On the maximal density of sum-free sets

by

Tomasz Luczak (Poznań) and Tomasz Schoen (Kiel and Poznań)

1. Introduction. For a set $A \subseteq \mathbb{N}$, let $A(n)=|A \cap\{1, \ldots, n\}|$ and

$$
\mathcal{P}(A)=\left\{\sum_{a \in B} a: B \subseteq A, 1 \leq|B|<\infty\right\} .
$$

It is well known that if for some $\varepsilon>0$ for all sufficiently large n we have $A(n) \geq n^{1 / 2+\varepsilon}$, then the set $\mathcal{P}(A)$ contains an infinite arithmetic progression, i.e. the following holds.

Theorem 1. Let $\varepsilon>0$ and suppose that for a set $A \subseteq \mathbb{N}$ we have $A(n) \geq$ $n^{1 / 2+\varepsilon}$ whenever n is large enough. Then there exist b and d such that $\mathcal{P}(A)$ contains all terms of the infinite arithmetic progression $b, b+d, b+2 d$, $b+3 d, \ldots$

Theorem 1 is due to Folkman [4], who also asked whether its assertion remains true if $\varepsilon>0$ is replaced by a function which tends to 0 as $n \rightarrow \infty$. Theorem 2 below states that this is indeed the case and, furthermore, for every set A dense enough, one can take $b=0$. It should be mentioned that recently a similar result has been independently proved by Hegyvári [5], who showed that the assertion of Theorem 1 holds for all $A \subseteq \mathbb{N}$ with $A(n)>300 \sqrt{n \log n}$ for n large enough.

Theorem 2. Let A be a set of natural numbers such that $A(n)>$ $402 \sqrt{n \log n}$ for n large enough. Then there exists d^{\prime} such that

$$
\left\{d^{\prime}, 2 d^{\prime}, 3 d^{\prime}, \ldots\right\} \subseteq \mathcal{P}(A) .
$$

We use Theorem 2 to estimate the maximal density of sum-free sets of natural numbers. Recall that a set $A \subseteq \mathbb{N}$ is sum-free if $A \cap \mathcal{P}^{\prime}(A)=\emptyset$, where

$$
\mathcal{P}^{\prime}(A)=\left\{\sum_{a \in B} a: B \subseteq A, 2 \leq|B|<\infty\right\} .
$$

[^0]Erdős [3] (see also Deshoulliers, Erdős and Melfi [1]) proved that the density of every sum-free set A is zero, and that for such a set A we have

$$
\liminf _{n \rightarrow \infty} \frac{A(n)}{n^{c}}=0
$$

provided $c>(\sqrt{5}-1) / 2$. As an immediate consequence of Theorem 2 we obtain the following strengthening of this result.

Theorem 3. If $A \subseteq \mathbb{N}$ is sum-free, then for each n_{0} there exists $n \geq n_{0}$ such that $A(n) \leq 403 \sqrt{n \log n}$.

In the last part of the note for every $\varepsilon>0$ we construct a sum-free set A^{ε} such that $A^{\varepsilon}(n) \geq n^{1 / 2} \log ^{-1 / 2-\varepsilon} n$ for all n large enough. Thus, the upper bound for the upper density of a sum-free set given by Theorem 3 is close to best possible.
2. Proofs of Theorems 2 and 3. Throughout the note by the (d, k, m) set we mean the set of terms of the arithmetic progression $\{k d,(k+1) d, \ldots$ $\ldots,(k+m) d\}$. Our argument relies on the following remarkable result of Sárközy [6, 7], which states that if a finite set A is dense enough, then $\mathcal{P}(A)$ contains large (d, k, m)-sets.

Theorem 4. Let $n \geq 2500$ and let A be a subset of $\{1, \ldots, n\}$ with $|A|>200 \sqrt{n \log n}$ elements. Then $\mathcal{P}(A)$ contains $a(d, k, m)$-set, where $1 \leq d \leq 10000 n /|A|, k \leq n$ and $m \geq 7^{-1} 10^{-4}|A|^{2}-n$.

We shall also need the following simple observation.
FACT 5. For $i=1,2$, let A_{i} be a $\left(d_{i}, k_{i}, m_{i}\right)$-set, and let $m_{i} / 2 \geq d_{2} \geq$ d_{1}. Then there exists an integer k_{3} such that the set $A_{1}+A_{2}$ contains a $\left(d_{1}, k_{3}, m_{3}\right)$-set A_{3} with $m_{3} \geq m_{1}+m_{2}-2 d_{1}$.

Proof. Note that A_{2} contains a $\left(d_{1} d_{2}, k_{4}, m_{4}\right)$-set B with $k_{4}=\left\lceil k_{2} / d_{1}\right\rceil$ and $m_{4} \geq\left(m_{2}-2 d_{1}\right) / d_{1}$. Hence, $A_{1}+B$ contains a $\left(d_{1}, k_{1}+k_{4} d_{2}, m_{1}+m_{4} d_{2}\right)$ set.

Lemma 6. Let A be a set of natural numbers such that for each n large enough, $A(n)>201 \sqrt{n \log n}$. Then there exists d such that for each $m \in \mathbb{N}$ the set $\mathcal{P}(A)$ contains a (d, k, m)-set for some k.

Proof. For $i \geq 1$ set $n_{1}=2$ and $n_{i+1}=n_{i}^{2}=2^{2^{i}}$ and let

$$
I_{i}=\left\{n \in \mathbb{N}: n_{i-1}<n \leq n_{i}\right\} .
$$

Since for large enough n we have $A(n)>201 \sqrt{n \log n}$, there exists $i_{0} \geq 30$ such that for $i \geq i_{0}$ the set $A \cap I_{i}$ has more than $200 \sqrt{n_{i} \log n_{i}}$ elements. Hence, by Theorem 4 , for $i \geq i_{0}$, the set $\mathcal{P}\left(A_{i}\right)$ contains a $\left(d_{i}, k_{i}, m_{i}\right)$-set B_{i} with $1 \leq d_{i} \leq 50 \sqrt{n_{i} / \log n_{i}}$ and $m_{i} \geq 10^{-3} n_{i} \log n_{i}$. Let i^{\prime} be the value of index which minimizes d_{i} for all $i \geq i_{0}$ (note that $d_{i^{\prime}} \leq \sqrt{n_{i_{0}}}$). We shall
show that the set $\mathcal{P}\left(A_{i^{\prime}}\right)+\mathcal{P}\left(A_{i^{\prime}+1}\right)+\ldots+\mathcal{P}\left(A_{l}\right)$ contains a $\left(d_{i^{\prime}}, k_{l}^{\prime}, m_{l}^{\prime}\right)$-set for some k_{l}^{\prime} and $m_{l}^{\prime} \geq 0.001 n_{l}$.

We use induction on l. For $l=i^{\prime}$ we have

$$
m_{i^{\prime}}^{\prime}=m_{i^{\prime}} \geq 10^{-3} n_{i^{\prime}} \log n_{i^{\prime}} \geq 10^{-3} n_{i^{\prime}} .
$$

Thus, assume that the assertion holds for $l_{0} \geq i^{\prime}$. By the choice of i^{\prime} we have $d_{l_{0}+1} \geq d_{i^{\prime}}$, and

$$
d_{l_{0}+1} \leq 50 \sqrt{\frac{n_{l_{0}+1}}{\log n_{l_{0}+1}}}=\frac{50 n_{l_{0}}}{\sqrt{\log 2^{2_{0}}}}<\frac{n_{l_{0}}}{2000}=\frac{m_{l_{0}}^{\prime}}{2} .
$$

Hence, from Fact 5 and the induction hypothesis we infer that $\mathcal{P}\left(A_{i^{\prime}}\right)+$ $\mathcal{P}\left(A_{i^{\prime}+1}\right)+\ldots+\mathcal{P}\left(A_{l_{0}+1}\right)$ contains a $\left(d_{i^{\prime}}, k_{l_{0}+1}^{\prime}, m_{l_{0}+1}^{\prime}\right)$-set for some $k_{l_{0}+1}^{\prime}$ and

$$
\begin{aligned}
m_{l_{0}+1}^{\prime} & \geq m_{l_{0}+1}+0.001 n_{l_{0}}-2 d_{i^{\prime}} \\
& \geq 0.001 n_{l_{0}+1} \log n_{l_{0}+1}-2 \sqrt{n_{i_{0}}} \geq 0.001 n_{l_{0}+1}
\end{aligned}
$$

In the proof of Theorem 2 we shall also need the following fact (see, for instance, Folkman [4]).

FAct 7. For every natural d there exists a constant C such that for every set A of natural numbers with $A(n) \geq C \sqrt{n}$ for n large enough, there exist $r=r(d, A)$ and $k_{0}=k_{0}(d, A)$ such that for each $k \geq k_{0}$,

$$
\{k d,(k+1) d, \ldots,(k+r) d\} \cap \mathcal{P}(A) \neq \emptyset
$$

Proof of Theorem 2. Let $A=\left\{a_{1}<a_{2}<\ldots\right\}$ and $A_{1}=\left\{a_{2 n-1}: n \in \mathbb{N}\right\}$, $A_{2}=A \backslash A_{1}$. Then, for n large enough, we have $A_{1}(n) \geq 201 \sqrt{n \log n}$. Hence, by Lemma 6 , there exists d such that $\mathcal{P}\left(A_{1}\right)$ contains (d, k, m)-sets with arbitrarily large m. Furthermore, Fact 7 applied to A_{2} implies that on the set of multiplicities of d, the set $\mathcal{P}\left(A_{2}\right)$ has only bounded gaps. Consequently, $\mathcal{P}\left(A_{1}\right)+\mathcal{P}\left(A_{2}\right)$ contains an infinite arithmetic progression of the form $\left\{k^{\prime} d,\left(k^{\prime}+1\right) d, \ldots\right\}$ and thus the assertion holds with $d^{\prime}=k^{\prime} d$.

Proof of Theorem 3. Let A be a set of natural numbers such that for some n_{0} we have $A(n)>403 \sqrt{n \log n}$ for $n \geq n_{0}$. We shall show that A is not sum-free. Indeed, choose an infinite subset $A_{1} \subseteq A$ such that for the set $A_{2}=A \backslash A_{1}$ we have $A_{2}(n)>402 \sqrt{n \log n}$ whenever $n \geq n_{0}$. Theorem 3 implies that for some d and k we have

$$
\{d, 2 d, 3 d, \ldots\} \subseteq \mathcal{P}\left(A_{2}\right)
$$

Let $a_{1}, a_{2} \in A_{1}$ be such that $a_{1} \geq a_{2}+d$ and $a_{1} \equiv a_{2}(\bmod d)$. Then $a_{2} \in\left\{a_{1}+d, a_{1}+2 d, a_{1}+3 d, \ldots\right\} \subseteq \mathcal{P}^{\prime}(A)$.
3. Dense sum-free sets. We conclude the note with an example of a sum-free set A such that for each n large enough we have $A(n) \geq$
$n^{1 / 2} \log ^{-1 / 2-\varepsilon} n$, where $\varepsilon>0$ can be chosen arbitrarily small. In our construction we use a method of Deshoulliers, Erdős and Melfi [1] who showed that one can slightly "perturb" the set of all cubes to get a sum-free set. We remark that the fact that this approach can be used to build dense sum-free sets has been independently observed by Ruzsa (private communication).

Let α be an irrational number such that all terms of its continued fraction expansion are bounded, e.g. let

$$
\alpha=\frac{\sqrt{5}-1}{2}=[0 ; 1,1,1, \ldots],
$$

and let $\{\alpha n\}=\alpha n-\lfloor\alpha n\rfloor$. Then the set $\{\{\alpha n\}: 1 \leq n \leq M\}$ is uniformly distributed in the interval $(0,1)$, i.e. the following holds (see, for instance, [2], Corollary 1.65).

Theorem 8. For some absolute constant C and all M

$$
\sup _{0<x<y<1}| |\{\{\alpha n\}: 1 \leq n \leq M\} \cap(x, y)|-M(y-x)| \leq C \log M .
$$

Now let $\varepsilon>0$ and $n_{i}=i^{3}$ for $i \geq 1$. Furthermore, set

$$
A_{i}=\left\{n_{i} \leq n<n_{i+1}:\{\alpha n\} \in\left(\frac{1}{2 i^{3 / 2} \log ^{1 / 2+\varepsilon}} i, \frac{1}{i^{3 / 2} \log ^{1 / 2+\varepsilon} i}\right)\right\},
$$

and

$$
A=\bigcup_{i \geq i_{0}} A_{i},
$$

where i_{0} is a large natural number which will be chosen later. Using Theorem 8 we infer that for i large enough

$$
\left|A_{i}\right|=\frac{3 i^{1 / 2}}{2 \log ^{1 / 2+\varepsilon} i}+O(\log i)
$$

and thus, for large m,

$$
\sum_{i=i_{0}}^{m}\left|A_{i}\right|=\frac{3}{2} \sum_{i=i_{0}}^{m} \frac{i^{1 / 2}}{\log ^{1 / 2+\varepsilon} i}+O(m \log m)=\frac{m^{3 / 2}}{\log ^{1 / 2+\varepsilon} m}+O(m \log m)
$$

Let $n_{m} \leq n<n_{m+1}$. Then $n^{1 / 3}-1<m \leq n^{1 / 3}$ and

$$
\sum_{i=i_{0}}^{m-1}\left|A_{i}\right| \leq A(n) \leq \sum_{i=i_{0}}^{m}\left|A_{i}\right| .
$$

Hence,

$$
A(n)=\frac{n^{1 / 2}}{\log ^{1 / 2+\varepsilon} n^{1 / 3}}+O\left(n^{1 / 3} \log n\right)
$$

Now suppose that for some $a_{1}, \ldots, a_{l}, b \in A$ we have

$$
\begin{equation*}
b=a_{1}+\ldots+a_{l} . \tag{*}
\end{equation*}
$$

Then also

$$
\{\alpha b\} \equiv\left\{\alpha a_{1}\right\}+\ldots+\left\{\alpha a_{l}\right\}(\bmod 1)
$$

But for i_{0} large enough we have

$$
\begin{aligned}
\sum_{i=1}^{l}\left\{\alpha a_{i}\right\} & \leq \sum_{n \in A}\{\alpha n\} \leq \sum_{i=i_{0}}^{\infty}\left(\frac{3 i^{1 / 2}}{2 \log ^{1 / 2+\varepsilon} i}+O(\log i)\right) \frac{1}{i^{3 / 2} \log ^{1 / 2+\varepsilon} i} \\
& \leq \sum_{i=i_{0}}^{\infty} \frac{2}{i \log ^{1+2 \varepsilon} i}<1
\end{aligned}
$$

so that

$$
\{\alpha b\}=\left\{\alpha a_{1}\right\}+\ldots+\left\{\alpha a_{l}\right\}
$$

But this is impossible, since b is larger than any of a_{1}, \ldots, a_{l}, and, consequently, from the definition of A,

$$
\{\alpha b\}<\left\{\alpha a_{1}\right\}+\left\{\alpha a_{2}\right\}
$$

Hence the equation $(*)$ has no solutions in A, i.e. A is sum-free.

References

[1] J.-M. Deshoulliers, P. Erdős and G. Melfi, On a question about sum-free sequences, Discrete Math. 200 (1999), 49-54.
[2] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
[3] P. Erdős, Remarks on number theory, III, Math. Lapok 13 (1962), 28-38 (in Hungarian).
[4] J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math. 18 (1966), 643-655.
[5] N. Hegyvári, On the representation of integers as sums of distinct terms of a fixed set, Acta Arith. 92 (2000), 99-104.
[6] A. Sárközy, Finite addition theorems I, J. Number Theory 32 (1989), 114-130.
[7] -, Finite addition theorems II, ibid. 48 (1994), 197-218.

Department of Discrete Mathematics
Adam Mickiewicz University
Matejki 48/49
60-769 Poznań, Poland
E-mail: tomasz@amu.edu.pl

Mathematisches Seminar
Universität zu Kiel Ludewig-Meyn-Str. 4 24098 Kiel, Germany E-mail: tos@numerik.uni-kiel.de

[^0]: 2000 Mathematics Subject Classification: Primary 11B05.

