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Prime values of reducible polynomials, I

by

Yong-Gao Chen (Nanjing) and Imre Z. Ruzsa (Budapest)

1. Introduction. It is a generally accepted conjecture that an irre-
ducible integer-valued polynomial without a constant divisor assumes in-
finitely many prime values at integers. On the other hand, it is easy to see
that for a reducible f ∈ Q[x] there are only finitely many integers n for which
f(n) is prime. It is, however, a nontrivial question to estimate the number
of these integers. We shall be primarily interested in finding estimates in
terms of the degree of f or of its factors.

In what follows by “polynomial” we always mean a polynomial with
rational coefficients, and reducibility is meant in Q[x]. We will write

P (f) = #{m ∈ Z : f(m) is prime}.
In this generality probably there is no estimate that depends on the

degree alone.

Conjecture 1.1. For every k there is a reducible f ∈ Q[x] of degree two
such that P (f) ≥ k.

To support this conjecture we show that it follows from the following
form of the prime k-tuple conjecture: if a1, . . . , ak and b1, . . . , bk are integers
such that ai 6= 0 and the polynomial (a1x+b1) . . . (akx+bk) has no constant
divisor, then there is an integer y such that all the aiy + bi are primes.

Consider now a polynomial

f(x) =
x(x+ s)

m
,

where m = q1 . . . qk is the product of k distinct primes. We want to find an s
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such that all the numbers f(m/qj) are prime. To achieve this we must have
m/qi + s = qipi with primes pi. This implies that

s ≡ −m
qi

(mod qi)

for all i, and these congruences together are equivalent to a single congruence
s ≡ S (mod m). Write s = S +my; the numbers that should be prime are

1
qi

(
m

qi
+ s

)
=
m

qi
y +

1
qi

(
m

qi
+ S

)
= aiy + bi,

say. Observe that (ai, bi) = 1, since the prime divisors of ai are the primes
qj , j 6= i, and

m

qi
+ S ≡ S ≡ −m

qj
6≡ 0 (mod qj).

We have to exclude the possibility that a prime p always divides at least
one of these linear forms. Now if p - ai then p | aiy + bi holds for integers y
belonging to one residue class modulo p, and if p | ai then it never holds.
Thus a sufficient condition is that the number of ai that are not divisible
by p is at most p− 1. This automatically holds if p > k, and it also holds if
p = qj for some j, since in this case p | ai unless i = j. These two conditions
together cover all primes if q1, . . . , qk are selected so that all primes ≤ k
are included among them. Thus for such choices of the qj the prime tuple
conjecture yields our conjecture above.

The situation changes if we restrict our attention to integer-valued poly-
nomials, that is, polynomials such that f(n) is integral whenever so is n.

Theorem 1. Let

Pn = sup{P (f) : deg f = n, f is integer-valued and reducible in Q[x]}.
We have

exp
(

(log 2− o(1))
n

log n

)
< Pn < exp

(
C

n

log n

)

with an absolute constant C.

The second author conjectures that the lower estimate gives the proper
order of magnitude. We will establish this under certain restrictions on the
degree of the factors of f .

The situation changes considerably if we assume that the factors of f are
also integer-valued. Indeed, if f = gh with integer-valued g and h, then f(x)
can be a prime only if either g(x) = ±1 or h(x) = ±1, which immediately
gives 2n as an upper bound. The possibility to improve this bound will be
the subject of Part II.
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2. The upper estimate in Theorem 1. A polynomial of degree n is
integer-valued if and only if it has the form

f(x) = a0 + a1

(
x

1

)
+ . . .+ an

(
x

n

)

with integers ai; thus in particular n!f(x) ∈ Z[x]. Hence n!f is reducible
in Z[x], say n!f = gh. If f(m) is prime, then either g(m) |n! or h(m) |n!.
The first possibility yields at most 2τ(n!) possible values for g(m) (where τ
denotes the number of positive divisors), hence at most 2τ(n!) deg g values
for m. We have an analogous estimate in the second case, and adding them
we obtain

(2.1) P (f) ≤ 2τ(n!)(deg g + deg h) = 2nτ(n!).

To estimate this quantity, observe that for 2 ≤ k <
√
n and n/k < p ≤

n/(k−1) we have pk−1 ‖n!. From this (by estimating the exponent of primes
≤ √n crudely by n from above) one easily obtains

τ(n!) = exp
(

(C + o(1))
n

log n

)
, C =

∞∑

k=2

log k
k(k − 1)

.

3. Further upper estimates. In what follows we fix two integers
1 ≤ d < n, and try to estimate P (f) for polynomials of degree n which
have a divisor h of degree d. Our main result is the following.

Theorem 2. Let 1 ≤ d ≤ n/2 be integers, and let f be an integer-valued
polynomial of degree n which has a divisor of degree d.

(i) We have

(3.1) P (f) ≤ 2n1+n/d.

(ii) If d = 1 or 2, then

(3.2) P (f) < exp
(

(log 2 + o(1))
n

logn

)
.

Thus the conjecture after Theorem 1 is confirmed by (ii) for d = 1, 2 and
by (i) for d > (log n)2/log 2.

We say that an integer k is a constant divisor of a polynomial g if g is
integer-valued and k | g(m) for every integer m. We call a polynomial stan-
dard if it is integer-valued and it has no constant divisor k > 1. Clearly any
polynomial g ∈ Q[x] has a unique representation in the form g = (b/a)g1,
where g1 is standard, a, b are coprime integers and a ≥ 1.

We start with some preparation and then prove Theorem 2.

Lemma 3.1. Let f ∈ Z[x] be a polynomial of degree n. The number of
integers m for which |f(m)| ≤M is at most 2nM1/n + n.
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P r o o f. Write

f(x) = a(x− x1) . . . (x− xn), xi ∈ C.
Here |a| ≥ 1, thus if |f(m)| ≤ M , then |m− xj | ≤ M1/n for at least one j,
altogether at most n(1 + 2M1/n) possibilities.

Lemma 3.2. Let f be an integer-valued polynomial , deg f ≤ n, and let
h be a standard polynomial which divides f . Write f = (b/a)hg, where g is
standard , a, b are coprime integers and a ≥ 1. Let G and H be the least
common denominators of the coefficients of g and h, respectively. We have
aGH |n!.

P r o o f. Let h1 = Hh and g1 = Gg; by the definition of G and H,
h1, g1 ∈ Z[x] are primitive polynomials. Since (a, b) = 1, b is a constant
divisor of f . Hence

n!
f

b
=

n!
aGH

h1g1 ∈ Z[x].

Since f1, g1 are primitive, so is their product and we see that aGH |n!.

Now consider a fixed standard h and a positive integer n. Take all possible
integers a that can occur as a constant divisor of a polynomial gh, where
g is a standard polynomial of degree at most n − d. By the above lemma
we see that always a |n!. So the collection of these integers a is finite. We
define R(h, n) as the l.c.m. of all the possible values of a. The divisibilities
a |n! imply

(3.3) R(h, n) |n!.

For a prime p, we define αp as the largest integer α such that there
exists a standard polynomial g of degree at most n − d such that pα is a
constant divisor of hg. The above arguments show that always pα |n!, thus
this maximum is finite and it is 0 for p > n. Furthermore we have

R(h, n) =
∏
p

pαp .

Lemma 3.3. Let f be an integer-valued polynomial , deg f ≤ n, and let
h be a standard polynomial which divides f . Write f = (b/a)hg, where g
is standard , a, b are coprime integers and a ≥ 1. Let G and H be the
least common denominators of the coefficients of g and h, respectively.
Then for any integer m, (h(m), f(m)) = 1 implies h(m) | a, h(m) |n!/H
and h(m) |R(h, n).

P r o o f. Since af(m) = bh(m)g(m), the coprimality assumption implies
h(m) | a. Now a |n!/H by Lemma 3.2 and a |R(h, n) by definition.
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We define

(3.4) N(h, n) = max #{m ∈ Z : (h(m), f(m)) = 1},
where f runs over all integer-valued polynomials of degree n which are mul-
tiples of h. This definition is justified by the following lemma. We will see
that this somewhat artificial quantity is closely related to P (f).

Lemma 3.4. The quantity N(h, n) defined by (3.4) is finite and it satisfies

N(h, n) ≤ 2dτ(R(h, n)) = 2d
∏

(1 + αp).

P r o o f. All integers m satisfying (h(m), f(m)) = 1 satisfy h(m) |R(h, n)
by the previous lemma. This leaves at most τ(R(h, n)) possibilities for the
value of |h(m)|, thus at most 2dτ(R(h, n)) possibilities for m.

Statement 3.5. Assume 1 ≤ d ≤ n/2. Let h be a standard polynomial of
degree d, and f an integer-valued polynomial of degree n which is a multiple
of h. We have

(3.5) P (f) ≤ N(h, n) + n3 ≤ 2d
∏

(1 + αp) + n3.

P r o o f. We preserve the notations of the previous lemmas. If f(m) = q
is prime, then aq = af(m) = bh(m)g(m) shows that either g(m) | a or
h(m) | a and (h(m), f(m)) = 1. If g(m) | a, then by Lemma 3.2 we see that
|Gg(m)| ≤ n!, and by Lemma 3.1 the number of such m does not exceed

2(n− d)n!1/(n−d) + (n− d) ≤ n3.

(We use d ≤ n/2 and n! ≤ nn21−n, which follows from the inequality of arith-
metical and geometrical means.) The number of values with (h(m), f(m))
= 1 is at most N(h, n) by definition, and the second inequality is given in
the preceding lemma.

This immediately slightly improves the bound 2nτ(n!) of (2.1); a better
understanding of R(h, n) could lead to further improvements.

Proof of Theorem 2 (i). By Lemma 3.3 and Lemma 3.1 we have

N(h, n) ≤ #{m ∈ Z : |Hh(m)| ≤ n!} ≤ d(1 + 2(n!)1/d) ≤ n1+n/d.

The claim follows from Statement 3.5.

Lemma 3.6. Let g be an integer-valued polynomial. If there are deg g+ 1
consecutive integers at which g(m) is divisible by a certain integer k, then
k is a constant divisor of g.

P r o o f. After a division, this reduces to the statement that if deg g + 1
consecutive values are integral, then so are all the values at integers, which
is well known and easily follows from Newton’s or Lagrange’s interpolation
formula.
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Lemma 3.7. Let h, d, n be as before and let p > d be a prime. If the
number of solutions of the congruence

d!h(x) ≡ 0 (mod pα+1)

is less than pα+1/(n− d+ 1), then αp ≤ α.

P r o o f. By assumption we can find n − d + 1 consecutive integers for
which pα+1 -h(m). Thus if pα+1 |h(m)g(m), then p | g(m). Since this holds
for n − d + 1 = deg g + 1 consecutive integers, by the previous lemma we
conclude that p is a constant divisor of g, contrary to assumptions.

Proof of Theorem 2 (ii). Let h be a standard polynomial of degree 1 or 2.
Write

H(x) = 2h(x) = ax2 + bx+ c, a, b, c ∈ Z
(a = 0 is permitted).

We show that for any prime p > 2 at least one of the following properties
holds:

(a) the congruence H(x) ≡ 0 (mod p2) has at most 2 solutions;
(b) the congruence H(x) ≡ 0 (mod p3) has at most 2p solutions, and

whenever p |H(m), then always p2 |H(m).

Indeed, if H(x) ≡ 0 (mod p2) has no solution at all, we are through. If
it has, by a shift we can achieve that 0 is a solution, so we may assume p2 | c
and the congruence becomes x(ax+ b) ≡ 0 (mod p2). If p - b, then p cannot
divide both factors, thus either x ≡ 0 (mod p2) or ax + b ≡ 0 (mod p2),
at most two solutions altogether. If p | b, then p - a, otherwise p would be a
constant divisor of h, contrary to the standardness assumption. In this case
p2 |H(m) holds if and only if p |m, which shows the second claim in (b). To
enumerate the solutions modulo p3, we may assume that 0 is a solution and
then we see that any solution satisfies either x ≡ 0 (mod p2), or ax+ b ≡ 0
(mod p2), at most 2p possibilities modulo p3.

It can be observed that if d = 1, then we always have case (a), and the
bound can be reduced to 1.

Let now p be a prime,
√

2n < p ≤ n. In case (a), we apply Lemma 3.7
with α = 1 (d may be 1 or 2), and we obtain αp ≤ 1. In case (b), we have
d = 2, and from the same lemma with α = 2 we obtain αp ≤ 2. In both
cases whenever p |h(m), then pαp |h(m).

Consider now the integers for which h(m) |R(h, n). From the above ar-
gument, the possible exponents of a prime

√
2n < p ≤ n in h(m) are 0 and

αp. For p ≤ √2n the exponent is ≤ n by the divisibility R(h, n) |n! given
in (3.3). This yields at most

2(1 + n)π(
√

2n)2π(n)−π(
√

2n)
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possible values of h(m). By Lemma 3.2 we have

N(h,m) ≤ 2d(1 + n)π(
√

2n)2π(n)−π(
√

2n),

and now (3.5) shows (3.2).

4. The lower estimate. We define

(4.1) N ′(h, n) = max
f

min
p

#{m ∈ Z : (h(m), f(m)) = 1, p -h(m)},

where f runs over all integer-valued polynomials of degree n which are mul-
tiples of h and p runs over the primes.

Statement 4.1. Let h be an integer-valued polynomial of degree d. For
n > n0 (where n0 depends on d) there is an integer-valued polynomial f of
degree n which is divisible by h and for which

P (f) ≥ N ′(h, n)
50(log n!)3 .

Let π(x, k, l) denote the number of primes ≡ l (mod k) not exceeding x.

Lemma 4.2. With certain positive absolute constants c, c1 we have

π(x, k, l) =
lix
φ(k)

+O(xe−c
√

log x)

uniformly for all k ≤ K, all x > exp(c1(logK)2) and all (l, k) = 1, ex-
cept possibly certain values of k which are all multiples of some number k0

satisfying k0 > c(logK)2(log logK)−8.

See Karatsuba [1].

Proof of Statement 4.1. Let f1 be a polynomial for which the expression
in (4.1) assumes its maximum. First we deduce bounds for the values of
h(m) such that (h(m), f1(m)) = 1.

Let H be the least common denominator of the coefficients of h. By
Lemma 3.2 we know that Hh(m) |n! for all such m, in particular 1 ≤ |h(m)|
≤ n!/H. We have

Hh(x) = a

d∏

i=1

(x− xi)

with |a| ≥ 1. Hence these values of m satisfy either |m − x1| ≤ n! (we call
such values typical), or |m − xj | < 1 for some j ≥ 2 (we call such values
exceptional). Clearly the number of exceptional m’s is less than 2d. From
now on we shall use only the typical m. By a shift (by the integer closest to
Rex1) we can achieve that these satisfy |m| ≤ n!, so we shall assume this
inequality.
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Next we modify f1 to make it small at the above values. Write f1 = hg1.
Every polynomial of the form f2 = h(g1 + g∗), where g∗ ∈ Z[x], satisfies the
same coprimality assumptions. By choosing the coefficients of g∗ appropri-
ately we can achieve that all coefficients of g2 = g1 + g∗ are in (0, 1]. This
yields

|g2(m)| ≤ n(n!)n−d

for all typical m, hence

|f2(m)| ≤ n!|g2(m)| ≤ nn!n.

We shall find an f with many prime values in the form f = f2 + th with
an integer t. We will find this t by a statistical argument. We define T by
log T = (log n!)3. This implies

T |h(m)| ≥ |f2(m)|
for all typical m. Then we have

#{t : |t| ≤ T, f2(m) + th(m) is prime} ≥ π(T |h(m)|, |h(m)|, |f2(m)|).
By Lemma 4.2 we deduce that this is

≥ 1
2
· 1
φ(|h(m)|) ·

T |h(m)|
log T |h(m)| ≥

1
4
· T

log T

if h(m) is not a multiple of the exceptional k0. The number of integers m
for which this argument works is at least

N ′(h, n)− 2d.

Since the number of choices for t is ≤ 2T + 1, there must be a |t| ≤ T for
which

P (f) ≥ 1
2T + 1

· T

4 log T
(N ′(h, n)− 2d).

This implies the claim of the statement if N ′(h, n) ≥ 6d. If 1 ≤ N ′ < 6d,
then the bound is less than 1 and we can find a prime value simply by
applying Dirichlet’s theorem; for N ′ = 0 the claim is empty.

Remark 4.3. The difference between N(h, n) and N ′(h, n) is of a techni-
cal nature and would disappear if we knew that there are no Siegel roots. The
denominator in Statement 4.1 is due to the averaging, and the prime-tuple
conjecture would give stronger results.

Proof of Theorem 1, lower estimate. We use the above statement for
h(x) = x. Write Q =

∏
p≤n p. We set f = gh/Q with

g(x) = Qxn−1 +
∑

p≤n

Q

p
(xp−1 − 1).
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Clearly g is an integer-valued polynomial of degree n − 1. Since Q is a
constant divisor of xg(x) by Fermat’s theorem, f is indeed integer-valued.

Next we show that for every D |Q we have (D, f(D)) = 1. Indeed, take
a prime q |D. All coefficients of g except those coming from the term p = q
in the sum are multiples of q, thus

g(D) ≡ Q

q
(Dq−1 − 1) ≡ −Q

q
6≡ 0 (mod q).

Hence

(D, f(D)) =
(
D,

g(D)
Q/D

)
= 1.

This implies

N ′(h, n) ≥ min
p

#{m ∈ Z : (m, f(m)) = 1, p -m}

≥ min
p

#{m ∈ Z : m |Q, p -m} = 2π(n).

Hence the lower estimate of Theorem 1 follows from Statement 4.1.
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