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1. Introduction. An Egyptian fraction is a sum of reciprocals of dis-
tinct positive integers, so called because the ancient Egyptians represented
rational numbers in that way. Among the many questions about Egyptian
fraction representations of rational numbers that have been posed by Erdős
and Graham (see [4] as well as [5, Section D11]) are some concerning repre-
sentations where the sizes of the denominators are bounded above relative
to the number of terms, and these questions have been the focus of several
papers in the last decade. For instance, the author showed in [8] that every
positive rational number r has Egyptian fraction representations where the
number of terms is of the same order of magnitude as the largest denomi-
nator, improving a result of Yokota [10]. More precisely, for each positive
integer t let us define

Ht(r) =
{

(x1, . . . , xt) ∈ Zt : x1 > . . . > xt ≥ 1,

t∑
i=1

1
xi

= r

}
,

the collection of all sets of denominators in t-term Egyptian fraction repre-
sentations of r, and

(1) Mt(r) = inf{x1 : (x1, . . . , xt) ∈ Ht(r)},

the smallest integer x that is the largest denominator in a t-term Egyptian
fraction representation of r (unless no such t-term representation exists in
which case Mt(r) equals infinity). In [8] it was established that for every
positive rational number r, there is an infinite sequence of integers t such
that Mt(r) ≤ C(r)t, where C(r) is a certain constant.

In this paper we improve this result, and indeed we completely determine
the asymptotic size of Mr(t) for all positive rational numbers r and integers
t. Because the set Ht(r) might well be empty for small values of t, we
introduce the notation t0(r) for the least number of terms in any Egyptian
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fraction representation of r. Note that Ht(r) is nonempty for every t ≥ t0(r),
since a representation with t terms can be converted into one with t+1 terms
by “splitting” the term with largest denominator, using the identity

(2)
1
n

=
1

n + 1
+

1
n(n + 1)

.

Therefore Mt(r) = ∞ for t < t0(r) and Mt(r) < ∞ for t ≥ t0(r). (The
only flaw in this argument arises when the largest denominator is n = 1,
in which case the splitting identity does not yield distinct terms; and in
fact, the rational number 1 has an Egyptian fraction representation with
one term but no representation with two terms. For this reason, we make
the convention that t0(1) = 3.) We can now state the following theo-
rem:

Theorem 1. For all positive rational numbers r and all integers t ≥
t0(r), we have

(3) Mt(r) =
t

1− e−r
+ Or

(
t log log 3t

log 3t

)
.

Furthermore, this is best possible, in that the order of magnitude of the error
term cannot be reduced.

The methods used to establish Theorem 1 allow us also to address an-
other problem posed in [4]. Erdős and Graham observe that a prime power
can never be the largest denominator in an Egyptian fraction representation
of 1, nor can a tiny multiple of a prime power; they ask whether the set of
integers with this property has positive density or even density 1. The anal-
ogous question can be asked about those integers that cannot be the largest
or second-largest denominator in an Egyptian fraction representation of 1,
and so on (as is mentioned in [5]).

We can generalize this problem to Egyptian fraction representations of
any positive rational number r. For a positive integer j, let us define

Lj(r) = {x ∈ Z, x > r−1 : there do not exist x1, . . . , xt ∈ Z,

x1 > . . . > xt ≥ 1 with
∑t

i=1 1/xi = r and xj = x},
the set of numbers that cannot be the jth-largest denominator in an Egyp-
tian fraction representation of r. We exclude the integers x ≤ r−1 from con-
sideration because they can never be a denominator in an Egyptian fraction
representation of r (except for the trivial representation when r is itself the
reciprocal of an integer). The questions of Erdős and Graham then become
whether L1(1) has positive density, what can be said about L1(1) ∩ L2(1),
and so on.

In our primary theorem concerning these questions, we discover some
information about the sets Lj(r) for j ≥ 2 that is perhaps quite surprising:
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Theorem 2. Let r be a positive rational number. The set Lj(r) is finite
for any integer j ≥ 2, and there exists an integer j0(r) such that Lj(r) is
empty for all j ≥ j0(r).

For example, a consequence of Theorem 2 is that only finitely many
numbers cannot be the second-largest denominator in an Egyptian fraction
representation of 1; possibly {2, 4} is a complete list of integers (greater than
1) with this property. Another consequence is that every integer greater than
1 can be the jth-largest denominator in an Egyptian fraction representation
of 1, when j is sufficiently large; possibly this holds for every j ≥ 3. It might
be interesting to modify the proof of Theorem 2 to include explicit constants
and subsequently determine the sets L2(1) and L3(1) precisely with the aid
of a computer; however, we do not undertake these tasks herein.

Because the prime factors of the denominator of r are the only primes
that can possibly be the largest denominator in an Egyptian fraction rep-
resentation of r, the set L1(r) is certainly infinite. However, we are able to
answer Erdős and Graham’s question of whether L1(r) has positive density
in the negative; in fact, we can even establish the order of growth of L1(r).
Let us define the counting function L1(r;x) of L1(r),

L1(r;x) = #{1 ≤ n ≤ x : n ∈ L1(r)}.
Then we have the following theorem:

Theorem 3. Let r be a positive rational number. The set L1(r) has zero
density , and in fact , if x ≥ 3 is a real number then

(4)
x log log x

log x
�r L1(r;x) �r

x log log x

log x
.

The lower bound in the inequality (4) is a simple quantitative conse-
quence of the observation that tiny multiples of prime powers are elements
of L1(r), as we shall show in the next section, while the upper bound reflects
the discovery that all elements of L1(r) are of this form (the only ambiguity
being the exact meaning of “tiny”). This discovery was probably known to
Croot (certainly in the case where r is an integer), since the methods we
shall use to establish the inequality (4) are to a large extent present in [3].

We mention that Theorem 1 has the following corollary:

Let r be a positive rational number. For every x that is sufficiently
large in terms of r, there is a set E of integers not exceeding x, such that∑

n∈E 1/n = r and

(5) |E| > (1− e−r)x−Or

(
x log log x

log x

)
.

This corollary can also be seen to be best possible. This corollary im-
proves the author’s theorem from [8] (which explains the title of the current
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paper), and in fact it was in the course of establishing this result that the
methods of proof of the above theorems were developed. Here it is appropri-
ate to note that recently, Croot [2] established a related theorem that any
positive rational r has an Egyptian fraction representation whose denomi-
nators all lie in the interval [y, (er + o(1))y], if y is large enough in terms of
r; his result also implies the corollary just stated.

The author would like to thank Ernest S. Croot III for enlightening con-
versations and for providing access to his manuscripts prior to publication,
as well as John Friedlander for suggestions that greatly improved the presen-
tation of this paper. The author also acknowledges the support of National
Science Foundation grant number DMS 9304580 and Natural Sciences and
Engineering Research Council grant number A5123.

2. Reduction of Theorem 1. We begin by defining some notation
that will be used throughout the paper. Hereafter p will always denote a
prime and q will always denote a (not necessarily proper) prime power. As
is standard, the function π(x) denotes the number of primes not exceeding
x, and P (n) denotes the largest prime divisor of n. It is more convenient
for our purposes, however, to regard the sequence of prime powers as more
fundamental than the sequence of primes. Therefore, we shall use π∗(x)
to denote the number of prime powers not exceeding x, so that π∗(x) =
π(x) + π(x1/2) + π(x1/3) + . . . We will also let P ∗(n) denote the largest
prime power that divides n; for example, P (12) = 3 but P ∗(12) = 4. (By
convention we set P ∗(1) = 1.) Notice that if n is the least common multiple
of l and m, then P ∗(n) = max{P ∗(l), P ∗(m)}; in particular, if a and b are
coprime and a/b = a1/b1 + a2/b2, then P ∗(b) ≤ max{P ∗(b1), P ∗(b2)}.

Theorem 1 can be reduced to the following two propositions:

Proposition 4. Let I be a closed subinterval of (0,∞). There exists
a positive real number T (I) such that , for all integers t > T (I) and all
rational numbers r = a/b ∈ I such that P ∗(b) < t log−22 t, there is a set E

of t distinct positive integers such that
∑

n∈E 1/n = r and

(6) max{n ∈ E} <
t

1− e−r
+ OI

(
t log log t

log t

)
.

Proposition 5. Let r be a positive rational number. There exists a
positive constant δ(r) such that , for every real number x that is sufficiently
large in terms of r, all sets E of positive integers not exceeding x for which∑

n∈E 1/n = r satisfy

|E| ≤ (1− e−r)x− δ(r)
x log log x

log x
.
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Let us verify that Theorem 1 follows from Propositions 4 and 5. Given
a positive rational number r = a/b, define I to be the length-zero interval
I = {r}, and choose an integer t > T (I) so large that t log−22 t > P ∗(b).
We can apply Proposition 4 to obtain a set E of t distinct positive integers
such that

∑
n∈E 1/n = r, whose largest term is at most t/(1 − e−r) +

Or(t log log t/log t). By the definition (1) of Mt(r), this establishes the upper
bound implicit in the asymptotic formula (3) when t is sufficiently large
in terms of r; but by adjusting the constant implicit in the O-notation if
necessary, we see that this upper bound is valid for all t ≥ t0(r).

On the other hand, if E is any set of t distinct positive integers satisfying∑
n∈E 1/n = r whose largest element is x1, then Proposition 5 shows that

t ≤ (1− e−r)x1 − δ(r)
x1 log log x1

log x1
,

which implies that

(7) x1 ≥
t

1− e−r
+ δ(r)

t log log t

log t

when t is large enough in terms of r. Since Mt(r) equals the smallest such
x1, we see that the right-hand side of the inequality (7) is also a lower bound
for Mt(r). This argument shows that Theorem 1 follows in its entirety from
the two propositions.

The reader will have noticed that although Proposition 4 is stated uni-
formly for certain rational numbers in the interval I, no use was made of
this in deducing Theorem 1. However, we shall need the uniformity present
in Proposition 4 in the proofs of Theorems 2 and 3; it is for this reason that
we take the time to establish the proposition in its current form.

It turns out that the construction used to establish Proposition 4 pro-
ceeds in two stages which, although similar in spirit, require quite different
subsidiary lemmas to complete. For this reason, we reduce Proposition 4 to
the following two propositions:

Proposition 6. Let I be a closed subinterval of (0,∞). For any real
number x that is sufficiently large in terms of I, any rational number r ∈ I
whose denominator is not divisible by any prime power exceeding x log−22 x,
and any integer R satisfying

(8)
∣∣∣∣(1− e−r)x−

(
22(1− e−r)− 3r

er

)
x log log x

log x
−R

∣∣∣∣ <
r

er
· x log log x

log x
,

there exists a set R of integers satisfying :

(i) R is contained in [x/(2er), x];
(ii) |R| = R;
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(iii) if a/b = r−
∑

n∈R 1/n in lowest terms, then 1/log x < a/b < 1 and
P ∗(b) ≤ x1/5.

(As one might think, the constants in the inequality (8), other than the
initial (1− e−r), are somewhat arbitrary and chosen simply for convenience
during the proof.)

Proposition 7. Let y be a sufficiently large real number , and let a/b be
a rational number satisfying 1/log y < a/b < 1 and P ∗(b) ≤ y. Then there
is a set S of integers satisfying :

(i) S is contained in [1, 2y4];
(ii) |S| = 2π∗(y);
(iii) a/b =

∑
n∈S 1/n.

To see how Propositions 6 and 7 together imply Proposition 4, we fix
a closed interval I ⊂ (0,∞), an integer t > T (I) where T (I) is a positive
constant that is sufficiently large in terms of I, and a rational number r ∈ I
whose denominator is not divisible by any prime power exceeding t log−22 t.
We define

(9) x =
t

1− e−r
+

(
22− (22 + 3r)e−r

(1− e−r)2

)
t log log t

log t

and R = t− 2π∗(x1/5). When these values of x and R are substituted into
(8), the left-hand side has order of magnitude t(log log t)2/log2 t after sim-
plification, while the right-hand side has order of magnitude t log log t/log t;
therefore the inequality (8) holds as long as T (I) is large enough. Certainly
x log−22 x ≥ t log−22 t as well if T (I) is large enough. We may therefore
apply Proposition 6 to obtain a set R of integers and a rational number a/b
satisfying properties (i)–(iii) of Proposition 6. With this rational a/b, we
may then apply Proposition 7 with y = x1/5 as long as T (I) is large enough
(since x and y are functions of t), obtaining a set S satisfying properties
(i)–(iii) of that proposition.

We now set E = R ∪ S. Because 2y4 = 2x4/5 < x/(2er) if T (I) is large
enough, it follows from the two properties (i) that R and S are disjoint and
that the integers in E do not exceed x. Moreover, the two properties (ii)
imply that |E| = t, while the two properties (iii) imply that r =

∑
n∈E 1/n.

By the definition (9) of x, we see that this set E satisfies all the properties
required for the conclusion of Proposition 4, and so that proposition does
indeed follow from Propositions 6 and 7.

In a sense, we have separated the desire to have an Egyptian fraction
with many terms from the desire to have a specific number of unit fractions
that add to r. Proposition 6 yields an Egyptian fraction with many terms,
but one whose sum is only an approximation to r; while Proposition 7 yields
an exact Egyptian fraction representation of a/b with a specified number of
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terms, but with that number of terms rather small compared to the size of
the largest denominator.

The broad idea of the proofs of these two propositions uses the general
strategy employed by the author in [8] and by Croot in [3]: a collection of
unit fractions whose sum is relatively close to the target rational number is
constructed, and then for each prime power that appears in the denominator
of this sum but not in the denominator of the target rational, a few terms
are omitted or added so that the modified sum is no longer divisible by that
prime power. When all of the unwanted prime powers have been eradicated
in this way, estimates on the number and sizes of the omitted or added
terms are used to show that the resulting sum must exactly equal the target
rational. Proposition 6 is used to evict the larger unwanted prime powers,
while Proposition 7 is used to evict the smaller prime powers.

To summarize the achievements of this section, we have reduced Theo-
rem 1 to establishing Propositions 5, 6, and 7. These three propositions will
be the subjects of Sections 3, 4, and 5, respectively. To complete the outline
of the rest of this paper, we mention that Theorem 2 will be established in
Section 6 and Theorem 3 will be established in Section 7.

3. The very large prime powers. In this section we establish Propo-
sition 5, which was used to show that Theorem 1 is best possible. The
strategy is to quantify the observation that a tiny multiple of a very large
prime (or prime power) cannot appear in an Egyptian fraction representa-
tion of a given rational number, and then to calculate the effect that this
restriction has on the possible number of terms in such a representation.

Lemma 8. Let x be a positive real number. Suppose that x1, . . . , xt are
distinct positive integers not exceeding x and that p is a prime dividing at
least one of the xi. If p does not divide the denominator of

∑t
i=1 1/xi

expressed in lowest terms, then p � x/log x.

We remark that a slightly modified version of this lemma could be es-
tablished for prime powers q rather than merely for primes p, but this for-
mulation suffices for our purposes.

P r o o f. Because the integers xi that are not divisible by p do not affect
whether the denominator of

∑t
i=1 1/xi is divisible by p, we may assume

that p divides all of the xi. Set wi = xi/p for each 1 ≤ i ≤ t, and set
λ = lcm{w1, . . . , wt}. Then

(10)
t∑

i=1

1
xi

=
( t∑

i=1

λp

xi

)/
(λp),

where each summand is an integer by the definition of λ. We are assuming
that the denominator of

∑t
i=1 1/xi is not divisible by p when reduced to
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lowest terms. Consequently, if

(11) N =
t∑

i=1

λp

xi
= λ

t∑
i=1

1
wi

is the numerator of the fraction on the right-hand side of equation (10),
then N must be a positive multiple of p; in particular, N ≥ p and thus
log N ≥ log p.

On the other hand, the collection {wi} is a subset of the integers not
exceeding x/p. If we define L(x) = lcm{1, 2, . . . , bxc}, so that

(12) L(x) =
∏

pν≤x

p = exp
( ∑

pν≤x

log p
)
≤ e2x

by the prime number estimate of Chebyshev, then λ ≤ L(x/p) and so equa-
tion (11) implies

N ≤ L

(
x

p

) ∑
w≤x/p

1
w
≤ L

(
x

p

)(
log

x

p
+ 1

)
.

But then

log p ≤ log N ≤ log L

(
x

p

)
+ O

(
log log

x

p

)
� x

p

by the estimate (12), and so p � x/log x as claimed.

Next we establish an elementary lemma that provides asymptotic for-
mulae for the number of integers free of very large prime (or prime power)
factors and for the sum of the reciprocals of such integers.

Lemma 9. Uniformly for
√

x ≤ y ≤ x and 0 < α < 1, we have∑
αx≤n≤x
P (n)>y

1 = (1− α)x log
log x

log y
+ O

(
x

log x

)

and ∑
αx≤n≤x
P (n)>y

1
n

= log α−1 log
log x

log y
+ O

(
1

α log x

)
.

Both formulas remain valid if P (n) is replaced by P ∗(n) in the conditions
of summation.

P r o o f. It is a direct consequence of Mertens’ formula for
∑

p≤x 1/p that

(13)
∑

y<p≤x

1
p

= log
log x

log y
+ O

(
1

log y

)
,
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and the same asymptotic formula is true if the summation is taken over
prime powers q rather than merely primes p. We note that any integer
n ≤ x such that P (n) > y can be written as n = mp where y < p ≤ x, and
this representation is unique since y ≥

√
x. The first assertion of the lemma

then follows from equation (13) by writing∑
αx≤n≤x
P (n)>y

1 =
∑

y<p≤x

∑
αx/p≤m≤x/p

1 =
∑

y<p≤x

(
(1− α)x

p
+ O(1)

)

and invoking Chebyshev’s estimate π(x) � x/log x to bound the error term.
The second assertion follows in a similar manner from writing∑

αx≤n≤x
P (n)>y

1
n

=
∑

y<p≤x

1
p

∑
αx/p≤m≤x/p

1
m

=
∑

y<p≤x

1
p

(
log α−1 + O

(
p

αx

))
.

Because the asymptotic formula (13) is insensitive to the inclusion of the
proper prime powers, these arguments are equally valid when P (n) is re-
placed by P ∗(n) in the conditions of summation.

Proof of Proposition 5. Suppose that r is a positive rational number, x
is a real number that is sufficiently large in terms of r, and E is a set of
positive integers not exceeding x such that

∑
n∈E 1/n = r. Let C > 1 be a

large constant and define

A = {n ≤ x : P (n) ≤ Cx/log x}.

We can assume that x is so large that all of the prime divisors of the de-
nominator of r are less than Cx/log x. Then if C is chosen large enough,
the set E must be contained in A by Lemma 8.

Choose 0 < α < 1 such that, if we set E′ = [αx, x] ∩ A, then |E′| = |E|;
in other words, E′ is the subset of A with cardinality |E| whose elements are
as large as possible. Then

|E| = |E′| =
∑

αx≤n≤x

1−
∑

αx≤n≤x
P (n)>Cx/log x

1

= (1− α)x + O(1)− (1− α)x log
(

log x

log(Cx/log x)

)
+ O

(
x

log x

)
by Lemma 9 with y = Cx/log x. Since

log
(

log x

log(Cx/log x)

)
= log

(
1− log log x

log x
+

log C

log x

)−1

(14)

=
log log x

log x
+ O

(
1

log x

)
,
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we see that

(15) |E| = (1− α)x
(

1− log log x

log x

)
+ O

(
x

log x

)
.

On the other hand, the elements of E′ are by definition at least as big as the
elements of E, and so

r =
∑
n∈E

1
n
≥

∑
n∈E′

1
n

=
∑

αx≤n≤x

1
n
−

∑
αx≤n≤x

P (n)>Cx/log x

1
n

= log α−1 + O

(
1

αx

)
− log α−1 log

log x

log(Cx/log x)
+ O

(
1

α log x

)
,

again by Lemma 9 with y = Cx/log x. Using equation (14) again, we see
that

r ≥ log α−1

(
1− log log x

log x

)
+ O

(
1

α log x

)
,

which implies that

α ≥ e−r

(
1− r log log x

log x
+ Or

(
1

log x

))
.

With this lower bound, equation (15) becomes

|E| ≤
(

1− e−r

(
1− r log log x

log x
+ Or

(
1

log x

)))
x

(
1− log log x

log x

)
+ O

(
x

log x

)
= (1− e−r)x− (1− e−r(1 + r))

x log log x

log x
+ Or

(
x

log x

)
.

Since er > 1 + r for r > 0, we may choose δ(r) satisfying 0 < δ(r) <
1− e−r(1 + r), whence

(16) |E| ≤ (1− e−r)x− δ(r)
x log log x

log x

when x is large enough in terms of r.
4. The large prime powers. In this section we establish Proposi-

tion 6. The methods in this section are in large part derived from those
in Croot [3], albeit with some modifications necessary for the problem at
hand; in particular, our Lemma 11 below is a direct generalization of [3,
Proposition 2].

Let ‖x‖ denote the distance from x to the nearest integer. If a and
n are coprime, then let a (mod n) denote the integer b with 0 < b < n
and ab ≡ 1 (mod n). (Often we write simply a when the modulus is clear
from the context, e.g., when the term a appears in the numerator of a
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fraction whose denominator is the modulus.) The following lemma demon-
strates that under suitable conditions on a set M of integers, the elements
of M cannot all be small compared to a modulus n and yet predominantly
have inverses (mod n) that are close to 0 (mod n), even when scaled by a
nonzero residue h.

Lemma 10. Let n be a sufficiently large integer , let k be a positive integer ,
and let B and C be positive numbers with C satisfying 200(log n/log log n)k

< C < n. Suppose that M is a set of positive integers with cardinality greater
than C, such that each element m of M is less than B and is the product
of k distinct primes not dividing n. Then for any 0 < h < n, at least C/2
elements m of M satisfy ∥∥∥∥hm

n

∥∥∥∥ >
C(log log n)k

200B logk n
,

where m denotes the inverse of m (mod n).

P r o o f. For m ∈ M, define rm to be the integer satisfying −n/2 < rm ≤
n/2 and rm ≡ hm (mod n); since n does not divide h and (m,n) = 1, we
see that rm is nonzero. Also define

sm =
mrm − h

n
,

so that sm is an integer satisfying |sm| < m/2 + 1. Suppose that at least
C/2 of the sm satisfied |sm| < C(log log n)k/(100 logk n). Then, by the pi-
geonhole principle, there would be an s with |s| < C(log log n)k/(100 logk n)
such that sm = s for at least

C/2
2C(log log n)k/(100 logk n) + 1

> 20
(

log n

log log n

)k

of the elements m of M, by the lower bound on C. For each such m, we see
that

rm =
nsm + h

m
=

ns + h

m
;

and since the rm are nonzero integers, we see that the nonzero integer ns+h
is divisible by at least 20(log n/log log n)k elements of M.

On the other hand, it is well known that the maximal order of the number
of distinct prime divisors of an integer m is asymptotic to log m/log log m,
as achieved by those m that are the product of all the primes up to about
log m; thus when m is sufficiently large, every integer up to m has less than
2 log m/log log m distinct prime divisors. Since

|ns + h| < n(C(log log n)k/(100 logk n) + 1) < n2

by the upper bound on C, we see that ns+h has at most 2 log n2/log log n2 <
4 log n/log log n distinct prime factors when n is sufficiently large, and so the
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number of divisors of ns + h that are the product of k distinct primes does
not exceed

1
k!

(
4 log n

log log n

)k

< 20
(

log n

log log n

)k

,

contradicting the lower bound for the number of elements of M that divide
ns + h.

This contradiction shows that at most C/2 of the sm satisfy |sm| <
C(log log n)k/(100 logk n), and so at least C/2 of the sm satisfy the reverse
inequality. For these elements m, we see that

|rm| =
|nsm + h|

m
>

n

m

(
C(log log n)k

100 logk n
− 1

)
>

Cn(log log n)k

200B logk n

by the upper bounds for h and m and the lower bound for C. But then by
the definition of rm, ∥∥∥∥hm

n

∥∥∥∥ =
∥∥∥∥rm

n

∥∥∥∥ >
C(log log n)k

200B logk n
,

which establishes the lemma.

The next lemma translates the statement of Lemma 10 to an assertion
that under suitable conditions on a set M, the inverses (mod n) of the ele-
ments of M must have a subset whose sum is congruent to any predetermined
residue class (mod n).

Lemma 11. Let n be a sufficiently large integer , let k be a positive integer ,
and let B be a real number satisfying

(17) B >
(log n)(k−1)/2

(log log n)k/2
.

Suppose that M is a set of integers whose cardinality C satisfies

(18) C >
200B2/3(log n)(2k+1)/3

(log log n)2k/3
,

such that each element m of M is less than B and is the product of k
distinct primes not dividing n. Then for any residue class a (mod n), there
is a subset K of M such that

(19)
∑

m∈K

m ≡ a (mod n).

P r o o f. We begin by remarking, in preparation for applying Lemma 10,
that the hypotheses on B and C ensure that C > 200(log n/log log n)k. Also,
if C ≥ n, then the conclusion of the lemma holds under the weaker assump-
tion that each element of M is coprime to n, by the Cauchy–Davenport–
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Chowla Theorem (see for instance Vaughan [9, Lemma 2.14], and also [8,
Lemma 2]). Therefore we can assume that C < n.

Let en(x) denote the complex exponential e2πix/n of period n. If we let
N be the number of subsets of M satisfying the condition (19), then by the
finite Fourier transform

N =
∑

K⊂M

1
n

n−1∑
h=0

en

(
h
( ∑

m∈K

m− a
))

(20)

=
1
n

n−1∑
h=0

en(−ha)
∏

m∈M

(1 + en(hm))

=
2C

n
+

1
n

n−1∑
h=1

en(−ha)Ph,

where Ph =
∏

m∈M(1 + en(hm)). Using the identity |1 + eit|2 = 2 + 2 cos t
and the inequality 1 + cos 2πt ≤ 2− 8‖t‖2, we see that

(21) |Ph|2 =
∏

m∈M

(
2 + 2 cos

2πhm

n

)
≤ 4C

∏
m∈M

(
1− 4

∥∥∥∥hm

n

∥∥∥∥2)
.

All of the terms in this product are nonnegative and bounded above by
1; and when n is sufficiently large, by Lemma 10 at least C/2 of them are
bounded above by

1− 4
(

C(log log n)k

200B logk n

)2

when 1 ≤ h ≤ n − 1. Using this fact in the inequality (21) along with the
bound 1− t ≤ e−t, we obtain

|Ph|2 ≤ 4C

(
1− C2(log log n)2k

10000B2 log2k n

)C/2

≤ 4C exp
(
−C3(log log n)2k

20000B2 log2k n

)
< 4C exp(−2 log n)

by the lower bound (18) on C, and thus |Ph| < 2C/n when 1 ≤ h ≤ n− 1.
From this upper bound, we deduce from equation (20) that∣∣∣∣N − 2C

n

∣∣∣∣ ≤ 1
n

n−1∑
h=1

|Ph| <
(n− 1)2C

n2
,

which implies that N > 2C/n2. In particular, there do exist subsets K of
M of the desired type.

We remark that a stronger inequality for B than (17) might be needed
to ensure the existence of a set M with the properties described in the
statement of Lemma 11 (for instance, in the case k = 1).
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The following lemma is the main tool that will be used in our recursive
construction in the proof of Proposition 6.

Lemma 12. Let 0 < ξ < 1 be a real number , and let x be a real number
that is sufficiently large in terms of ξ. Let c/d be a rational number and
define q = P ∗(d), and suppose that x1/5 ≤ q ≤ x log−22 x. Then there exists
a set U of integers satisfying :

(i) U is contained in [ξx, x];
(ii) |U| ≤ 200(x/q)2/3 log3 x;
(iii) for each element n of U, P ∗(n) = q;
(iv) if c′/d′ = c/d−

∑
n∈U 1/n in lowest terms, then P ∗(d′) < q.

P r o o f. We apply Lemma 11 with n = q, k = 4, B = x/q, and a
the residue class of c(d/q) (mod q). Let P be the set of all primes in the
interval ((ξx/q)1/4, (x/q)1/4) that do not divide q, and let M0 be the set of
all integers of the form p1p2p3p4, where the pi are distinct elements of P.
Certainly each element of M0 is between ξB and B. Since the cardinality of
P is � (1−ξ)(x/q)1/4 log−1 x by the prime number theorem, the cardinality
of M0 is �ξ x/(q log4 x), and so we can choose a subset M of cardinality

C = b200(x/q)2/3 log3 xc

when x is sufficiently large in terms of ξ, by the upper bound on q.
Since these values of B and C do satisfy the hypotheses (17) and (18) of

Lemma 11, we can find a subset K of M such that
∑

m∈K m ≡ a (mod q).
Now define

U = {qm : m ∈ K}.

We see immediately that properties (i) and (ii) hold for U. Since q ≥ x1/5,
all the elements of P (hence all prime-power divisors of elements of K) are
less than q, and so property (iii) holds for U as well. As for property (iv), it
is clear that P ∗(d′) ≤ q, since all of the prime powers dividing d or any of
the elements of U are at most q. On the other hand, q does not divide d′,
since if q = pν then

c′q

d′
=

cq

d
−

∑
n∈U

q

n
=

c

d/q
−

∑
n∈M

1
m
≡ c(d/q)−

∑
n∈M

m ≡ 0 (mod p),

and so d′ is divisible by at most pν−1 after reducing to lowest terms. Thus
P ∗(d′) < q, which establishes the lemma.

As a last step in the construction used to establish Proposition 6, we
shall be appending a collection of unit fractions none of whose denominators
contain large prime-power divisors. The following lemma ensures that there
are enough such integers in a suitable range to accommodate this.



Denser Egyptian fractions 245

Lemma 13. Let 0 < η < 1 be a real number. There exists a constant
δ = δ(η) such that , for all real numbers x that are sufficiently large in terms
of η and for all pairs of real numbers η ≤ α, ε < 1, there are at least δx
integers n in the interval [αx/2, αx] satisfying P ∗(n) ≤ xε.

P r o o f. We recall that a y-smooth integer is one all of whose prime fac-
tors are at most y, so that in particular, an integer n is xε-smooth precisely
when it satisfies P (n) ≤ xε. It is well-known (see for instance Hildebrand
and Tenenbaum [6]) that the number of y-smooth integers n ≤ x is

(22) x%

(
log x

log y

)
+ Oη

(
x

log x

)
uniformly for xη ≤ y ≤ x; here %(u) is the Dickman function, which is
positive, continuously differentiable on [1,∞), and satisfies |%′(u)| ≤ 1 on
that interval. In particular,

(23) %

(
log αx

log xε

)
= %

(
ε−1 +

log α

ε log x

)
= %(ε−1) + Oη

(
1

log x

)
uniformly for η ≤ α, ε < 1. However, n being xε-smooth is a slightly weaker
condition than P ∗(n) ≤ xε. The asymptotics for the counting function of
xε-smooth integers could be shown to hold for the number of integers n ≤ x
satisfying P ∗(n) ≤ xε as well, but since we only need a weak lower bound
for the number of such integers we argue as follows.

By (22), using equation (23) and the analogous statement with α re-
placed by α/2, we see that the number of xε-smooth integers between αx/2
and αx is α%(ε−1)x/2 + Oη(x/log x). On the other hand, the integers n
that are xε-smooth but for which P ∗(n) > xε are all divisible by at least
one prime power pν > xε with p ≤ xε. Given an integer k ≥ 3, any integer
n that is xε-smooth but for which P ∗(n) > xε must either be divisible by
the kth power of some prime, or else by the square of some prime exceeding
xε/k. The number of integers αx/2 ≤ n ≤ αx that are divisible by the kth
power of a prime is α(1−ζ(k)−1)x/2+O(x1/k), while the number of integers
n ≤ x that are divisible by the square of a prime exceeding xε/k is at most∑

xε/k<p≤x1/2

x

p2
+ 1 � x1−ε/k.

Therefore, if we choose k so large that ζ(k)−1 > 1−%(η−1), then the number
of integers αx/2 ≤ n ≤ αx such that P ∗(n) ≤ xε is at least(

α%(ε−1)x
2

+Oη

(
x

log x

))
−

(
α(1− ζ(k)−1)x

2
+O(x1/k)

)
−O(x1−ε/k) > δx

for some constant δ = δ(η), as long as x is sufficiently large in terms of η.
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Proof of Proposition 6. Let I = [m,M ] be a closed subinterval of (0,∞),
and let x be a real number that is sufficiently large in terms of I. Let r ∈ I
be a rational number whose denominator is not divisible by any prime power
exceeding x log−22 x. Let

α = e−r, η = min{e−M , 1/5}, ξ = e−m,

so that 0 < η ≤ α ≤ ξ < 1. Since we are assuming that x is sufficiently
large in terms of I, we can assume in particular that x is sufficiently large
in terms of ξ and η when appealing to Lemmas 12 and 13. Define A to be
the set of all integers n in [αx, x] such that P ∗(n) ≤ x log−22 x, and set

z = π∗(x log−22 x) and z′ = π∗(x1/5).

Let {q1, q2, . . .} denote the sequence of prime powers in increasing order,
and let pi denote the prime of which qi is a power. (By convention we set
p0 = q0 = 1.)

Our strategy is to recursively define a sequence {ai/bi} (z+1 ≥ i ≥ z′) of
rationals that increase in size as the index i decreases, such that the largest
prime-power divisor of each bi is less than qi. The first member az+1/bz+1

will be the difference between our original r and the sum of the reciprocals
of the elements of A, and each ai/bi will be obtained from the previous
ai+1/bi+1 by adding several unit fractions whose denominators belong to
A. The collection of all elements of A not involved in this construction
will almost be the set R described in Proposition 6. This collection will
have slightly fewer than the desired R elements, but we shall rectify the
error simply by appending the appropriate number of integers without large
prime-power factors from the interval [αx/2, αx], and the resulting collection
will be our set R.

Define
az+1

bz+1
= r −

∑
n∈A

1
n

.

We recursively define rationals {az/bz, az−1/bz−1, . . . , az′/bz′} and sets
{Rz, . . . ,Rz′} of integers as follows. Suppose first that qi divides bi; then we
apply Lemma 12 with c/d = ai+1/bi+1 and q = qi. The lemma requires that
qi = P ∗(bi+1), and since we are supposing that qi divides bi we need only
ensure that P ∗(bi+1) ≤ qi. In the case i = z, the inequality P ∗(bi+1) ≤ qi

is equivalent to P ∗(bz+1) ≤ x log−22 x, which is satisfied by the definitions
of az+1/bz+1 and A and the hypothesis that the denominator of r is not
divisible by any prime power exceeding x log−22 x. On the other hand, the
inequality P ∗(bi+1) ≤ qi will be satisfied for smaller values of i by the re-
cursive construction (as we shall see in a moment). Let Ri be the set U
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obtained from applying Lemma 12, and let
ai

bi
=

ai+1

bi+1
+

∑
n∈Ri

1
n

in lowest terms, so that by the lemma, P ∗(bi) < qi and thus P ∗(bi) ≤ qi−1

(justifying the claim of the previous sentence).
On the other hand, if qi does not divide bi, then we simply set Ri = ∅

and ai/bi = ai+1/bi+1; since P ∗(bi+1) ≤ qi by the recursive construction
and qi does not divide bi+1, we see that P ∗(bi) ≤ qi−1.

Notice that each Ri is a subset of A, since Ri is either empty or else
(by Lemma 12) is contained in [ξx, x] ⊂ [αx, x], and each element n of
Ri satisfies P ∗(n) = qi ≤ x log−22 x. Notice also that the various Ri are
pairwise disjoint, again since P ∗(n) = qi for n ∈ Ri.

Now set R′ = A \
⋃z

i=z′ Ri, so that

r =
az′

bz′
+

∑
n∈R′

1
n

(here we have used the disjointness of the Ri). We note that the cardinality
of A is

|A| =
∑

αx≤n≤x
P∗(n)≤x log−22 x

1 = (1− α)x + O(1)−
∑

αx≤n≤x
P∗(n)>x log−22 x

1
n

(24)

= (1− α)x− 22(1− α)x log log x

log x
+ O

(
x

log x

)
by applying Lemma 9 with y = x log−22 x. On the other hand, R′ is a subset
of A, while the set A \ R′ is simply the union of all the Ri and thus has
cardinality∣∣∣ ⋃

z′≤i≤z

Ri

∣∣∣ =
∑

z′≤i≤z

|Ri| ≤
∑

x1/5≤q≤x log−22 x

200
(

x

q

)2/3

log3 x � x log−4 x

by Mertens’ formula (13) and partial summation. Therefore the last expres-
sion in equation (24) represents the cardinality of R′ as well.

By the hypothesis (8) on R, we see that R exceeds the cardinality of
R′, but by no more than (4α log α−1)x log log x/log x. Let R′′ be any set of
R−|R′| integers n from the interval [αx/2, αx], each satisfying P ∗(n) ≤ x1/5;
we can find such a set by Lemma 13 with ε = 1/5, since

(4α log α−1)
x log log x

log x
≤ 4x log log x

e log x
< δx

when x is sufficiently large in terms of δ = δ(η) = δ(I).
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Now set R = R′ ∪ R′′, so that R is contained in the interval [αx/2, x] =
[x/(2er), x] and the cardinality of R is precisely R, and set

a

b
= r −

∑
n∈R

1
n

=
az′

bz′
−

∑
n∈R′′

1
n

.

Since P ∗(bz′) < q′z ≤ x1/5 by the definition of z′, and P ∗(n) ≤ x1/5 for all
n ∈ R′′ by the definition of R′′, we see that P ∗(b) ≤ x1/5. It only remains
to show that 1/log x < a/b < 1 to establish the proposition.

We have

(25)
a

b
= r −

∑
n∈R

1
n

= log α−1 −
∑
n∈A

1
n

+
∑

z′≤i≤z

∑
n∈Ri

1
n
−

∑
n∈R′′

1
n

.

From the definition of A, and by Lemma 9 with y = x log−22 x, the first
sum in the last expression of equation (25) is∑

αx≤n≤x

1
n
−

∑
αx≤n≤x

P∗(n)>x log−22 x

1
n

= log α−1 + O

(
1

αx

)
− 22 log α−1 log log x

log x
+ O

(
1

α log x

)
.

The double sum in equation (25) is at most∑
x1/5≤q≤x log−22 x

(
200

(
x

q

)2/3

log3 x

)
1

αx
� 1

α log4 x
,

and the last sum in equation (25) is nonnegative and at most

(R− |R′|) 2
αx

≤ (4α log α−1)x log log x

log x
· 2
αx

=
8 log α−1 log log x

log x
.

Consequently, equation (25) implies the inequalities

14 log α−1 log log x

log x
+ O

(
1

η log x

)
≤ a

b
≤ 22 log α−1 log log x

log x
+ O

(
1

η log x

)
(since α ≥ η), which certainly implies that 1/log x < a/b < 1 when x is
sufficiently large in terms of η. This establishes Proposition 6.

5. The small prime powers. In this section we establish Proposi-
tion 7. We are now concerned more with having precise control over the
number of terms in our Egyptian fractions than with sharply bounding the
sizes of their denominators, as opposed to the case when we considered
Proposition 6 in the previous section. The lemmas in this section appear in
Croot [3], but we provide proofs for the sake of completeness and because
we state the lemmas in somewhat different forms.
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Lemma 14. Let pν ≥ 5 be a power of an odd prime p, and let a be any
integer. There exist integers m1 and m2, satisfying (pν−3)/2 ≤ m1 < m2 <
pν and p - m1m2, such that m1 + m2 ≡ a (mod p).

P r o o f. Assume first that p ≥ 5. Consider the set M = {pν−(p+3)/2 ≤
m < pν} of (p + 3)/2 integers, none of which is a multiple of p. Define two
sets of residues (mod p):

M1 = {m : m ∈ M} and M2 = {a−m : m ∈ M},
where m denotes the multiplicative inverse of m (mod p). Both M1 and
M2 have (p+3)/2 distinct elements (mod p), and each Mi is a subset of the
p residue classes (mod p), so by the pigeonhole principle there must be at
least three residue classes m common to M1 and M2.

For any such m, if we let m1 = m and m2 = a−m, then each mi is in M

by the definitions of the Mi, and m1 +m2 ≡ a (mod p). Furthermore, there
is precisely one m (mod p), namely m ≡ 2a (mod p), such that m1 ≡ m2

(mod p) when defined this way. Therefore there is at least one pair (m1,m2)
of distinct integers in M such that m1 + m2 ≡ a (mod pν), and we can
assume that m1 < m2 by relabeling if necessary. Since pν − (p + 3)/2 ≥
(pν − 3)/2, this establishes the lemma when p ≥ 5.

On the other hand, if p = 3 then we must have ν ≥ 2, and the lemma can
be shown to hold by letting (m1,m2) equal (3ν−2, 3ν−1), (3ν−4, 3ν−1), or
(3ν− 5, 3ν− 2), according to whether a is congruent to 0, 1, or 2 (mod 3).

The following lemma is one of the two main tools used in our recursive
construction in the proof of Proposition 7. This lemma allows us to control
all but the smallest prime powers that can appear in the denominators of
the rational numbers to be constructed.

Lemma 15. Let q ≥ 4 be a prime power and let c/d be a rational number
with P ∗(d) ≤ q. There exists a set U of integers satisfying :

(i) U is contained in [q2/5, q2];
(ii) |U| = 2 if q is odd , while |U| = 0 or 1 if q is even;
(iii) for each element n of U, P ∗(n) = q;
(iv) if c′/d′ = c/d−

∑
n∈U 1/n in lowest terms, then P ∗(d′) < q.

P r o o f. First assume that q is odd. We apply Lemma 14 with pν = q
and

a =
{

c(d/q) (mod p) if q divides d,
0 (mod p) if q does not divide d,

finding two distinct integers m1 and m2 in the range [(q−3)/2, q) such that
m1 + m2 ≡ a (mod p). Let U = {qm1, qm2}. Then properties (i)–(iii) are
easily seen to hold (the first because (q−3)/2 ≥ q/5 for q ≥ 5), and property
(iv) holds because of the congruence (mod p) satisfied by m1 and m2.
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On the other hand, if q is even then q = 2ν for some ν ≥ 2. If 2ν does not
divide d then P ∗(d) < q already, and we simply put U = ∅. If 2ν does divide
d, then we easily check that the set U = {2ν(2ν − 1)} satisfies properties
(i)–(iv).

The following lemma is the second of the two main tools used in our
recursive construction in the proof of Proposition 7. This lemma allows us to
control the smallest prime powers that can appear in the denominators of the
rational numbers to be constructed. Recall that L(x) = lcm{1, 2, . . . , bxc},
as was defined during the proof of Lemma 8.

Lemma 16. Let c/d be a rational number and define q = P ∗(d), where q
is a power of the prime p. There exists an integer n satisfying :

(i) L(q)/(p− 1) ≤ n ≤ e2q;
(ii) P ∗(n) = q;
(iii) if c′/d′ = c/d− 1/n in lowest terms, then P ∗(d′) < q.

P r o o f. Define a to be the residue class of (L(q)/q)c(d/q) (mod p),
where 1 ≤ a ≤ p − 1, and let n = L(q)/a. Then it can be checked that
properties (i) and (ii) hold by the definition of L(x) and the subsequent
estimate (12), while property (iii) holds by the choice of a.

Proof of Proposition 7. Define z = π∗(y). Our strategy is very similar to
the strategy of the proof of Proposition 6. We recursively define a sequence
{ai/bi} (z + 1 ≥ i ≥ 1) of rationals that decrease in size as the index i
decreases, such that the largest prime-power divisor of each bi is less than
qi. The last member of this sequence, a0/b0, will be an integer, and we
shall show that it must be zero by bounding its absolute value. The first
member az+1/bz+1 will be our original a/b, and each ai/bi will be obtained
from the previous ai+1/bi+1 by subtracting two unit fractions (except in a
few cases where we subtract only one or none at all), and the collection of
the denominators of all these unit fractions will almost be the desired set
S. This collection will have slightly fewer than the desired 2z elements, but
we shall rectify the error with a simple modification of the splitting identity
(2), and the resulting collection will be our set S.

Define az+1/bz+1 = a/b and let y′ = log y and z′ = π∗(y′). We recur-
sively define rationals {az/bz, . . . , a1/b1} and sets {Sz, . . . , S1} of integers
as follows. If z′ < i ≤ z, then we apply Lemma 15 with q = qi and
c/d = ai+1/bi+1. The requirement of the lemma that P ∗(bi+1) ≤ qi is sat-
isfied for i = z by the hypothesis of the proposition and the definition of z,
and it will be satisfied for smaller values of i by the recursive construction
(as we shall see in a moment). Let Si be the set U obtained from applying
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Lemma 15, and let
ai

bi
=

ai+1

bi+1
−

∑
n∈Si

1
n

in lowest terms, so that by the lemma, P ∗(bi) < qi and thus P ∗(bi) ≤ qi−1

(justifying the claim of the previous sentence).
If instead 1 ≤ i ≤ z′, then we check whether qi divides bi+1. If not,

then we simply set Si = ∅ and ai/bi = ai+1/bi+1; since P ∗(bi+1) ≤ qi by
the recursive construction as before and since qi does not divide bi+1, we
see that P ∗(bi) ≤ qi−1. On the other hand, if qi does divide bi+1, then we
apply Lemma 16 with c/d = ai+1/bi+1 and q = qi. Let Si be the set {n}
where n is the integer obtained from applying Lemma 16, and let

ai

bi
=

ai+1

bi+1
− 1

n

in lowest terms, so that by the lemma, P ∗(bi) < qi and thus P ∗(bi) ≤ qi−1.
Now set S′ =

⋃z
i=1 Si, so that

a

b
=

a0

b0
+

∑
n∈S′

1
n

.

We claim that in fact a0/b0 = 0. It is certainly an integer since its denom-
inator b0 satisfies P ∗(b0) ≤ q0 = 1 by construction, and it is less than 1 by
the hypothesis that a/b < 1. Moreover, each element of each Si is at least
q2
i /5 if i > z′, and at least L(qi)/(pi − 1) if i ≤ z′, since these sets resulted

from applying Lemmas 15 and 16, respectively. Therefore, since |Si| ≤ 2 if
i > z′ and |Si| ≤ 1 if i ≤ z′,

a0

b0
=

a

b
−

∑
n∈S′

1
n

>
1

log y
− 2

∑
z′<i≤z

5
q2
i

−
∑

1≤i≤z′

pi − 1
L(qi)

=
1

log y
−

∑
log y<q≤y

10
q2
−

∑
1≤i≤z′

pi − 1
L(qi)

.

Since L(qi)/pi = L(qi−1), this last sum is a telescoping sum whose value is
1 − 1/L(qz′), as is established by Croot [3, Lemma 1]; in particular, it is
less than 1. Also, the penultimate sum is � (log y log log y)−1 by Mertens’
formula (13) and partial summation. Therefore

a0

b0
>

1
log y

−O

(
1

log y log log y

)
− 1 > −1

when y is sufficiently large. Therefore a0/b0 = 0, and a/b =
∑

n∈S′ 1/n.
Again by Lemmas 15 and 16, the members of each Si do not exceed{

q2
i if z′ < i ≤ z

e2qi if 1 ≤ i ≤ z′

}
≤ max{y2, e2y′} = y2.
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In addition, if n is a member of Si then P ∗(n) = qi, and so the Si are
pairwise disjoint; the cardinality of each Si is 2, except when 1 ≤ i ≤ z′ or
when qi is a power of 2, when the cardinality of Si is 0 or 1. Since there are
� log y of these exceptional values of i, we see that 0 ≤ 2z − |S′| � log y.
Let n be the largest element of S′ and m = 2z − |S′|, and define

S = (S′ \ {n}) ∪ {n + m,n(n + 1), (n + 1)(n + 2), . . . , (n + m− 1)(n + m)}.
Then the cardinality of S is exactly 2z = 2π∗(y), and the largest element of
S is

(n + m− 1)(n + m) ≤ (y2 + O(log y))2 ≤ 2y4

when y is sufficiently large. Moreover, since the identity
1
n

=
1

n + m
+

1
n(n + 1)

+
1

(n + 1)(n + 2)
+ . . . +

1
(n + m− 1)(n + m)

is valid for any positive integers m and n, we see also that
∑

n∈S 1/n =∑
n∈S′ 1/n = a/b. Therefore S has all of the properties required by Propo-

sition 7.

6. The finiteness of Lj(r) for j ≥ 2. In this section we establish
Theorem 2. For the reader’s convenience we recall the definition of the sets
Lj(r) under consideration:

Lj(r) = {x ∈ Z, x > r−1 : there do not exist x1, . . . , xt ∈ Z,

x1 > . . . > xt ≥ 1 with
∑t

i=1 1/xi = r and xj = x},
so that Lj(r) is the set of numbers that cannot be the jth-largest de-

nominator in an Egyptian fraction representation of r. We will make use
of the following two lemmas, the first of which is a simple consequence of
Proposition 4 stated in a more convenient form.

Lemma 17. Let I be a closed subinterval of (0,∞). There exists a positive
real number X(I) such that , for all real numbers x > X(I) and all rational
numbers r = a/b ∈ I for which P ∗(b) < x log−23 x, there is a set E of
positive integers not exceeding x such that

∑
n∈E 1/n = r.

P r o o f. This follows immediately from Proposition 4 if we set

t =
⌈
(1− e−r)x− C(I)x log log x

log x

⌉
,

where C(I) is a constant that is chosen so large that the right-hand side of
the inequality (6) is less than x, and note that both t > T (I) and t log−22 t >
x log−23 x will be true as long as X(I) is large enough.

Lemma 18. There exists a positive constant k0 such that , for any integer
k > k0, there exists a positive integer K ≡ −1 (mod k) such that P ∗(K) <
k log−24 k.
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Because of its length and technical nature, we defer the proof of Lemma
18 until the end of this section. Assuming this lemma to be true, we may
now proceed with a proof of Theorem 2.

Proof of Theorem 2. We begin by showing that L2(r) is finite for any r.
Let r = a/b be a positive rational number, and set I = [r/2, r]. Let k be
any integer satisfying k log−24 k > P ∗(b) and k > max{4/r, X(I), k0}, where
X(I) and k0 are the constants described in Lemmas 17 and 18, respectively.
We claim that there exists an Egyptian fraction representation of r whose
second-largest denominator is k, and hence that k 6∈ L2(r).

To see this, let K be a positive integer such that K ≡ −1 (mod k) and
P ∗(K) < k log−24 k, as guaranteed by Lemma 18. Let x = k/log k and
define the rational number r′ = a′/b′ by

r′ = r − 1
k
− 1

Kk
.

We have that 1/k + 1/(Kk) < 2/k < r/2, and hence r′ is in I. Also,

1
k

+
1

Kk
=

K + 1
Kk

=
(K + 1)/k

K
,

where the numerator is an integer since K ≡ −1 (mod k), and so

P ∗(b′) ≤ max{P ∗(b), P ∗(K)} ≤ k log−24 k < x log−23 x.

Therefore we can invoke Lemma 17 with r′ and x to produce a set E of
positive integers not exceeding x such that

∑
n∈E 1/n = r′, whence E ∪

{k, Kk} is the set of denominators for an Egyptian fraction representation of
r with second-largest denominator equal to k. Therefore k is not an element
of L2(r), and since this argument holds for all k that are sufficiently large
in terms of r as specified above (note that the constant X(I) depends only
on r), we have shown that L2(r) is finite.

Now that we know that L2(r) is finite, we can establish Theorem 2
in its full strength. First, notice that if there exists an Egyptian fraction
representation of r with the integer n as its jth-largest denominator (j ≥ 2),
then by splitting the term with largest denominator using the identity (2), we
easily obtain an Egyptian fraction representation of r with n as its (j +1)st-
largest denominator. This shows that L2(r) ⊃ L3(r) ⊃ . . . In particular,
since L2(r) is finite, it follows that all of the Lj(r) are finite for j ≥ 3.

Furthermore, for every element n of L2(r), we can find an Egyptian
fraction representation of r−1/n using only denominators exceeding n (there
are many ways to do this—one could use a greedy algorithm, for example). If
r−1/n = 1/n1+. . .+1/nj−1 is such a representation, then the representation
r = 1/n1 + . . . + 1/nj−1 + 1/n of r shows that n 6∈ Lj(r). Since we can
find such an integer j for each n ∈ L2(r), and since the Lj(r) form a nested
decreasing sequence of sets each contained in L2(r), we see that at some
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point the sets Lj(r) will be empty. This completes the proof of Theorem 2
(modulo the proof of Lemma 18).

We remark that our proof does not show that L2(r) ⊂ L1(r), and indeed
this is false in general—in fact it is not even the case that L3(r) ⊂ L1(r)
always. For example, it is easy to see that if p is a prime, then p + 1 cannot
be the third-largest denominator in an Egyptian fraction representation of
r = 1/p + 1/(p + 1), and so p + 1 is an element of L3(r) (hence of L2(r) as
well) but not L1(r). (On the other hand, it seems likely that L2(1) ⊂ L1(1),
for instance, although this does not seem trivial to show.) We can always
convert an Egyptian fraction representation of r whose largest denomina-
tor is some integer n into one whose fourth-largest denominator is n, by
repeatedly splitting the term with largest denominator other than n and
examining the various ways in which the term 1/n could be duplicated un-
der this process. In this way one can show that L4(r) ⊂ L1(r) for every r.
It might be interesting to try to classify the rational numbers r for which
L2(r) 6⊂ L1(r).

We now return to the task of establishing Lemma 18. One possibility
would be to cite an existing result on smooth numbers in arithmetic pro-
gressions in which the modulus of the progression was allowed to exceed
the smoothness parameter, such as a theorem of Balog and Pomerance [1],
and remove those numbers divisible by large prime powers in an ad hoc
manner. We prefer to provide a self-contained proof of Lemma 18, one that
nevertheless has ideas in common with the method of Balog and Pomerance,
including a reliance on estimates for incomplete Kloosterman sums.

The following lemma is still much stronger than we need but nearly
the least we could prove to establish Lemma 18. The author would like to
thank Henryk Iwaniec for a helpful conversation concerning the proof of this
lemma.

Lemma 19. Let k be a positive integer and ε and x positive real numbers
such that k6/7+ε < x ≤ k. The number of ordered pairs (m,n) of coprime
positive integers less than x such that mn ≡ −1 (mod k) is

(26)
6x2

π2k

∏
p|k

(
p

p + 1

)
+ Oε(x5/6kε).

In particular , such ordered pairs (m,n) exist when k is sufficiently large in
terms of ε.

Of course, Lemma 18 follows by setting ε = 1/14, say, choosing x such
that k13/14 < x < k log−24 k, and letting K = mn where (m,n) is one of the
pairs whose existence is ensured by Lemma 19 when k is sufficiently large.
The restriction that m and n be coprime causes a little more trouble than
one might think; without it, one could simplify the proof and easily obtain
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an error term of xk−1/4+ε in the asymptotic formula (26), whence x could
be taken as small as k3/4+ε in the hypotheses of the lemma. In any case,
even a hypothesis as weak as x > k1−δ would be ample for our needs, so we
have not gone to great lengths to make the error terms as small as possible
in the proof.

Proof of Lemma 19. All of the constants implicit in the �- and O-
notation in this proof may depend on ε. We use d(n) to denote the number
of divisors of n and note that d(n) � nε for any positive ε. We also recall
that ‖x‖ denotes the distance from x to the nearest integer and that ek(x) =
e2πix/k.

Let N denote the number of ordered pairs (m,n) of coprime positive
integers less than x such that mn ≡ −1 (mod k), so that

N =
∑
m≤x

∑
n≤x

(m,n)=1
mn≡−1 (mod k)

1 =
∑
m≤x

∑
n≤x

mn≡−1 (mod k)

∑
d|(m,n)

µ(d) =
∑
d≤x

µ(d)
∑

m≤x/d

∑
n≤x/d

mnd2≡−1 (mod k)

1

by changing m and n to md and nd, respectively. Let y and z be real
numbers to be specified later subject to 1 ≤ z ≤ y ≤ x, and write N =
N1 + O(N2 + N3) where

N1 =
∑
d≤z

µ(d)
∑

m≤x/d

∑
n≤x/d

mnd2≡−1 (mod k)

1,

N2 =
∑

z<d≤y

∑
m≤x/d

∑
n≤x/d

mnd2≡−1 (mod k)

1,

N3 =
∑

y<d≤x

∑
m≤x/d

∑
n≤x/d

mnd2≡−1 (mod k)

1 ≤
∑

m≤x/y

∑
n≤x/y

∑
y<d≤x

mnd2≡−1 (mod k)

1.

We begin by bounding N2 and N3. The estimation of N2 is trivial:
writing l = mn we have

N2 ≤
∑

z<d≤y

∑
l≤x2/d2

ld2≡−1 (mod k)

d(l) � (x2)ε/2
∑

z<d≤y

(
x2

d2k
+ 1

)
�

(
x2

zk
+ y

)
kε.

As for N3, we use Cauchy’s inequality to write

N2
3 ≤

x2

y2

∑
m≤x/y

∑
n≤x/y

( ∑
y<d≤x

mnd2≡−1 (mod k)

1
)2

=
x2

y2

∑
m≤x/y

∑
n≤x/y

∑
y<d1≤x

∑
y<d2≤x

mnd2
1≡−1 (mod k)

mnd2
2≡−1 (mod k)

1.
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The congruence conditions imply that m and n must be coprime to k and
thus that d2

1 ≡ d2
2 (mod k). Therefore we can weaken the conditions on the

variables d1 and d2 and make them independent of m and n, yielding the
upper bound

N2
3 ≤

x2

y2

∑
m≤x/y

∑
n≤x/y

∑
y<d1≤x

∑
y<d2≤x

d2
1≡d2

2 (mod k)

1(27)

≤ x4

y4

∑
|l|≤x2

k|l

#{1 ≤ d1, d2 ≤ x : d2
1 − d2

2 = l}

by writing l = d2
1− d2

2. The term l = 0 contributes bxc, while the remaining
terms contribute at most d(|l|) each, since d1 and d2 are determined by
d1 + d2 and d1 − d2 which must be complementary divisors of l. Because
|l| ≤ x2 ≤ k2, we see that d(|l|) � kε. Since the number of terms with
|l| 6= 0 in the final sum in equation (27) is � x2/k ≤ x, the sum is bounded
by O(xkε), and so equation (27) gives us

N3 �
(

x4

y4
xkε

)1/2

≤ x5/2kε

y2
.

We have thus shown that

(28) N = N1 + O

((
x2

zk
+ y +

x5/2

y2

)
kε

)
.

It remains to evaluate N1. Using the additive characters ek(x) to detect
the condition mnd2 ≡ −1 (mod k), or equivalently (dm, k) = 1 and m +
nd2 ≡ 0 (mod k), we have

N1 =
∑
d≤z

(d,k)=1

µ(d)
∑

m≤x/d
(m,k)=1

∑
n≤x/d

1
k

∑
h (mod k)

ek(h(m + nd2))(29)

=
1
k

∑
d≤z

(d,k)=1

µ(d)
∑

h (mod k)

( ∑
m≤x/d
(m,k)=1

ek(hm)
)( ∑

n≤x/d

ek(hnd2)
)
.

The terms with h ≡ 0 (mod k) contribute
1
k

∑
d≤z

(d,k)=1

µ(d)
( ∑

m≤x/d
(m,k)=1

1
)( ∑

n≤x/d

1
)

=
1
k

∑
d≤z

(d,k)=1

µ(d)
(

xφ(k)
dk

+ O(kε/2)
)(

x

d
+ O(1)

)
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=
x2φ(k)

k2

∑
d≤z

(d,k)=1

µ(d)
d2

+ O

(
x

k1−ε/2

∑
d≤z

(d,k)=1

1
d

)

=
x2φ(k)

k2

(
1

ζ(2)

∏
p|k

(
1− 1

p2

)−1

+ O

(
1
z

))
+ O

(
x

k1−ε

)
.

Both error terms are O(x2/(zk1−ε)), and so equation (29) becomes

(30) N1 =
x2φ(k)
ζ(2)k2

∏
p|k

(
1− 1

p2

)−1

+ O

(
x2

zk1−ε
+

1
k

∑
d≤z

(d,k)=1

T (d)
)

,

where we have defined

T (d) =
∑

h6≡0 (mod k)

( ∑
m≤x/d
(m,k)=1

ek(hm)
)( ∑

n≤x/d

ek(hnd2)
)
.

To estimate the T (d), we make use of the elementary bound∑
n≤x/d

ek(hnd2) �
∥∥∥∥hd2

k

∥∥∥∥−1

when k does not divide hd2, and also the Weil bound for incomplete Kloost-
erman sums (see for instance Hooley [7, Lemma 4 of Section 2.5]), which
gives as a special case∑

m≤x/d
(m,k)=1

ek(hm) �ε k1/2+ε/2(h, k)1/2.

It follows that

(31) T (d) � k1/2+ε/2
∑

h6≡0 (mod k)

(h, k)1/2

∥∥∥∥hd2

k

∥∥∥∥−1

when d is coprime to k. Because (d, k) = 1 we may reindex this sum
by replacing hd2 with h, which does not affect the quantity (h, k). When
1 ≤ h ≤ k/2, we note that ‖h/k‖−1 = ‖(k − h)/k‖−1 = k/h and (h, k) =
(k − h, k), and so∑

h6≡0 (mod k)

(h, k)1/2

∥∥∥∥hd2

k

∥∥∥∥−1

= 2k
∑

1≤h≤k/2

(h, k)1/2

h
.

By writing h = h′f where f = (h, k), this last sum is easily seen to be �
d(k) log k, and T (d) � k3/2+ε follows from this bound and the estimate (31).
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Using this estimate for the T (d) in equation (30), the asymptotic formula
(28) for N becomes

(32) N =
x2φ(k)
ζ(2)k2

∏
p|k

(
1− 1

p2

)−1

+ O

((
x2

zk
+ zk1/2 + y +

x5/2

y2

)
kε

)
.

We optimize this error term by choosing z = xk−3/4 and y = x5/6, in which
case the error term is O((xk−1/4 +x5/6)kε), and the x5/6kε term dominates
since x ≤ k. We also note that ζ(2) = π2/6 and that

φ(k)
k

∏
p|k

(
1− 1

p2

)−1

=
∏
p|k

(
p

p + 1

)
,

and so the main term in (32) is the same as the main term in (26). This
establishes the lemma.

7. The order of magnitude of L1(r;x). In this section we establish
Theorem 3. We recall that L1(r;x) is the number of integers in L1(r) not
exceeding x, that is, the number of integers not exceeding x that cannot be
the largest denominator in an Egyptian fraction representation of r.

Proof of Theorem 3. First we establish the lower bound in the inequal-
ity (4). Let r be a positive rational number and x > 1 a real number, set
y = Cx/log x with C > 1 a large constant, and suppose that x is so large
that all prime divisors of the denominator of r are less than y. By Lemma 8,
if n ≤ x is the largest denominator in an Egyptian fraction representation
of r, it must be true that n is not divisible by any prime larger than y
(when C is chosen large enough). In other words, the set L1(r) contains all
integers n ≤ x such that P (n) > y. The number of integers n ≤ x such that
P (n) > y is asymptotic to x log log x/log x by Lemma 9, which establishes
the required lower bound.

To establish the corresponding upper bound, we use a method similar
to the one used in the proof of Theorem 2 to argue that L2(r) is finite.
Let r = a/b be a positive rational number, and set I = [r/2, r]. Let x
be a positive real number and set x′ = x/log x and y = x′ log−23 x′, so
that y > x log−24 x. We suppose that x is so large that y > P ∗(b) and
x′ > max{2/r, X(I)}, where X(I) is the constant described in Lemma 17.
Let k be an integer such that x′ < k ≤ x and P ∗(k) < y, and define the
rational number r′ = a′/b′ by r′ = r − 1/k.

Since 1/k < 1/x′< r/2 we have r′∈ I; next, P ∗(b′) ≤ max{P ∗(b), P ∗(k)}
< y. Therefore we may invoke Lemma 17 with r′ and x′ to produce a set
E of positive integers not exceeding x′ such that

∑
n∈E 1/n = r′, whence

E ∪ {k} is the set of denominators for an Egyptian fraction representation
of r with largest denominator k.
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From this argument we deduce that for x sufficiently large, the elements
of L1(r) not exceeding x are all contained in {r−1 < n ≤ x′} ∪ {r−1 < n ≤
x : P ∗(n) > x log−24 x}, whose cardinality is

� x′ + x log
log x

log y
� x log log x

log x

by Lemma 9. This upper bound holds when x is large enough in terms
of r as described above, but it will hold for all x by adjusting the implicit
constant (depending on r) if necessary. This establishes the upper bound in
the inequality (4) and hence Theorem 3.

We remark that we have actually established the inequalities
(1 + or(1))x log log x

log x
≤ L1(r;x) ≤ (24 + or(1))x log log x

log x
.

We did so by showing essentially that an integer n is in L1(r) if and only
if n can be written as n = pνm with m less than a certain power of log p,
though we were unable to pinpoint this power other than to show that it
lies between 1+o(1) and 24+o(1). With much more care we could improve
the constant 24 to 3 but no further at present. Nevertheless we speculate
that the correct power is 1, i.e., that for any fixed r and ε > 0 there are only
finitely many integers n ∈ L1(r) such that, if P ∗(n) = pν and n = pνm,
then m ≥ log1+ε p. This would imply that the counting function L1(r;x)
of those integers that cannot be the largest denominator in an Egyptian
fraction representation of r is asymptotic to x log log x/log x with leading
coefficient 1.
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