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1. Introduction. Let λ be a nontrivial additive character of Fq, the
finite field of q elements, and χ be a multiplicative character of Fq. For a
finite group of Lie type G defined over Fq (see [2]) and its finite-dimensional
(rational) representation φ over Fq, we define the Gauss sum G(G,φ, χ, λ)
as follows:

G(G,φ, χ, λ) =
∑

x∈G
χ(det(φ(x))) · λ(tr(φ(x))).

The explicit expression of the above sum has been obtained in [5]–[12]
for a finite classical group with respect to its natural representation and in
[13] for the finite simple group of exceptional type G = G2(q) with respect
to its 7-dimensional faithful representation φ over Fq.

When G are various finite classical groups and φ are the natural rep-
resentations, the Gauss sums have turned out to be polynomials in q with
coefficients involving mostly well-known exponential sums over Fq. (See [5]–
[12].) We also refer to [5]–[12] for motivations and applications of the Gauss
sum G.

These results for the classical groups and G2(q) can be rephrased in
the following conjectural statement: Let G = Gl be a finite group of Lie
type of rank l. Let S be a maximal Fq-split torus of G. Then the centralizer
H = Hl = CG(S) of S is the Levi subgroup of a minimal parabolic subgroup
of G. Note that a minimal parabolic subgroup is a Borel subgroup of G and
H is a maximal torus in G. (See [1, §20] and [4, §34] for details.) For r ≤ l,

2000 Mathematics Subject Classification: 11T23, 11T24, 20G40.
Key words and phrases: Gauss sum, adjoint representation, GLn(q), PGLn(q), SLn(q).
The first, third and fourth authors supported in part by the KOSEF through the

GARC at Seoul National University.
The second author supported in part by 1997 Basic Science Research Institute Pro-

gram, Ministry of Education, BSRI-97-1414, and the S.N.U. Research Fund.

[1]



2 Y.-K. Jeong et al.

we denote by Gr a finite group of rank r defined over Fq and assume that
G = Gl and Gr are of “the same type” (see [2, p. 38]). Similarly, we denote
by Hr the Levi subgroup of Gr contained in Hl. Let

H(G,φ) =
∑

t∈H
χ(det(φ(t))) · λ(tr(φ(t)))

be the Gauss sum restricted to H. Then it is very likely that the Gauss sum
G(Gl, φ, χ, λ) is a polynomial in q with coefficients involving some H(Gr, φ)
for r ≤ l. To be more precise, we need a slight modification of the above
statement whenG is a twisted group. Indeed, the Gauss sum of twisted group
Gl involves not onlyH(Gr, φ) but also “twisted”H(Gr, φ). (Although results
in [5]–[13] are not stated in the above form, it is not difficult to translate
them into the above. See [14] for details.) We also note that there is an
analogous result for classical Lie groups (see, for example, [3, 26.19]).

The purpose of this paper is to add more evidence for the above conjec-
ture.

When G is the finite general linear group GLn(q) and φ is the adjoint
representation Ad : GLn(q)→ GL(gln(q)), using the “parabolic induction”,
we show that the Gauss sum is

G(GLn(q),Ad, χ, λ) = Ln,0 + q(
n
2)

[n/2]∑

k=0

ckH(GLn−2k(q),Ad)

where ck and Ln,0 are polynomials in q (see Corollary 3.8 for details). In
this case,

H(GLm(q),Ad) =
∑

x1,...,xm∈F×q
λ

(
(x1 + . . .+ xm)

(
1
x1

+ . . .+
1
xm

))
.

Identifying the finite projective general linear group PGLn(q) with the image
of Ad, we thus obtain:

G(PGLn(q), id, χ, λ) =
1

q − 1
Ln,0 + q(

n
2)

[n/2]∑

k=0

ckH(PGLn−2k(q), id),

where

H(PGLm(q), id) =
1

q − 1
H(GLm(q),Ad).

We note that 1
q−1Ln,0 are polynomials in q.

If n and q − 1 are relatively prime, then we also get the Gauss sum for
the adjoint representation Ad : SLn(q) → GL(sln(q)) of SLn(q) using the
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results for GLn(q). In this case the Gauss sum is

G(SLn(q),Ad, χ, λ) = λ(−1)
{

1
q − 1

Ln,0 + q(
n
2)

[n/2]∑

k=0

ckH(SLn−2k(q),Ad)
}

(see Proposition 6.5 for details) and the Gauss sum restricted to H is

H(SLm(q),Ad) =
∑

x1,...,xm∈F×q
x1...xm=1

λ

(
(x1 + . . .+ xm)

(
1
x1

+ . . .+
1
xm

))
.

2. Preliminaries and notations. The main tool of this paper may be
called parabolic induction. Thus we describe the Bruhat decomposition of
GLn(q) with respect to its parabolic subgroups.

Let P = Pl,m (with l,m ≥ 1 and l +m = n) be the parabolic subgroup
of GLn(q) given by

Pl,m =
{(

Al B
0 Am

) ∣∣∣∣Al ∈ GLl(q), Am ∈ GLm(q), B ∈ Matl×m(q)
}

and let

σr =




0 0 1r 0
0 1l−r 0 0
−1r 0 0 0

0 0 0 1m−r




where 0 ≤ r ≤ min{l,m} and 1k is the k × k identity matrix.
Let

Qr = {x ∈ P | σrxσ−1
r ∈ P}

and let Qr \ P be a complete set of representatives for the right cosets of
Qr in P . Then the following decomposition of GLn(q) into a disjoint union
of right cosets of P is well known. (Our decomposition is slightly modified
from that of [2, §2.8].)

Lemma 2.1. We have

GLn(q) =
t∐

r=0

P · σr · (Qr \ P )

where t = min{l,m}.
The case P = Pn−1,1 will be particularly useful for our purpose. In this

case

GLn(q) = P
∐

PwN
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where w = σ1 and N = Q1 \ P . We recall that

|GLn(q)| =
n−1∏

k=0

(qn − qk)

and thus we have

|N | = q(qn−1 − 1)
q − 1

for n ≥ 2.
Now we introduce some notation which will be used throughout this

paper. We assume P = Pn−1,1 and w = σ1. For

x =
(
A B
0 bnn

)
∈ P,

let

A = (aij) =

(
a11 · · ·
... A′

)
, B = t(b1n, b2n, . . . , bn−1,n)

and

A′ =




a22 a23 . . . a2,n−1
...

...
. . .

...
an−1,2 an−1,3 . . . an−1,n−1


 .

In this paper we use many equations with summations. For simplicity
we use the following notations:

∑

X

=
∑

x∈X
and

∑
ti =

n∑

i=1

ti,

if x ∈ X and n are explicit in those equations.
Finally, we consider a 0×0 matrix group as the trivial group, for example,

GL0(q) = SL0(q) = {1}. But the trace of an element of such a group is
defined to be zero.

3. Gauss sum for the adjoint representation of GLn(q). The ad-
joint representation AdGLn(q) = Ad : GLn(q)→ GL(gln(q)) of GLn(q) over
Fq is defined as

Ad(x).X = xXx−1

for x ∈ GLn(q) and X ∈ gln(q), where gln(q) is the general linear Lie algebra
over Fq.

The following lemma is supposed to be well known.

Lemma 3.1. For a given g ∈ GLn(q), we have

(a) tr(Ad(g)) = tr(g) tr(g−1),
(b) det(Ad(g)) = 1.
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P r o o f. Let V be an n-dimensional vector space over Fq. Then we may
identify GLn(q) with GL(V ) and gln(q) with gl (V ) = End(V ). Since GL(V )
acts naturally on V , V ⊗V ∗ is a GL(V )-module, where V ∗ is the dual GL(V )-
module of V . Identifying V ⊗ V ∗ with End(V ) = gl (V ), we can easily see
that the adjoint action of GL(V ) on gl (V ) is equivalent to the GL(V )-action
on V ⊗ V ∗. Thus

tr(Ad(g)) = tr(g ⊗ (tg−1)) = tr(g) · tr(tg−1) = tr(g) · tr(g−1),

and

det(Ad(g)) = det(g ⊗ (tg−1)) = det(g)n · det(tg−1)n = 1.

From the above lemma, if we want to get the Gauss sum for the adjoint
representation of GLn(q), it is enough to calculate

∑

x∈GLn(q)

λ(tr(x) tr(x−1)).

We denote by Hl the standard maximal Fq-split torus in GLl(q), that is,

Hl = CGLl(q)(Hl) = {diag(t1, . . . , tl) | t1, . . . , tl ∈ F×q }.
We recall that

H(GLl(q),Ad) =
∑

t∈Hl
χ(det(Ad(t))) · λ(tr(Ad(t)))

is the Gauss sum restricted to Hl. Therefore, we have

H(GLl(q),Ad) =
∑

x1,...,xl∈F×q
λ

(
(x1 + . . .+ xl)

(
1
x1

+ . . .+
1
xl

))
.

The integers Dn,l given in the following definition, which appear in our
main result (Theorem 3.6), are interesting by themselves.

Definition 3.2. We set

Dn,l =
∑

diag(t1,...,tn)∈Hl

∑

x∈GLn(q)
tr(x)+

∑
ti=0

1

for n ≥ 2 and l > 0.

Using “parabolic induction” of GLn(q) we obtain:

Lemma 3.3. Let n ≥ 2 and l ≥ 0. Then

(a) D0,l+1 = (q − 1)((q − 1)l − (−1)l)/q,
(b) D1,l = D0,l+1,
(c) Dn,l = qn−1Dn−1,l+1 + qn−1(q − 1)l(qn−1 − 1)|GLn−1(q)|.
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P r o o f. (a) Since ti 6= 0, it is clear that
∑l+1
i=1 ti = 0 implies

∑l
i=1 ti 6= 0.

Thus
D0,l+1 = |Hl| −D0,l.

(b) Clear.
(c) Using the fact that

∑

p∈P
tr(pwp′) =

∑

p∈P
tr(pw)

for p′ ∈ N , we have (see the notation in Section 2)

Dn,l =
∑

Hl

∑

x∈GLn(q)
tr(x)+

∑
ti=0

1

=
∑

Hl

∑

x∈P
tr(x)+

∑
ti=0

1 +
∑

Hl

∑

x∈PwN
tr(x)+

∑
ti=0

1

= qn−1
∑

Hl

∑

A∈GLn−1(q), bnn∈F×q
tr(A)+bnn+

∑
ti=0

1 + |N |
∑

Hl

∑

x∈P
−b1n+tr(A′)+

∑
ti=0

1.

Thus, we may assume b1n = tr(A′) +
∑
ti, and hence

Dn,l = qn−1Dn−1,l+1 + |N |(q − 1)lqn−2(q − 1)|GLn−1(q)|.
Now for a given nonnegative integer k, let [0]q = 1,

[k]q =
qk − 1
q − 1

and [k]!q = [k]q[k − 1]q . . . [1]q.

Then, from Lemma 3.3(c), we obtain

Dn,l = q(
n
2)
{
D0,n+l + (q − 1)n

n−1∑

j=1

[j]q[j]!q
}

for n ≥ 2 and l ≥ 0. Also from the direct calculation we have the identity
n−1∑

j=1

[j]q[j]!q =
[n]!q − 1

q
.

Thus we have shown:

Proposition 3.4. Let n ≥ 2 and l ≥ 0. Then

Dn,l = q(
n
2) (q − 1)n+l − (q − 1)n + (q − 1)(−1)n+l

q
+
|GLn(q)|

q
.

Remark. In particular, for n ≥ 2, we have

|{x ∈ GLn(q) | tr(x) = 0}| = Dn,0 = q(
n
2) (q − 1)(−1)n

q
+
|GLn(q)|

q
.
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Definition 3.5. For n, l ≥ 0, we define

Gn,l =
∑

Hl

∑

x∈GLn(q)

λ

(
(tr(x) + t1 + . . .+ tl)

(
tr(x−1) +

1
t1

+ . . .+
1
tl

))
.

Now we state the main results of this paper.

Theorem 3.6. Let n ≥ 2 and l ≥ 0 (if n = 2 we assume l 6= 0). Then

(a) G1,l = H(GLl+1(q),Ad) = G0,l+1,
(b) G2,0 = qH(GL2(q),Ad),
(c) Gn,l = qn−1Gn−1,l+1 + q2n−2(qn−1 − 1)Gn−2,l

+ q2n−2{(q − 1)l|GLn−1(q)| − 2(qn−1 − 1)Dn−2,l}.
Theorem 3.6 is proved in Section 4. Using Theorem 3.6, we can compute

the Gauss sum for the adjoint representation of GLn(q). To state the result,
we define Lm,i inductively as follows.

Definition 3.7. We define

L2,0 = L1,i = L0,i+1 = 0,

Lm,i = qm−1Lm−1,i+1 + q2m−2(qm−1 − 1)Lm−2,i

+ q2m−2{(q − 1)i|GLm−1(q)| − 2(qm−1 − 1)Dm−2,i},
where m ≥ 2 and i ≥ 0 (if m = 2 then i 6= 0). Clearly Lm,i are polynomials
in q.

Corollary 3.8. Let n ≥ 2. Then

G(GLn(q),Ad, χ, λ) = Gn,0 = Ln,0 + q(
n
2)

[n/2]∑

k=0

ckH(GLn−2k(q),Ad),

where

ck =





1 if k = 0,

q
∑

n1∈N
0<n1<n

(qn1 − 1) if k = 1,

qk
∑

(n1,...,nk)∈Nk
0<ni+1<ni+1<n

(qn1 − 1)(qn2 − 1) . . . (qnk − 1) if k ≥ 2.

P r o o f. This is a sheer computation and is omitted.

Since the kernel of Ad is the scalar matrix in GLn(q), we can identify
the finite projective general linear group PGLn(q) with the image of Ad.
Let id be the identification map from PGLn(q) onto the image of Ad. If Hl

is the standard maximal torus in GLl(q), then Ad(Hl) = CPGLl(q)(Ad(Hl))
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is a maximal Fq-split torus in PGLl(q). Hence the Gauss sum restricted to
Ad(Hl) is

H(PGLl(q), id) =
1

q − 1
H(GLl(q),Ad)

and the Gauss sum for PGLn(q) is

G(PGLn(q), id, χ, λ) =
1

q − 1
G(GLn(q),Ad, χ, λ).

Therefore we have:

Corollary 3.9. Let n ≥ 2. Then

G(PGLn(q), id, χ, λ) =
1

q − 1
Ln,0 + q(

n
2)

[n/2]∑

k=0

ckH(PGLn−2k(q), id).

Note that 1
q−1Ln,0 are polynomials in q.

4. Proof of Theorem 3.6. We begin with some lemmas.

Lemma 4.1. For any a, b ∈ Fq, b 6= 0, we have
∑

t∈Fq
λ(a+ bt) =

∑

t∈Fq
λ(t) = 0.

P r o o f. This is obvious. (Recall that λ is nontrivial.)

Lemma 4.2. We have ∑

x∈Fq

∑

y,z∈F×q
λ(x2yz) = 0.

P r o o f. Dividing the above sum into the sum when x = 0 and the sum
when x 6= 0, we get
∑

x∈Fq

∑

y,z∈F×q
λ(x2yz) = (q − 1)2λ(0) +

∑

x,y,z∈F×q
λ(x2yz)

= (q − 1)2 +
{ ∑

y∈Fq

∑

x,z∈F×q
λ(x2yz)− (q − 1)2λ(0)

}

= 0.

Lemma 4.3. Let a, b ∈ Fq and c ∈ F×q . Then

∑

x,y∈F×q
λ((a+ x)(b+ cxy)) =





−(q − 1) if a = 0, b = 0,
1 if a = 0, b 6= 0,
1 if a 6= 0, b = 0,
λ(ab) + q if a 6= 0, b 6= 0.
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P r o o f. For each fixed x, replacing y by (cx)−1y, we have
∑

x,y∈F×q
λ((a+ x)(b+ cxy))

=
∑

x,y∈F×q
λ((a+ x)(b+ y))

= λ(ab) +
∑

x,y∈Fq
λ((a+ x)(b+ y))−

∑

y∈Fq
λ(a(b+ y))−

∑

x∈Fq
λ((a+ x)b)

= λ(ab) +
∑

x,y∈Fq
λ(xy)−

∑

y∈Fq
λ(ay)−

∑

x∈Fq
λ(xb)

= λ(ab) + q −
∑

y∈Fq
λ(ay)−

∑

x∈Fq
λ(xb).

Now the result follows from this.

Now we prove Theorem 3.6. Part (a) is obvious. For part (b), using the
Bruhat decomposition of GL2(q) with respect to the parabolic subgroup
P = P1,1 (see Section 2), we have

G2,0 =
∑

x∈GL2(q)

λ(tr(x) tr(x−1))

=
∑

x∈P
λ(tr(x) tr(x−1)) +

∑

x∈PwN
λ(tr(x) tr(x−1))

= qH(GL2(q),Ad) +
∑

x∈PwN
λ(tr(x) tr(x−1))

= qH(GL2(q),Ad) +
∑

x∈P

∑

y∈N
λ(tr(xwy) tr((xwy)−1))

= qH(GL2(q),Ad) +
∑

x∈P

∑

y∈N
λ(tr(yxw) tr((yxw)−1))

= qH(GL2(q),Ad) + |N |
∑

x∈P
λ(tr(xw) tr((xw)−1)).

Since

xw =
(
a11 b12

0 b22

)(
0 1
−1 0

)
=
(−b12 a11

−b22 0

)
,

we obtain

G2,0 = qH(GL2(q),Ad) + q
∑

b12∈Fq

∑

a11,b22∈F×q
λ

(
− b12 · −b12

a11b22

)

and thus
G2,0 = qH(GL2(q),Ad)

by Lemma 4.2.
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Now we calculate Gn,l in part (c) using the Bruhat decomposition of
GLn(q) with respect to the parabolic subgroup P = Pn−1,1 (see Section 2).
First, we observe that

Gn,l =
∑

Hl

∑

x∈GLn(q)

λ

((
tr(x) +

∑
ti

)(
tr(x−1) +

∑ 1
ti

))

=
∑

Hl

∑

x∈P
λ

((
tr(x) +

∑
ti

)(
tr(x−1) +

∑ 1
ti

))

+
∑

Hl

∑

x∈PwN
λ

((
tr(x) +

∑
ti

)(
tr(x−1) +

∑ 1
ti

))
.

One can easily see that

(4.1)
∑

Hl

∑

x∈P
λ

((
tr(x) +

∑
ti

)(
tr(x−1) +

∑ 1
ti

))
= qn−1Gn−1,l+1.

Therefore it is enough to compute

(4.2)
∑

Hl

∑

x∈PwN
λ

((
tr(x) +

∑
ti

)(
tr(x−1) +

∑ 1
ti

))
.

Let Aij be the cofactor of aij in A and let A′ be the submatrix of A obtained
by deleting the first row and the first column (see Section 2 for the notation).
Then
∑

Hl

∑

x∈PwN
λ

((
tr(x) +

∑
ti

)(
tr(x−1) +

∑ 1
ti

))

=
∑

Hl

∑

x∈P

∑

y∈N
λ

((
tr(xwy) +

∑
ti

)(
tr(y−1w−1x−1) +

∑ 1
ti

))

= |N |
∑

Hl

∑

x∈P
λ

((
tr(xw) +

∑
ti

)(
tr(w−1x−1) +

∑ 1
ti

))

= |N |
∑

Hl

∑

B∈(Fq)n−1

∑

bnn∈F×q

∑

A∈GLn−1(q)

λ

((
tr(A′)− b1n +

∑
ti

)

×
(
A22 + . . .+An−1,n−1

det(A)
+
±b1nA11 ± . . .± bn−1,nAn−1,1

bnn det(A)
+
∑ 1

ti

))

= |N |
∑

Hl

∑

B∈(Fq)n−1

∑

bnn∈F×q

∑

A∈GLn−1(q)

λ

((
tr(A′)− b1n +

∑
ti

)

×
(
A22 + . . .+An−1,n−1

det(A)
+
b1nA11 + . . .+ bn−1,nAn−1,1

bnn det(A)
+
∑ 1

ti

))
.
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Hence, if b1n = tr(A′) +
∑
ti then the corresponding subsum of (4.2) is

equal to

(4.3) |N |(q − 1)lqn−2(q − 1)|GLn−1(q)|.
If b1n 6= tr(A′) +

∑
ti then, by Lemma 4.1, the corresponding subsum of

(4.2) is 0, unless A21 = A31 = . . . = An−1,1 = 0. So now we assume that
A21 = A31 = . . . = An−1,1 = 0. This is equivalent to saying that

A =
(
a11 0
A′′ A′

)

where a11 ∈ F×q , A′′ = t(a21, . . . , an−1,1), ai1 ∈ Fq and A′ ∈ GLn−2(q). We
define

σ = tr(A′) +
∑

ti and τ = tr(A′−1) +
∑ 1

ti
.

Then the subsum of (4.2) corresponding to b1n 6= tr(A′) +
∑
ti is equal to

(4.4) qn−2|N |
×
∑

Hl

∑

bnn,a11∈F×q

∑

A′∈GLn−2(q)

∑

B∈(Fq)n−1

b1n 6=σ

λ

(
(σ − b1n)

(
τ +

b1n
bnna11

))

= qn−2|N |
∑

Hl

∑

B∈(Fq)n−1

∑

bnn,a11∈F×q

∑

A′∈GLn−2(q)

λ

(
(σ − b1n)

(
τ +

b1n
bnna11

))

− qn−2|N |(q − 1)lqn−2(q − 1)2|GLn−2(q)|

= qn−2|N |qn−2
∑

Hl

∑

b1n,bnn,a11∈F×q

∑

A′∈GLn−2(q)

λ

(
(σ − b1n)

(
τ +

b1n
bnna11

))

+ qn−2|N |qn−2(q − 1)2Gn−2,l − qn−2|N |(q − 1)l+2qn−2|GLn−2(q)|.
Therefore it remains to compute

(4.5)
∑

Hl

∑

b1n,bnn,a11∈F×q

∑

A′∈GLn−2(q)

λ

(
(σ − b1n)

(
τ +

b1n
bnna11

))
.

By Lemma 4.3, the sum (4.5) is equal to

(q − 1)
{∑

Hl

∑

A′∈GLn−2(q)
σ=0, τ=0

(−q + 1) +
∑

Hl

∑

A′∈GLn−2(q)
σ=0, τ 6=0

1

+
∑

Hl

∑

A′∈GLn−2(q)
σ 6=0, τ=0

1 +
∑

Hl

∑

A′∈GLn−2(q)
σ 6=0, τ 6=0

(q + λ(στ))
}
.
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Since
∑

Hl

∑

A′∈GLn−2(q)
σ=0, τ 6=0

1 =
∑

Hl

∑

A′∈GLn−2(q)
σ 6=0, τ=0

1

and
∑

Hl

∑

A′∈GLn−2(q)
σ 6=0, τ 6=0

λ(στ)

=
∑

Hl

∑

A′∈GLn−2(q)

λ(στ)− 2
∑

Hl

∑

A′∈GLn−2(q)
σ=0

1 +
∑

Hl

∑

A′∈GLn−2(q)
σ=0, τ=0

1,

(4.5) becomes

(q − 1)q
{
−
∑

Hl

∑

A′∈GLn−2(q)
σ=0, τ=0

1 +
∑

Hl

∑

A′∈GLn−2(q)
σ 6=0, τ 6=0

1
}

+ (q − 1)
∑

Hl

∑

A′∈GLn−2(q)

λ(στ)

= (q − 1)q
{
−
∑

Hl

∑

A′∈GLn−2(q)
σ=0

1 +
∑

Hl

∑

A′∈GLn−2(q)
σ 6=0

1
}

+ (q − 1)Gn−2,l.

Thus we have shown that if l 6= 0 and n ≥ 2 then (4.5) is equal to

(4.6) (q − 1)q{(q − 1)l|GLn−2(q)| − 2Dn−2,l}+ (q − 1)Gn−2,l.

Therefore, if we combine the above results, we get

Gn,l = qn−1Gn−1,l+1

+
∑

Hl

∑

x∈PwN
λ

((
tr(x) +

∑
ti

)(
tr(x−1) +

∑ 1
ti

))
(see (4.1))

= qn−1Gn−1,l+1

+ |N |qn−2(q − 1)l+1|GLn−1(q)| (see (4.3))

+ |N |q2n−4
∑

Hl

∑

b1n,bnn,a11∈F×q

∑

A′∈GLn−2(q)

λ

(
(σ − b1n)

(
τ +

b1n
bnna11

))

+ |N |q2n−4(q−1)2Gn−2,l−|N |q2n−4(q−1)l+2|GLn−2(q)| (see (4.4))
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= qn−1Gn−1,l+1 + |N |q2n−4(q − 1)2Gn−2,l

+ |N |qn−2(q − 1)l+1|GLn−1(q)| − |N |q2n−4(q − 1)l+2|GLn−2(q)|
+ |N |q2n−4

∑

Hl

∑

b1n,bnn,a11∈F×q

∑

A′∈GLn−2(q)

λ

(
(σ − b1n)

(
τ +

b1n
bnna11

))

= qn−1Gn−1,l+1 + |N |q2n−4(q − 1)2Gn−2,l

+ |N |qn−2(q − 1)l+1|GLn−1(q)| − |N |q2n−4(q − 1)l+2|GLn−2(q)|
+ |N |q2n−4(q − 1)

× {q((q − 1)l|GLn−2(q)| − 2Dn−2,l) + Gn−2,l} (see (4.6))

= qn−1Gn−1,l+1 + q2n−2(qn−1 − 1)Gn−2,l

+ |N |qn−2(q − 1)l+1

× {(qn−1 − 1)qn−2|GLn−2(q)|+ qn−2|GLn−2(q)|}
+ |N |q2n−4(q − 1)(−2qDn−2,l)

= qn−1Gn−1,l+1 + q2n−2(qn−1 − 1)Gn−2,l

+ q2n−2(q − 1)l|GLn−1(q)|+ q2n−2(−2(qn−1 − 1)Dn−2,l)

= qn−1Gn−1,l+1 + q2n−2(qn−1 − 1)Gn−2,l

+ q2n−2{(q − 1)l|GLn−1(q)| − 2(qn−1 − 1)Dn−2,l}.
This completes the proof of Theorem 3.6.

5. Gauss sum for the adjoint representation of SLn(q). The adjoint
representation AdSLn(q) = Ad : SLn(q) → GL(sln(q)) of SLn(q) over Fq is
defined as

Ad(x).X = xXx−1

for x ∈ SLn(q) and X ∈ sln(q), where sln(q) is the special linear Lie algebra
over Fq.

Lemma 5.1. For a given g ∈ SLn(q), we have

(a) tr(Ad(g)) = tr(g) tr(g−1)− 1,
(b) det(Ad(g)) = 1.

P r o o f. Let AdGLn(q) be the adjoint representation of GLn(q) and
AdSLn(q) be the adjoint representation of SLn(q). Note that gln(q) = sln(q)⊕
Fq · enn, where enn = diag(0, . . . , 0, 1). Thus for any g ∈ SLn(q), we get

AdGLn(q)|SLn(q)(x) =
(

AdSLn(q)(x) ∗
0 ∗

)
.

However, since

tr(AdGLn(q)|SLn(q)(g).enn) = tr(genng−1) = 1,
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we have genng−1 − enn ∈ sln(q). Therefore

AdGLn(q)|SLn(q)(g) =
(

AdSLn(q)(g) ∗
0 1

)
.

This proves our lemma by Lemma 3.1.

By Lemma 5.1, if we want to get the Gauss sum of the adjoint represen-
tation of SLn(q), it is enough to calculate

∑

x∈SLn(q)

λ(tr(x) tr(x−1)− 1).

Now we decompose GLn(q) into the disjoint union of left cosets of SLn(q).

Lemma 5.2. Let n and q − 1 be relatively prime. Then

GLn(q) =
∐

t∈F×q
tSLn(q).

P r o o f. For any g ∈ GLn(q), let det(g) = α. Since n and q − 1 are
relatively prime, there is a unique t ∈ F×q such that tn = α. Thus t−1g ∈
SLn(q) and g ∈ tSLn(q).

From Lemma 5.2, we have
∑

x∈GLn(q)

λ(tr(x) tr(x−1)) =
∑

t∈F×q

∑

y∈SLn(q)

λ(tr(ty) tr((ty)−1))

=
∑

t∈F×q

∑

y∈SLn(q)

λ(tr(y) tr(y−1))

= (q − 1)
∑

y∈SLn(q)

λ(tr(y) tr(y−1)).

Therefore we get the following lemma.

Lemma 5.3. Let n and q − 1 be relatively prime. Then
∑

x∈SLn(q)

λ(tr(x) tr(x−1)) =
1

q − 1

∑

x∈GLn(q)

λ(tr(x) tr(x−1)).

For SLn(q), we take Hn to be the standard maximal Fq-split torus in
SLn(q), that is,

Hn = CSLn(q)(Hn) =
{

diag(x1, . . . , xn)
∣∣∣ xi ∈ F×q , 1 ≤ i ≤ n,

n∏

i=1

xi = 1
}
.
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Hence, we have

H(SLn(q),Ad) =
∑

x1,...,xn−1∈F×q
λ

((
x1 + . . .+ xn−1 +

1
x1 . . . xn−1

)

×
(

1
x1

+ . . .+
1

xn−1
+ x1 . . . xn−1

))

=
∑

x1,...,xn∈F×q
x1...xn=1

λ

(
(x1 + . . .+ xn)

(
1
x1

+ . . .+
1
xn

))
.

Then we have:

Lemma 5.4. Let n and q − 1 be relatively prime. Then

H(SLn(q),AdSLn(q)) =
1

q − 1
H(GLn(q),AdGLn(q)).

P r o o f. For α, t ∈ F×q , we denote Xα = {(x1, . . . , xn) ∈ (F×q )n | x1 . . . xn
= α} and t(x1, . . . , xn) = (tx1, . . . , txn). Since n and q − 1 are relatively
prime, for any α ∈ F×q , there is t ∈ F×q such that tn = α. Hence Xα = tX1

and (F×q )n =
∏
t∈F×q tX1. Therefore

H(GLn(q),Ad) =
∑

x1,...,xn∈F×q
λ

(
(x1 + . . .+ xn)

(
1
x1

+ . . .+
1
xn

))

=
∑

t∈F×q

∑

tX1

λ

(
(tx1 + . . .+ txn)

(
1
tx1

+ . . .+
1
txn

))

=
∑

t∈F×q

∑

X1

λ

(
(x1 + . . .+ xn)

(
1
x1

+ . . .+
1
xn

))

= (q − 1)H(SLn(q),Ad).

Summarizing the above results, we have the following proposition.

Proposition 5.5. Let n and q − 1 be relatively prime. Then

G(SLn(q),Ad, χ, λ) = λ(−1)
{

1
q − 1

Ln,0 + q(
n
2)

[n/2]∑

k=0

ckH(SLn−2k(q),Ad)
}
.

We note that 1
q−1Ln,0 are polynomials in q.

We also note that the finite projective special linear group PSLn(q) is
isomorphic to SLn(q), since we are assuming n and q−1 are relatively prime.
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