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1. Introduction. Throughout this paper, we shall use the following
notations: pi for the ith prime number (p1 = 2, p2 = 3, p3 = 5, . . . ), π(x) for
the number of primes ≤ x, ω(n) for the number of distinct prime factors of
n, Ω(n) for the number of prime factors of n counted with multiplicity. We
write λ(n) = (−1)Ω(n) (this is the Liouville function) and γ(n) = (−1)ω(n)

so that λ(n) is completely multiplicative and γ(n) is multiplicative, and let

LN = {λ(1), . . . , λ(N)} and GN = {γ(1), . . . , γ(N)}.

For y ≥ 1 let λy(n) and γy(n) denote the multiplicative functions defined
by

λy(pα) =
{

(−1)α (= λ(pα)) for p ≤ y,
+1 for p > y

and

γy(pα) =
{
−1 (= γ(pα)) for p ≤ y,
+1 for p > y,

respectively, and write

LN (y) = {λy(1), . . . , λy(N)} and GN (y) = {γy(1), . . . , γy(N)}.

In this series we study pseudorandom properties of binary sequences. As
measures of pseudorandomness of the binary sequence

EN = {e1, . . . , eN} ∈ {−1,+1}N ,
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the well-distribution measure:

W (EN ) = max
a,b,t

∣∣∣ t∑
j=1

ea+jb

∣∣∣
(where the maximum is taken over all a, b, t ∈ Z such that b, t ≥ 1 and
1 ≤ a+ b ≤ a+ tb ≤ N) and the correlation measure of order k:

Ck(EN ) = max
M,d1,...,dk

∣∣∣ M∑
n=1

en+d1 . . . en+dk

∣∣∣
(where the maximum is taken over all M ∈ N and non-negative integers
d1 < . . . < dk such that M + dk ≤ N) are used.

We also need the notion of complexity . Consider a finite set S of symbols,
also called letters, and form a, finite or infinite, sequence w = s1s2 . . . of
these letters; such a sequence w is also called a word . The concatenation of
words is defined in the following way: if w = w1 . . . wr, w′ = w′1 . . . w

′
s are

two words then we set ww′ = w1 . . . wrw
′
1 . . . w

′
s. If v = t1t2 . . . tk is a finite

word and there is an n ∈ N such that sn = t1, sn+1 = t2, . . . , sn+k−1 =
tk, i.e., the word v occurs in w at place n, then v is said to be a factor
(of length k) of w. The complexity of the word w is characterized by the
function f(k,w) defined in the following way: for k ∈ N, let f(k,w) denote
the number of different factors of length k occurring in w. In particular,
for a “good” pseudorandom sequence EN ∈ {−1,+1}N one expects high
complexity, more exactly, one expects that f(k,EN ) = 2k for “small” k,
and f(k,EN ) is “large” for k growing not faster than log N .

In Part I [CFMRS] of this paper, we first studied the well-distribution
measure and correlation of the sequences LN , LN (y). Next we analyzed
the connection between correlation and complexity. Finally, we proved a
conditional result on the complexity of the Liouville function: we showed
that assuming Schinzel’s “Hypothesis H” [Sc], [ScSi], for k ∈ N, N > N0(k)
we have

(1.1) f(k, LN ) = 2k.

We remark that in all the problems studied in Part I, there is no sig-
nificant difference between the behaviour of the functions λ and γ, and the
behaviour of their truncated versions is also similar.

Since (1.1) is a conditional result, one might like to prove unconditional
results on the complexity of the functions studied by us as well. Since
this seems to be hopeless in the case of the functions λ and γ, instead we
will study their truncated versions. This will be done in Section 2 and it
will turn out that, unlike the cases studied so far, there is a quite striking
contrast between the behaviour of the functions λy and γy. In Section 3 we
will return to the analysis of the structure of the sequence {λ(1), λ(2), . . .}.
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First we will formulate a conjecture on the behaviour of the λ function over
polynomials f(n) ∈ Z[n]. Next we will prove this conjecture in the special
case when f(n) is the product of certain linear polynomials. In Section 4
we will prove the same conjecture for certain quadratic polynomials f(n).
In Section 5 we will pose several related unsolved problems and conjectures.
Finally, in Section 6 we will present numerical data obtained by computer.

2. The complexity of the truncated functions. Let 2 ≤ y ≤ N ,
and write Py =

∏
p≤y p.

Consider first the sequence GN (y). Clearly, the value of γy(n) depends
only on the number of primes p ≤ y with p |n, and the number of these
primes is a periodic function of n with period Py:

γy(n+ Py) = γy(n) for n = 1, 2, . . .

It follows trivially that for all k ∈ N, the complexity f(k,GN (y)) is at most
the period length:

f(k,GN (y)) ≤ Py =
∏
p≤y

p

so that it is bounded as N →∞ for fixed k, and then we let k →∞. (Indeed
it can be shown with a little work that for fixed y, k > k0(y) and N → ∞
there is equality here.)

On the other hand, we will show that the complexity f(k, LN (y)) grows
as fast as a constant times kπ(y) (for every fixed k and N →∞):

Theorem 1. For y ≥ 2, r = π(y), there are positive numbers cr, c′r
(depending only on r) such that if k ∈ N and N is large enough in terms of
r and k then

(2.1) crk
r < f(k, LN (y)) < c′rk

r.

We do not know whether the quotient f(k, LN (y))//kr has a limit or
not. We remark that when y = 2 then LN (y) is an automatic sequence and
explicit formulas for f(k, LN (y)) can be found with standard techniques. In
particular

lim inf
k→∞

lim
N→∞

f(k, LN (y)) = 3//2, lim sup
k→∞

lim
N→∞

f(k, LN (y)) = 5//3,

so that f(k, LN (y))//kr has no limit in this case. For y = 3 computations
(see Table 3) seem to indicate that it has no limit either.

In order to prove Theorem 1 we will first prove

Lemma 1. For n, i ∈ N, we define αi(n) = max{α ≥ 0, pαi |n}, and write

si(n) = (−1)αi(n), SN (i) = {si(1), . . . , si(N)}.
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(i) For all i ∈ N there is an (explicitly computable) constant bi such
that if k ∈ N and N is large enough in terms of i and k, then

k ≤ f(k, SN (i)) ≤ bik.
(ii) If i, k ∈ N and w is a factor of length k of the sequence

(2.2) si(1), si(2), . . . ,

then there are j,m ∈ N such that for each q = 0, 1, 2, . . . , the word occurring
at place j + pmi q is w.

(iii) If j,m, k ∈ N and N is large enough in terms of m and k, then
the number of different factors of length k of SN (i) occurring at places ≡ j
(mod pmi ) is at most the number of different factors of length [k//pmi ] + 2 of
SN (i).

P r o o f. (i) Define the operation σi on the set of the words on the letters
−1, +1 by

σi(1) = 1 . . . 1︸ ︷︷ ︸
pi−1

(−1), σi(−1) = 1 . . . 1︸ ︷︷ ︸
pi

and
σi(ww′) = σi(w)σi(w′).

Then the word Spm
i

(i) is the image of the word 1 by σmi . σi is called a
primitive substitution, and the upper bound for f(k, SN (i)) is standard (see
[Que], proof of Proposition V.19), while the lower bound follows from the
fact that the infinite sequence (2.2) is not ultimately periodic (see [HM]).

(ii) This follows from the fact that the sequence (2.2) is a concatenation
of the words σmi (1) and σmi (−1), which both have length pmi . Every factor
of the sequence (2.2) must occur at place j in σmi (1) for some j and m; it
will then occur at place j in both σm+1

i (1) and σm+1
i (−1), and hence at all

places j + qpm+1
i in (2.2).

(iii) This follows from the relation SNpm
i

(i) = σmi SN (i). Assume 0 ≤ j <
pmi . Let q = [(k + j − 1)//pmi ]. A word w of length k occurring at a place
congruent to j (mod pmi ) can be decomposed as w = fσmi (e1) . . . σmi (eq−1)d,
f being a suffix of σmi (e0), d a prefix of σmi (eq), and e0 . . . eq a factor of
length q + 1 of SN (i). As w is uniquely determined by j and e0 . . . eq and
q + 1 ≤ [k//pmi ] + 2, the assertion follows.

Proof of Theorem 1. We have λy(n) = s1(n) . . . sr(n) if r = π(y). Hence

f(k, LN (y)) ≤
r∏
i=1

f(k, SN (i)),

which gives the upper bound in Theorem 1 if we use the one in Lemma 1.
We will prove the lower bound by induction. For y ≤ p1 it holds by

Lemma 1. Assume now that it holds for y < pr, and take a y such that
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pr ≤ y < pr+1. Then λy(n) = λy′(n)sr(n) for pr−1 ≤ y′ < pr. For N large
enough, the sequence (LN (y′), SN (r))={(λy′(1), sr(1)),. . ., (λy′(N), sr(N))}
on 4 letters has at least cr−1k

r factors, as factors of LN (y′) occur at places
j+pm1

1 . . .p
mr−1
r−1 a, a=0, 1, 2, . . . (by Lemma 1 and λy′(n)=s1(n) . . . sr−1(n)),

while factors of SN (r) occur at places j′ + pmr a
′, a′ = 0, 1, 2, . . . Hence all

pairs (w′, w′′), where w′ is a factor of LN (y′) and w′′ is a factor of SN (r),
occur at factors of (LN (y′), SN (r)).

Now, with a factor w of LN (y), we associate all the factors (w′, w′′) of
(LN (y′), SN (r)) such that

w = λy(m) . . . λy(m′), w′ = λy′(m) . . . λy′(m′), w′′ = sr(m) . . . sr(m′)

with m < m′. We will show that to w there correspond at most Kr different
factors (w′, w′′) for a fixed constant Kr; clearly, this will complete the proof
that the lower bound also holds for pr ≤ y < pr+1.

To simplify the notation we put q = p1 . . . pr−1, p = pr, s(n) = sr(n).
Let w be a factor of length k of LN (y) where N is large enough. We shall
control the places where w can occur. Suppose

w = λy(m1) . . . λy(m′1) = λy(m2) . . . λy(m′2)

and
m2 ≡ m1 (mod pq),

i.e., m2 = m1 + apq with some a ∈ N. Then λy(m + apq) = λy(m) for
m ∈ A where A is an interval of length k. But λy′(m+ apq) = λy′(m) = 1
whenever m ≡ ±1 (mod q), hence s(m+apq) = s(m) when m ≡ ±1 (mod q).
Thus we choose m such that m ≡ ±1 (mod q), m ≡ 0 (mod p). Then
s(m+ apq) = s(m) whence s(m//p+ aq) = s(m//p).

We choose m ∈ A such that m ≡ 1 (mod r), m ≡ 0 (mod p2), m 6≡ 0
(mod p3). This is possible if k ≥ 2p2r, since in an interval of length p2r,
there is m such that m ≡ 1 (mod r) and m ≡ 0 (mod p2), and if it happens
that m ≡ 0 (mod p3), then m+ p2r satisfies the condition.

Then s(m//p + aq) = s(m//p) = −1 so that m//p + aq ≡ 0 (mod p)
whence a ≡ 0 (mod p). Thus we have shown that if k ≥ 2p2q, then m2−m1

must be a multiple of p2.
We can iterate the process: writing a = pa′, we have

s

(
m

p
+ pa′q

)
= s

(
m

p

)
so that for those m which are ≡ 0 (mod p2), we have

s

(
m

p2
+ a′q

)
= s

(
m

p2

)
,
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and the same reasoning shows that if k ≥ 2p3q then m2 −m1 is a multiple
of p3.

Similarly, m2−m1 is a multiple of pr whenever k ≥ 2prq. Then the last
assertion of Lemma 1 shows that there are at most Kr = f(2p2q+2, SN (r))
possible factors w′′ of SN (r) such that (w′, w′′) correspond to w. But when
w and w′′ are known, so is w′. We have to multiply Kr by pq to get Kr, to
take into account the possible congruences (mod pq) of the occurrences of
w. Hence the result, with explicitly computable values of cr and c′r.

3. The λ function over a product of linear polynomials. If
we try to prove something unconditional on the structure of the sequence
{λ(1), λ(2), . . .}, the first question to decide is whether the sequence is ulti-
mately periodic. It follows from a result of Sárközy [Sá] that the answer to
this question is negative. Namely, an ultimately periodic arithmetic func-
tion g(n) satisfies a linear recursion. By a special case of the main theorem
in [Sá], a completely multiplicative function g(n) with g(n) 6≡ 0, g(n) = o(n)
satisfies a linear recursion if and only if g(n) = χ(n) is a (multiplicative)
character modulo m for some m ∈ N so that either g(n) = 0 infinitely often
(for m > 1) or g(n) = 1 for all n. Since λ(n) is never 0 and it is −1 infinitely
often, it follows that λ(n) cannot be ultimately periodic.

Next one might like to know whether this statement can be sharpened in
the following way: the function λ(n) cannot be constant over an arithmetic
progression, i.e., there are no a ∈ N, b ∈ Z such that λ(an + b) is constant
for n > n0. The affirmative answer follows easily from the following

Lemma 2. If a ∈ N, b ∈ Z, and g(n) is a complex-valued multiplicative
arithmetic function such that g(an + b) is a non-zero constant for n > n0,
then there is a Dirichlet character χ(n) modulo a so that g(n) = χ(n) for
every n ∈ N with (a, n) = 1.

This lemma can be derived easily from Sárközy’s result [Sá], and it is
stated as Lemma (19.3) in Elliott’s book [Ell] where a simple direct proof is
given.

Corollary 1. There are no a ∈ N, b ∈ Z such that λ(an+b) is constant
for n > n0.

P r o o f. Assume that contrary to the assertion, there are a ∈ N, b ∈ Z
such that λ(an + b) is constant for n > n0. Then by Lemma 2 there is a
(multiplicative) character χ(n) modulo a so that λ(n) = χ(n) for (a, n) = 1.
It follows that

(3.1) λ(ak + 1) = χ(1) = 1 for all k ∈ N.
However, by Dirichlet’s theorem there are infinitely many primes p of the
form p = ak + 1. By the definition of the λ function for these primes p we



Finite pseudorandom binary sequences 349

have λ(p) = −1, which contradicts p = ak+ 1 and (3.1), and this completes
the proof of Corollary 1.

One might like to extend the problem by studying the λ function over
polynomials. In this direction we conjecture:

Conjecture 1. If f(n) = a0n
k + . . .+ ak ∈ Z[n], a0 > 0 then λ(f(n))

is constant for n > n0 if and only if f(n) is of the form f(n) = b(g(n))2

where b ∈ N, g(n) ∈ Z[n].

This is a weaker form of a conjecture of Chowla [Ch]. He writes:

Conjecture 2. Let f(x) be an arbitrary polynomial with integer coeffi-
cients, which is not , however , of the form cg2(x) where c is an integer and
g(x) is a polynomial with integer coefficients. Then

x∑
n=1

λ(f(n)) = o(x).

If f(x) = x this is equivalent to the Prime Number Theorem. If the degree
of f(x) is at least 2, this seems an extremely hard conjecture.

Clearly, Conjecture 1 would follow from Conjecture 2. While indeed
Conjecture 2 seems hopelessly difficult, we have been able to settle certain
special cases of our easier Conjecture 1. First in this section we will study
the case when f(n) is the product of certain linear polynomials.

Theorem 2. If a, k ∈ N, b1, . . . , bk are distinct integers with

(3.2) b1 ≡ . . . ≡ bk (mod a),

g(n) is a completely multiplicative arithmetic function such that g(n) ∈
{−1,+1} for all n ∈ N and , writing f(n) = (an+ b1) . . . (an+ bk), g(f(n))
is constant for n ≥ n0, then

(i) for any b with b ≡ b1 ≡ . . . ≡ bk (mod a), g(an + b) is ultimately
periodic;

(ii) there is an a′ ∈ N with a | a′ and a real character χ(n) modulo a′ so
that

(3.3) g(n) = χ(n)

for every n ∈ N with (a′, n) = 1.

Corollary 2. There are no a, k ∈ N and distinct integers b1, . . . , bk
with

b1 ≡ . . . ≡ bk (mod a)

such that λ((an+ b1) . . . (an+ bk)) is constant for n > n0.
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Note that Corollary 1 is a special case of Corollary 2.

Proof of Theorem 2. We may assume that b1 < . . . < bk. Write l =
(bk − b1)//a (so that l is an integer by (3.2)). Consider the l-tuple (g(an+
b1), g(an+ b1 + a), . . . , g(an+ b1 + (l− 1)a)) (whose last element is g(an+
bk − a)) for all n ∈ N with n ≥ n0. This l-tuple may assume only finitely
many (2l) distinct values, thus there are n1, n2 ∈ N with

(3.4) n0 ≤ n1 < n2

and

(3.5) g(an1 + b1 + ja) = g(an2 + b1 + ja) for j = 0, 1, . . . , l − 1.

Now we show by straight induction that

(3.6) g(m) = g(m+ a(n2 − n1)) for m ≥ an1 + b1, m ≡ b (mod a).

If an1 + b1 ≤ m < an1 + bk, m ≡ b (mod a), then (3.6) holds by (3.5).
Assume now that

m′ ≥ an1 + bk,(3.7)
m′ ≡ b (mod a)(3.8)

and (3.6) holds for all m with

an1 + b1 ≤ m < m′, m ≡ b (mod a).

We have to show that this assumption implies that (3.6) also holds with m′

in place of m.
If m is one of the numbers

m = m′ − bk + bj with 1 ≤ j ≤ k − 1,

then by (3.2), (3.7), (3.8) and the definition of b we have

m ≥ (an1 + bk)− bk + b1 = an1 + b1,

m = m′ − (bk − bj) < m′

and
m = m′ − bk + bj ≡ b− b+ b ≡ b (mod a),

so that by the induction hypothesis, (3.6) holds for each of these numbers:

(3.9) g(m′ − bk + bj) = g(m′ − bk + bj + a(n2 − n1)) for 1 ≤ j ≤ k − 1.

Writing n = (m′ − bk)//a (which is an integer by (3.8) and the definition of
b) by (3.4) and (3.7) we have

n ≥ (an1 + bk)− bk
a

= n1 ≥ n0.



Finite pseudorandom binary sequences 351

Thus by the assumption of the theorem we have

g(f(n)) = g(f(n+ n2 − n1)).

By the definition of f(n), and since g(n) is completely multiplicative, this
can be rewritten as

k∏
j=1

g(an+ bj) =
k∏
j=1

g(an+ a(n2 − n1) + bj)

or, by the definition of n,

(3.10)
k∏
j=1

g(m′ − bk + bj) =
n∏
j=1

g(m′ − bk + bj + a(n2 − n1)).

Since g(n) 6= 0 for n ∈ N, it follows from (3.9) and (3.10) that (3.6) also
holds with m′ in place of m, which completes the proof of (3.6).

By (3.6), g(an + b) is ultimately periodic with period n2 − n1, which
proves (i).

Since g(an + b) is ultimately periodic with period n2 − n1, it follows
that g(a(n2 − n1)m + b) is constant in m for m large enough, and since
g(n) ∈ {−1,+1} for all n, this constant is non-zero. Thus by Lemma 2
there is a Dirichlet character χ(n) modulo a′ = a(n2 − n1) so that (3.3)
holds for every n ∈ N with (a′, n) = 1. By g(n) ∈ {−1,+1} this is a real
character, and this completes the proof of (ii).

4. The λ function over quadratic polynomials. In this section we
will settle Conjecture 1 for certain quadratic polynomials:

Theorem 3. Let a ∈ N, b, c ∈ Z, and write f(n) = an2 + bn + c,
D = b2 − 4ac. Assume that a, b and c satisfy the following conditions:

(i) 2a | b,
(ii) D < 0,
(iii) there is a positive integer k with

(4.1) λ

(
−D

4
k2 + 1

)
= −1.

(Note that −D//4 ∈ N by (i) and (ii).) Then λ(f(n)) assumes both values
+1 and −1 for infinitely many n ∈ N.

P r o o f. Assume that, contrary to assertion, (i)–(iii) hold, but

(4.2) λ(f(n)) is constant for n ≥ n0.
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Writing m = n+ b//(2a) (note that b//(2a) ∈ Z by (i)) we clearly have

f(n) = an2 + bn+ c = a

(
n+

b

2a

)2

− b2 − 4ac
4a

(4.3)

= am2 − D

4a
.

By (4.2) and (4.3),

(4.4) λ

(
am2 − D

4a

)
is constant for m ≥ m0.

It follows that

λ

(
a

(
−D

4a
t

)2

− D

4a

)
= λ

(
−D

4a

)
λ

(
−D

4
t2 + 1

)
is constant for t ≥ t0,

whence

(4.5) λ

(
−D

4
t2 + 1

)
is constant for t ≥ t0.

By (i) and (ii), −D4 k
2 + 1 is a positive integer, and by (iii), it is not a

square; thus the Pell equation

(4.6) x2 −
(
−D

4
k2 + 1

)
y2 = 1

has infinitely many solutions in positive integers x, y. Consider solutions
x, y with

(4.7) x ≥ t0, y ≥ t0.

Multiplying (4.6) by −D4 k
2 we get

−D
4

(kx)2 +
D

4

(
−D

4
k2 + 1

)
(ky)2 = −D

4
k2,

whence

−D
4

(kx)2 + 1 =
(
−D

4
k2 + 1

)(
−D

4
(ky)2 + 1

)
.

Since the function λ(n) is completely multiplicative, by (4.1) it follows that

λ

(
−D

4
(kx)2 + 1

)
= λ

(
−D

4
k2 + 1

)
λ

(
−D

4
(ky)2 + 1

)
= −λ

(
−D

4
(ky)2 + 1

)
.
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By (4.7) this contradicts (4.5) so that, indeed, the indirect assumption (4.2)
leads to a contradiction which completes the proof of Theorem 3.

Theorem 4. Let a ∈ Z, b ∈ N, c ∈ Z and

(4.8) ab 6= c.

Write
f(n) = (n+ a)(bn+ c).

Then λ(f(n)) assumes both values +1 and −1 for infinitely many n ∈ N.

Note that it follows from (4.8) that the discriminant of the polynomial
f(n) is D = (ab− c)2 > 0.

P r o o f. We will prove the assertion of the theorem in several steps: first
we will prove it in a special case, then we will extend it further and further,
obtaining finally the result stated.

Step 1. Let A ∈ N and write

g(n) = n(An+ 1).

Then λ(g(n)) assumes both values +1 and −1 for infinitely many n ∈ N.

Assume that contrary to assertion, λ(g(n)) = λ(n(An+1)) is constant for
n ≥ n0, with some n0 ∈ N. Since the λ function is completely multiplicative,
it follows that λ(An(An+ 1)) is also constant for n ≥ n0, i.e.

(4.9) λ(An(An+ 1)) = ε for n ≥ n0

(where ε ∈ {−1,+1}).
Now we prove by induction on i that, for all i ∈ N,

(4.10) λ(An+ i) = ε λ(An) for n ≥ n0.

By the multiplicativity of λ, (4.9) can be rewritten as

λ(An)λ(An+ 1) = ε.

Since λ(An) ∈ {−1,+1}, (4.10) follows with 1 in place of i.
Assume now that (4.10) holds with j in place of i for all j ≤ i:

(4.11) λ(An+ j) = ε λ(An) for j = 1, . . . , i and n ≥ n0.

We have to show that it also holds with i+ 1 in place of i:

(4.12) λ(An+ i+ 1) = ε λ(An) for n ≥ n0.

By (4.11) we have

λ((An+ 1)(An+ i)) = λ(An+ 1)λ(An+ i) = (ε λ(An))2 = +1

or, in equivalent form,

λ(A2n2 +A(i+ 1)n+ i) = +1,

λ(A(An2 + (i+ 1)n) + i) = +1.
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From (4.11) with An2 + (i+ 1)n and i in place of n, resp. j, it follows that

ε λ(A(An2 + (i+ 1)n)) = λ(A(An2 + (i+ 1)n) + i) = +1,

whence
λ(A(An2 + (i+ 1)n)) = ε,

λ(An)λ(An+ i+ 1) = ε

for n ≥ n0, which, by λ(An) ∈ {−1,+1}, proves (4.12).
By (4.10), λ(m) is constant for m > An0, which contradicts to the fact

that λ(n) assumes both −1 and +1 for infinitely many n ∈ N, and this
completes the proof of the assertion of Step 1.

Step 2. Let A ∈ N and write

h(n) = n(An− 1).

Then λ(h(n)) assumes both values −1 and +1 for infinitely many n ∈ N.

Again we argue by contradiction: assume that λ(h(n)) is constant for
n ≥ n1. It follows that λ(A)λ(h(n)) = λ(An(An − 1)) is also constant for
n ≥ n1, i.e.,

(4.13) λ(An(An− 1)) = ε for n ≥ n1

(where ε ∈ {−1,+1}). Replace n by An2:

λ(A2n2(A2n2 − 1)) = ε.

Then

λ(A2n2)λ(An− 1)λ(An+ 1) = ε,

λ(An+ 1) = ε λ(An− 1) for n ≥ n1.(4.14)

It follows from (4.13) and (4.14) that

λ(n(An+ 1)) = λ(n)λ(An+ 1) = ε λ(n)λ(An− 1)
= λ(An(An− 1))λ(n)λ(An− 1)
= λ(A) for n ≥ n1,

which contradicts the assertion of Step 1.

Step 3. Let B ∈ N, C ∈ Z, C 6= 0, and write

k(n) = n(Bn+ C).

Then λ(k(n)) assumes both values −1 and +1 for infinitely many n ∈ N.

Assume that contrary to assertion, λ(k(n)) is constant for n ≥ n2. It
follows that



Finite pseudorandom binary sequences 355

λ(k(|C|m)) = λ(|C|m(B|C|m+ C))

= λ(|C|2)λ
(
m

(
Bm+

C

|C|

))
= λ

(
m

(
Bm+

C

|C|

))
is also constant for m ≥ n2, which is impossible by Steps 1 and 2.

We are now ready to prove Theorem 4. Assume that contrary to asser-
tion, a, b, c and f(n) are defined as in the theorem, but λ(f(n)) is constant
for n ≥ n3. Then, writing l(m) = f(m−a) we have l(m) = m(bm+(c−ab)),
and λ(l(m)) is constant for m ≥ n3 + a, which is impossible by Step 3, and
this completes the proof of Theorem 4.

5. Further problems. The problems and results above could be ex-
tended in various directions. In particular, one might like to study general
multiplicative functions g(n) with g(n) ∈ {−1,+1}.

Conjecture 3. If g(n) is a multiplicative function with g(n)∈{−1,+1}
for all n ∈ N and such that ∑

g(p)=−1
p≡h (modm)

1
p

is divergent for all h ∈ Z, m ∈ N, (h,m) = 1, then, writing

EN = {g(1), . . . , g(N)},
we have

(5.1) W (EN ) = o(N)

and

(5.2) C2(EN ) = o(N).

While (5.1) seems to be difficult but not hopeless, (5.2) is beyond reach
at present.

Moreover, we conjecture, and Tables 1 and 2 seem to indicate, that
the contrast between the complexities of the sequences LN (y) and GN (y)
disappears as y grows (for fixed N), and LN and GN are of equally high
complexity:

Conjecture 4. If k,N ∈ N, N →∞ and k = o(logN) then

(5.3) f(k, LN ) = 2k

and

(5.4) f(k,GN ) = 2k.
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As we mentioned in Section 1, we proved that assuming Schinzel’s “Hy-
pothesis H”, (5.3) holds for fixed k and N → ∞. However, in this general
form and without unproved hypotheses, (5.3) and (5.4) seem to be beyond
our reach, thus we will present certain related numerical data in the next
section.

6. Numerical data. We computed W (LN (y)), C2(LN (y)), W (GN (y))
and C2(GN (y)) for several values of N and y. In particular, if y > N
then LN (y) = LN and GN (y) = GN . Thus those lines in the tables below
where y = ∞ appears in the second column correspond to the sequences
LN and GN . We also studied the complexities of the sequences LN (y) and

Table 1. Correlation and complexity of LN (y)

N y W (LN (y)) C2(LN (y)) k(LN (y)) f(k, LN (y))

100 2 50 78 2 3
100 3 26 44 4 15
100 5 17 23 5 30
100 ∞ 11 19 5 31

1000 2 500 928 2 3
1000 3 251 700 4 15
1000 5 167 428 6 63
1000 7 132 221 8 253
1000 ∞ 46 150 8 254

10000 2 5000 9770 2 3
10000 3 2502 8439 4 15
10000 5 1667 6557 6 63
10000 7 1256 4450 9 511
10000 11 1046 2923 10 1021
10000 13 915 2015 11 2020
10000 ∞ 155 446 11 2032

100000 2 50000 99228 2 3
100000 3 25000 92666 4 15
100000 5 16665 76954 6 63
100000 7 12492 62248 10 1023
100000 11 10426 41762 13 8183
100000 13 8938 29760 13 8190
100000 ∞ 453 1380 14 16352

1000000 2 500000 997676 2 3
1000000 3 249999 967224 4 15
1000000 5 166667 878822 6 63
1000000 7 124994 737476 10 1023
1000000 11 104124 600614 13 8191
1000000 13 89287 429055 14 16383
1000000 17 79440 334077 16 65529
1000000 19 71579 268037 16 65534
1000000 ∞ 1423 4635 17 131011
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GN (y). For a sequence EN ∈ {−1,+1}N , k(EN ) denotes the smallest k
value such that f(k,EN ) < 2k. The values of k(LN (y)) and k(GN (y))
are presented in the respective tables, and in the next column the value of
f(k(LN (y)), LN (y)), resp. f(k(GN (y)), GN (y)) is given.

In Table 3 we compare f(k, LN (y)) and kπ(y) for y = 3 and N large
(N = 2000000) to illustrate Theorem 1. The ratio f(k, LN (3))//k2 does
not seem to have a limit. We have also included values of SN (1) and
SN (2) (defined in Lemma 1) and observe that f(k, LN (3)) is almost equal
to f(k, SN (1))f(k, SN (2)). We selected values of k that correspond to local
extrema of f(k, SN (1))//k, f(k, SN (2))//k or f(k, LN (3))//k2.

Table 2. Correlation and complexity of GN (y)

N y W (GN (y)) C2(GN (y)) k(GN (y)) f(k,GN (y))

100 2 50 99 2 2
100 3 18 97 3 6
100 5 11 85 5 22
100 ∞ 24 29 5 31

1000 2 500 999 2 2
1000 3 168 997 3 6
1000 5 101 985 5 22
1000 7 78 895 7 104
1000 ∞ 81 312 8 246

10000 2 5000 9999 2 2
10000 3 1668 9997 3 6
10000 5 1001 9985 5 22
10000 7 719 9895 7 104
10000 11 593 8845 9 510
10000 13 511 6123 10 1023
10000 ∞ 395 2054 11 2027

100000 2 50000 99999 2 2
100000 3 16668 99997 3 6
100000 5 10001 99985 5 22
100000 7 7148 99895 7 104
100000 11 5856 98845 9 510
100000 13 4966 84985 12 4062
100000 ∞ 1181 10445 14 16345

1000000 2 500000 999999 2 2
1000000 3 166668 999997 3 6
1000000 5 100001 999985 5 22
1000000 7 71435 999895 7 104
1000000 11 58448 998845 9 510
1000000 13 49470 984985 12 4062
1000000 17 43646 753225 15 32716
1000000 19 39068 594645 15 32767
1000000 ∞ 4113 38526 17 131014
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For larger values of y, much larger values of N and k would be needed
to observe oscillations of the ratio f(k, LN (y))//kπ(y).

Table 3. Complexity for y = 3

k f(k, SN (1)) f(k, SN (2)) f(k, LN (3)) f(k,LN (3))
k2

f(k,LN (3))
f(k,SN (1))f(k,SN (2))

1 2 2 2 2.000 0.500
2 3 3 4 1.000 0.444
3 5 4 8 0.889 0.400
4 6 6 15 0.938 0.416
5 8 8 28 1.120 0.437
6 10 9 47 1.306 0.522
7 11 10 71 1.449 0.645
8 12 11 103 1.609 0.780
9 14 12 142 1.753 0.845

10 16 14 188 1.880 0.839
11 18 16 238 1.967 0.826
12 20 18 296 2.056 0.822
13 21 20 352 2.083 0.838
14 22 22 416 2.122 0.859
15 23 24 484 2.151 0.876
16 24 25 544 2.125 0.906
17 26 26 624 2.159 0.923
18 28 27 708 2.185 0.936
19 30 28 788 2.183 0.938
24 40 33 1240 2.153 0.939
27 43 36 1474 2.022 0.952
32 48 46 2124 2.074 0.961
45 74 72 5062 2.500 0.950
48 80 75 5752 2.497 0.958
64 96 91 8608 2.102 0.985
81 130 108 13810 2.105 0.983
96 160 138 21640 2.348 0.980

103 167 152 24930 2.350 0.982
128 192 202 38340 2.340 0.988
135 206 216 43954 2.412 0.987
192 320 273 86720 2.352 0.992
243 371 324 119666 2.027 0.995
256 384 350 133836 2.042 0.995
300 472 438 205556 2.284 0.994
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54506 Vandœuvre-lès-Nancy Cedex, France
E-mail: rivat@iecn.u-nancy.fr

Received on 9.3.1999
and in revised form 8.3.2000 (3569)


