11}} \frac{d t}{\log ^{3} t}>149-140>0
$$

hence for $e^{11} \leq x<10^{8}$ we have

$$
\pi(x)<\frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{1}{(\log x)^{1.5}}\right)<\frac{x}{\log x-1-(\log x)^{-0.5}}
$$

For $x \geq 6$ it follows immediately that $\log x-1-(\log x)^{-0.5}>0$. Hence, for $6 \leq x \leq e^{11}$, the inequality to be proved is

$$
h(x)=\frac{x}{\pi(x)}+1+(\log x)^{-0.5}-\log x>0 .
$$

If p_{n} is the nth prime, then h is an increasing function in $\left[p_{n}, p_{n+1}\right)$, so it suffices to prove that $h\left(p_{n}\right)>0$. Since $p_{n}<e^{11}$, the inequality $\left.\left(\log p_{n}\right)^{-0.5}\right\rangle$ 0.3 holds and therefore it suffices to prove that $p_{n} / n-\log p_{n}>-1.3$, which may be verified by computer for $e^{11}>p_{n} \geq 7$.

In order to prove inequality (12) we use (3), (9) and for $x \geq 6400$ we have

$$
\pi(x)-\pi(6400)=\frac{\theta(x)}{\log x}-\frac{\theta(6400)}{\log 6400}+\int_{6400}^{x} \frac{\theta(t)}{t \log ^{2} t} d t
$$

Since $\pi(6400)=834$ and $\theta(6400) / \log 6400<6400 / \log 6400<731$ we have

$$
\pi(x)>103+\frac{\theta(x)}{x}+\int_{6400}^{x} \frac{\theta(t)}{t \log ^{2} t} d t
$$

From (9) it follows that

$$
\begin{aligned}
\pi(x)> & 103+\frac{x}{\log x}-\frac{2 x}{3 \log ^{2.5} x}+\int_{6400}^{x} \frac{d t}{\log ^{2} t}-\frac{2}{3} \int_{6400}^{x} \frac{d t}{\log ^{3.5} t} \\
= & 103+\frac{x}{\log x}-\frac{2 x}{3 \log ^{2.5} x}+\frac{x}{\log ^{2} x}-\frac{6400}{\log ^{2} 6400} \\
& +2 \int_{6400}^{x} \frac{d t}{\log ^{3} t}-\frac{2}{3} \int_{6400}^{x} \frac{d t}{\log ^{3.5} t} \\
> & \frac{x}{\log x}\left(1+\frac{1}{\log x}-\frac{2}{3 \log ^{1.5} x}\right)>\frac{x}{\log x-1+(\log x)^{-0.5}}
\end{aligned}
$$

The last inequality is equivalent to

$$
2 z^{3}-5 z^{2}+3 z-1<0 \quad \text { where } \quad z=(\log x)^{-0.5}<0.34
$$

Since $z(1-z)<1 / 4$ it follows that $z(1-z)(3-2 z) \leq(3-z) / 4<1$ so that the statement is proved for $x \geq 6400$. For $x<6400$ we have to prove that

$$
\alpha(x)=-\frac{x}{\pi(x)}+\log x-1+\frac{1}{\sqrt{\log x}}>0
$$

On $\left[p_{n}, p_{n+1}\right)$ the function is decreasing. The checking is made for the values $p_{n}-1$. From $p_{n}-1 \leq 6399$ it follows that $\left(\log \left(p_{n}-1\right)\right)^{-0.5}>0.337$ and therefore it suffices that

$$
\frac{\log \left(p_{n}-1\right)}{p_{n}-1}-\frac{p_{n}-1}{n-1}>0.663
$$

which holds for $n \geq 36$. Computer checking for $n<36$ also gives that our inequality holds for $x \geq 59$.

Applications. From the large list of inequalities involving the function $\pi(x)$ we recall

$$
\begin{equation*}
\pi(2 x)<2 \pi(x) \quad \text { for } x \geq 3, \tag{13}
\end{equation*}
$$

suggested by E. Landau and proved by Rosser and Schoenfeld in [8].
If $a \geq e^{1 / 4}$ and $x \geq 364$ then

$$
\begin{equation*}
\pi(a x)<a \pi(x) \tag{14}
\end{equation*}
$$

as proved by C. Karanikolov in [3].
If $0<\varepsilon \leq 1$ and $\varepsilon x \leq y \leq x$ then

$$
\begin{equation*}
\pi(x+y)<\pi(x)+\pi(y) \tag{15}
\end{equation*}
$$

for x and y sufficiently large, as proved by V . Udrescu in [11].
Next, we prove two inequalities that strengthen the above results and make them more precise.

Theorem 2. If $a>1$ and $x>e^{4(\log a)^{-2}}$ then $\pi(a x)<a \pi(x)$.
Proof. We use inequalities (11) and (12). For $a x \geq 6$,

$$
\pi(a x)<\frac{a x}{\log a x-1-(\log a x)^{-0.5}}
$$

For $x \geq 59$,

$$
a \pi(x)>\frac{a x}{\log x-1+(\log x)^{-0.5}} .
$$

It remains to show that

$$
\log a>(\log a x)^{-0.5}+(\log x)^{-0.5} .
$$

Since $x \geq e^{4(\log a)^{-2}}$ it follows that $\log x \geq 4(\log a)^{-2}$ and therefore

$$
(\log a x)^{-0.5}+(\log x)^{-0.5}<\log a .
$$

In addition, from $x>e^{4(\log a)^{-2}}$ we obtain $a x \geq 6$ too, and the proof is complete.

Theorem 3. If $a \in(0,1]$ and $x \geq y \geq a x, x \geq e^{9 a^{-2}}$, then

$$
\pi(x+y)<\pi(x)+\pi(y)
$$

Proof. Since $e^{9 a^{-2}}>59$, the inequalities (11) and (12) may be applied. It suffices to prove that

$$
\begin{aligned}
& \frac{x+y}{\log (x+y)-1-(\log (x+y))^{-0.5}} \\
& \quad<\frac{x}{\log x-1+(\log x)^{-0.5}}+\frac{y}{\log y-1+(\log y)^{-0.5}},
\end{aligned}
$$

i.e.
(16) $\frac{x}{\log x-1+(\log x)^{-0.5}}\left(\log \left(1+\frac{y}{x}\right)-\log (x+y)^{-0.5}-(\log x)^{-0.5}\right)$
$+\frac{y}{\log y-1+(\log y)^{-0.5}}\left(\log \left(1+\frac{x}{y}\right)-(\log (x+y))^{-0.5}-(\log y)^{-0.5}\right)>0$.
From $x \geq e^{9 a^{-2}}$ it follows that $\log x>9 / a^{2}$, i.e.

$$
(\log (x+y))^{-0.5}+(\log x)^{-0.5}<2 a / 3 .
$$

We have the inequalities

$$
\begin{gathered}
\log \left(1+\frac{y}{x}\right) \geq \log (1+a)>\frac{2 a}{2 a+1} \geq \frac{2 a}{3} \\
(\log (x+y))^{-0.5}<a / 3, \quad \log y \geq \log a+\log x \geq \log a+9 a^{-2} \geq 9
\end{gathered}
$$

i.e.

$$
(\log (x+y))^{-0.5}+(\log y)^{-0.5}<\frac{a}{3}+\frac{1}{3} \leq \frac{2}{3}<\log 2 \leq \log \left(1+\frac{x}{y}\right) .
$$

Therefore, the inequality (16) holds, since both expressions in parentheses are positive.

Remark. The inequalities (11) and (12) enable us to prove that $\pi(x+y)$ $<\pi(x)+\pi(y)$ under less restrictive assumptions than in Theorem 3, but the amount of computation is much larger.

Main result. The Hardy-Littlewood inequality $\pi(x+y) \leq \pi(x)+\pi(y)$ was proved in the last section under the very particular hypothesis $a x \leq y$ $\leq x$. The only known result in which x and y are not imposed to satisfy such a hypothesis, but instead they are integers with $x \geq 2, y \geq 2$, was obtained by H. L. Montgomery and R. C. Vaughan [5]. They prove that

$$
\pi(x+y)<\pi(x)+2 \pi(y)
$$

using the large sieve.
In [1] and [2], the authors take into account the possibility that the general Hardy-Littlewood inequality might be false, and propose an alternative (evidently weaker) conjecture

$$
\pi(x+y) \leq 2 \pi(x / 2)+\pi(y)
$$

Below, using inequalities (11) and (12), we prove the following
Theorem 4. If x and y are positive integers with $x \geq y \geq 2$ and $x \geq 6$, then

$$
\begin{equation*}
\pi(x+y) \leq 2 \pi(x / 2)+\pi(y) \tag{17}
\end{equation*}
$$

Before giving the proof, we note that the method we use cannot be adapted to prove $\pi(x+y)<\pi(x)+\pi(y)$.

Lemma 2. If $x \geq y$ and $x \geq 7500, y \geq 2000$ then (17) holds.
Proof. Taking into account inequalities (11) and (12) it follows that

$$
\begin{aligned}
2 \pi(x / 2)+ & \pi(y)-\pi(x+y) \\
> & \frac{x\left(\log \left(1+\frac{y}{x}\right)+\log 2-\frac{1}{\sqrt{\log (x / 2)}}-\frac{1}{\sqrt{\log (x+y)}}\right)}{\left(\log (x / 2)-1+\frac{1}{\sqrt{\log (x / 2)}}\right)\left(\log (x+y)-1-\frac{1}{\sqrt{\log (x+y)}}\right)} \\
& +\frac{y\left(\log \left(1+\frac{x}{y}\right)-\frac{1}{\sqrt{\log y}}-\frac{1}{\sqrt{\log (x+y)}}\right)}{\left(\log y-1+\frac{1}{\sqrt{\log y}}\right)\left(\log (x+y)-1-\frac{1}{\sqrt{\log (x+y)}}\right)} .
\end{aligned}
$$

The lemma follows using the inequalities

$$
\frac{1}{\sqrt{\log y}}+\frac{1}{\sqrt{\log (x+y)}} \leq \frac{1}{\sqrt{\log 2000}}+\frac{1}{\sqrt{\log 9500}}<\log 2 \leq \log \left(1+\frac{x}{y}\right),
$$

$$
\frac{1}{\sqrt{\log (x / 2)}}+\frac{1}{\sqrt{\log (x+y)}} \leq \frac{1}{\sqrt{\log 3750}}+\frac{1}{\sqrt{\log 9500}}<\log 2
$$

Lemma 3. If $x \geq 25000$, then

$$
\begin{equation*}
\pi(x+2000)<2 \pi(x / 2) . \tag{18}
\end{equation*}
$$

Proof. Using again inequalities (11) and (12) we have

$$
2 \pi(x / 2)-\pi(x+2000)>\frac{f(x) g(x)-2000}{\log (x+2000)-1-\frac{1}{\sqrt{\log (x+2000)}}}
$$

where

$$
f(x)=\frac{x}{\log (x / 2)-1+\frac{1}{\sqrt{\log (x / 2)}}}
$$

and

$$
g(x)=\log \left(2+\frac{4000}{x}\right)-\frac{1}{\sqrt{\log (x / 2)}}-\frac{1}{\sqrt{\log (x+2000)}} .
$$

For $x \geq 195000$,

$$
g(x)>\log 2-\frac{1}{\sqrt{\log 97500}}-\frac{1}{\sqrt{\log 197000}}>0.1116
$$

and

$$
f(x)>f(195000)>18084.6
$$

then $f(x) g(x)>2000$, therefore $\pi(x+2000)<2 \pi(x / 2)$.
Computer check for prime $x+2000$ and $x<195000$ shows that the inequality (18) holds for $x \geq 25000$.

Proof of Theorem 4. By Lemma 3 it follows that the inequality (17) holds for $x \geq 25000$ and $y<2000$. By Lemma 3 it also holds for positive integers x and y satisfying $x \geq 25000$.

Computer check for the cases $y \leq x<25000$ completes the proof of the theorem.

Remark. Because $\pi(y) \leq 2 \pi(y / 2)$ for $y \geq 6$, after some easy computations using the former theorem we obtain the statement:

If x and y are positive integers with $x, y \geq 4$ then

$$
\pi(x+y) \leq 2(\pi(x / 2)+\pi(y / 2)) .
$$

Acknowledgments. We thank the referee for suggestions leading to an improvement of the first version of this paper.

References

[1] R. K. Guy, Unsolved Problems in Number Theory, Springer, 1981, p. 16.
[2] D. K. Hensley and I. Richards, On the incompatibility of two conjectures concerning primes, in: Proc. Sympos. Pure Math. 24, H. G. Diamond (ed.), Amer. Math. Soc., 1974, 123-127.
[3] C. Karanikolov, On some properties of the function $\pi(x)$, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. 1971, 357-380.
[4] D. H. Lehmer, On the roots of the Riemann zeta-functions, Acta Math. 95 (1956), 291-298.
[5] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
[6] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[7] -, -, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, Math. Comp. 129 (1975), 243-269.
[8] -, -, Abstract of scientific communications, in: Intern. Congr. Math. Moscow, Section 3: Theory of Numbers, 1966.
[9] J. B. Rosser, J. M. Yohe and L. Schoenfeld, Rigorous computation and the zeros of the Riemann zeta functions, in: Proc. IFIP Edinburgh, Vol. I: Mathematics Software, North-Holland, Amsterdam, 1969, 70-76.
[10] L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x), I I$, Math. Comp. 134 (1976), 337-360.
[11] V. Udrescu, Some remarks concerning the conjecture $\pi(x+y)<\pi(x)+\pi(y)$, Rev. Roumaine Math. Pures Appl. 20 (1975), 1201-1208.

Faculty of Mathematics
University of Bucharest
14 Academiei St.
70109 Bucureşti, Romania
E-mail: pan@al.math.unibuc.ro

Received on 26.4.1999
and in revised form on 1.2.2000

[^0]: 2000 Mathematics Subject Classification: 11N05, 11A41.

