On the Convergence and Summability of Power Series
on the Circle of Convergence (I)

by
A Zvgmund (Wilno).

§1.

1. Let F(2) be a function holomorphic in the cirele Jof<<1, that is

(1) Ple)= e 2(,””,,

=1
The function I(z)

is said to belong to the class 1-[’1, where
A>0, if the integral

(1.2) Lie)=Li{e, F)=o= [ |F / (o) v
is bounded for 0< o<1. Instead of HY, we shall write H. It iy well
known that, it F(z) belongs to H* , then the limit

F{e!?) = lim F(z)
zsel?
exists for almost every 0, provided that = tends to ¢/’ along any
non-tangential path. The funection |,F(c’”)|2 is integrable over the
interval 00 2.
Let

Cn == Oy "—ib,,
for n=0, and let :

1 00‘
(1.3) §a0+2_/ (@, cos nO-+b, sinn0d),
n==1
(1.4) 1 . ‘
. — 517,,—4—2 (@u sinnl — b, cosn0)
s

be the real and imaginary parts of the scries (1.1) on. the cirelo g==e?,

pegoat
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If Az=1, the neo vwmv and sufficient condition that the series (1.1)
Bhou]d helong to If, is that both the series (1.3) and (1.4) should
be Fourier series of functions of the class I

Without loss of generality we may suppose that the constant
term Le, of the series (1.1) is real, for otherwise we may multiply
the series (1.1) by a suitable unit factor ¢/¢, which does not influence
the value of the integral (1.2). In other words, we may suppose
that the constant term of the series (1.4) is equal to zero, and so
that that series is of the form

o0

(1.5) DM@y sinnd —b, cos nb).

el
Lot f(0) he an arbitrary function of pmmd 9w, integrable L

over the interval 0=70<2m. By su(0)=su(0,f) and Sa(0)="5(0,1),
wo shall denote the partial sums of the series (1.3) and of the con-
jugate series (1.5) respectively. The partial sums of the series (1.1)
will ba denoted by Su(2)=S,(z,0"). Hence

n n
$4(0) ::-»:rg;;a(,v{mzv(a,,.c()sv0~]~'b,. sinv0), E,,(0)=2‘ (@, sinyf—Db, cos »0),

e p==]

.....

We shall also write

(L6) 0 =Max|s.(0), #(O)=Max[5.(0)], 8*)=Max|Su().

The first arithmetic means of the series (L.3), (1.5), and (1.1)
will be denoted by aa(0)=04(0,f), on(0)=0u( (0,f), Tal)=Tn(2,F)
respectively. For emmple

Tu (2 )=3 ,0—{ 2 (1"”_'—)6’

Using o notation analogous to (1.6), we write:

o*(0) ==Max

0|, 7(0)=Max [5,(0)], T*(2)=Max 7 (2)]

n

By R0y ey ey e WO shall always mean any sequence of
positive integers %ulmfylug al inequality

wan >u> 1.
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We shall also write

(L8)  $4(6)=Maxls, (6), *(6)=Max

(O 1) =M |8, (2]

By Auj,..,Bey,.., ete. we shall mean positive numbers, not
always the same in different contexts, depending only on the para-
meters a,f,... shown explicitly. By 4,B, etc. we shall mean positive
absolute constants.

2. The Fourier series of funetions of L', where r>1, are known
to possess certain interesting properties, some of which fail to hold
in the case r=1. We ghall collect here a number of these properties.

Theorem A1), If f belongs to L', where r>1, then
(i) the sequence snk(ﬂ) converges almost everywhere to (0),

(ii) the function t*(0) belongs to L”, and

1 1
i 2 . ”

'_’{t*(O)}-"d0)1-<j1,-,,z(_/ o ao)

0

—

(2.1) (

Part (i) of this theorem is false for r=1. For Kolmogoroft’s
well known construction of an integrable funetion whose Fourier
series diverges almost everywhere, permits also to obtain an inte-
grable f such that e. g.
: ]Ellszn(e, f)l..-—_-oo
n-»eo

almost everywhere 2), Hence also part (ii) of the theorem is false
for r==1.

Theoremn B. If f belongs to L', where r>1, the series
9.9 Y [80(6)—0n (0)
(2:2) 2

n=1

converges almost everywhere ®). In particular

1~ )
(2.3) mz 18(0)— 0, (6)[—0
w==()
and so. also
1\ 2
(2.4) T 2 86— 0

for almost every 6.

1) Littlewood and Paley [5]. 2) see Kolmogoroff [4]. %) Cf. Zygmund [10]
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That (2.4) follows from (2.3) is plain: for almost every  we

have on(0)—F(0) and so also

(2.5) 1y |0 (8) —F(6)—0.

In view of the inequality a24-12<2(a24b2), at every point 6
where we have (2.3) and (2.5) we also have (2.4).
Schwarz’s inequality shows that (2.4) implies

n
i 1 X
2.6 o »(0)— .
(2.6) nﬂ% 51 (6)—(6)—0
It is known that the exponent 2 in (2.4) may be replaced by
any number {2-04). The problem whether the relation (2.4), or at
least (2.6), holds almost always in the case r=1, remains open.

Theorem O ) If f belonys to L', where v>1, then, for almost
every 0, the sequence 1,2,... can be broken up into two complementary
subsequences v and Ly, depending in general on 6, and such that

(a) &, (0) tends to f(0),

3
’
"h

, N Al
(b) the series 2Tue converges.

The rvesull is false for r=1 5),

8. The main puarpose of the paper is to show that part (i) of
Theorem A, ay well a8 Theorems B and €, hold for power series
of the elasy I, that is for such Fourier series, whose conjugate series
are also Fourier series. More precisely, we have the following pro-
positions.

Theorem L. If F(2) belongs to H, and the sequence {ny) satisfies
(1.7), then

(1) b’nh(t'”’) ‘converges almost everywhere to F(e),
.
‘.’.:“l N 2'7:
(ii) ( [ et do) < By | |F(e")] a0
i 0
for every  O<u-<<1.

4 Yoo Tlardy wnd Littlewood [8], Carleman [1], or Zygmund [9],
. 238, The latter hook will he quoted, for short, T. §.
5y ('f, Zygmund {10].
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Theorem 2. Let the integral

2

(3.1) | | F(oe!")| logt | F(ge'")| 40
0

be bounded for 0<C p<<1l. Then
2 278
[ 7*(0) A9< B [ |F(e*)|log* | F(e)| 46+ B.
0 ]
(i) Let my<mq<<... be an arbitrary sequence of positive integers.
Let e(w) be an arbitrary non-negative function, defined amd bounded
for 0 u<oo, and tending to 0 as w tends to infinity. Then there s
a function F(2)- satisfying the relation
2

| oo 10g ¥lad ) o | Hlee)) d1=0(),

and such that the function
Max lSm (6“))1
k k
is not integrable over the interval 0 0<2m7.
Theorem 3. If F(z) belongs to H, the series
;1 e"’ __,,: (610)|‘2

=
n=1

(3.2)
converges for almost every 0. In particular,

(3.3) ?ﬁl:i 2' |8, (e/)—PF(eV)[* — 0

v=0

for almost every 0.

Theorem 4. If F(z) is of the class H, then, for almost every 0,

the sequence 1,2,3,... can be brokem up into two complementary sub-

sequences vy anmd {un}, such that

(a) S,,k(e“’)' tends to F(e'Y),
(b) the series D 1/ux converges.

icm
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4. Before we pass on to the proof of these results, we shall
makoe a few eplanatory remarks.

a) Part (i) of Theovrem 2 is stated here for the sake of
completeness only. Its proof is given elsewhere, and we shall not
reproduce it here ©).

B) Part (i) of Theorem A follows from Theorem 1. Part (ii)
of Theorem A, however, is not a consequence of Theorem 1. Since
the inequality (2.1) is interesting, and its proof, as given by Little-
wood and Paley, rather difficult, we shall give here another proof
of this inequality. The new proof uses the main ideas of Littlewood
and Paley, but at certain points it seems to be simpler. The simpli-
fications can also be applied in other cases.

y) Lt has been shown elsewhere that Theorem 4 is a simple
consoequence of the convergence of the series (3.2) 7). We shall not
repeat the argument here.

Theorems 1, 2, 3, and 4 may also be enunciated for Fourier
series. Tor this purpose it iy sufficient to observe that if the funetion

(3.4) |£(0)]log™|£(0)]

is 1111,eg‘1' wble, and (1.3) is the Fourier series of f, the conjugate series
(1.5) is the Fourier series of the funection

(3.5) F(0)==—= /f 6--1) ctg2tdt 8),

(The integral (3.5) is known to exist, in the principal-value
genge, for almost every 0, if f iy integrable. The function f satisfies
the following two inequalities

241
(3.6) Joa /vnmmwmmwd )
RF Z{r .
@7 [ [0 logh [F(O) a6<B [ [£(6)| (og*[f(O)) a0+ B ™).
0 0
8) Cf. Zygmund [8].

)

) Cf, Zygmund [10].
8 1. 8., p. 160,

y 8., p. 160.

Yy L8y p. 165 (ex. 7).
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From (3.6) and from Theorems 1 and 3, we se¢ that il the
function (3.4) is integrable, then

2
6)—>7(6), %+L%wn—40nﬁo
for almost every 6. The reader will have no difficulty in stating
the other results in terms of Fourier series.

§2.

4. We now pass on to the proofs of the results stated above,

Lemma 1, Let {g,(t)}, where n=1,2,..., be the sequence of Rade-
machers functions, that is @a(t)==signsin2mt. Let
1

s(t)=a11(t) + azga(t)+ oo+ anpn(t), = |af)*

"

where the a’s are constants, real or complex. Then
1

1 r
(4.1) Ar8< ([ 15 at) < 4.8
0 !
for every r>0, and
1
(4.2)  E'Slogt8—L< [ |s(t) log* |s(t)| @< ES§log+ S-+L.
0 '

The inequality (4.1) is well known 1), and we restrict ourselves
to proving (4.2). Let @(u)=log(u-+e) for 4=0. The function p2(u)
is eoncav for w>>0. Applying Schwarz’s and Jensen’s inequalities
we obtain

)é

UMMﬂwmwﬁsgwm& —Sp(8),

in view of (4.1) and of the fact that we may take 4,=A,=1. It is

easy to verify that g(u)<logtu+-2. Hence, considering sepa,mtely
the cases S>e and S<e¢, we may write

1

h/'ISIlog‘“ISIdté/'ISIqo(ISI)dt / oL dt) (/w(

f [s| log* |s| dt<<Slog™ §+-28<<38 log+ §+3e.
0
The second inequality (4.2) is thus established.

1) see e.g. T. 8., p. 129 (ex. 8).
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In order to establish the remaining inequality, we write
p(u)=wulogu, ylu)=yp(u/Al) for «>0. The functions p(u) and x(u)
are convex and non-decreasing. In view of the first inequality (4.1)
and of Jensen’s inequality,

! !
Slogt S=p(8) <y (—j-}, j Is| dt):x( [lsl dt) <
¥ .

1
< [eltog*| 3, <, / if1og* s @+ ELAL 1
0

(

(4.3)

Integrating the obvious inequality |s|<|s|logt|s|+e over the
interval 0<{#<C1, and substituting the result into the right-hand
gide of (4.3), we obtain the first inequality in (4.2). This completes
the proof of the lemma.

The inequalitios analogous to (4.2) hold if the function ulog™ u is replaced
by moroe general fanetions. Tor example, if p(w) is non-negative, increasing, and
pueh that ¢2w) s concave, then

t
/\sl’ u(lsl) d << 45, 8" 1 ().
0

(If, instead of Selhwarz’s, we apply Holder’s inequality, we may suppose
that «'*(u) is concave, where e>0). A gimilar argument may he used to obtain
an analogue of the first inequality (4.2), but we may then also argue as
follows. 1t ix known ) that

in o seb of 1 contained in (0,1) and of measure >1/16. Hence, if w(u) denotes
an arbitrary non-negative and non-decreasing function, then

1

[ wlll) di- 1 o (;b)
b ' /

Lenvma 2. Let [1(0), f2(0), .., fn(0) De functions of period 2m,
integrable L, and let J»(0) be the function conjugate to f.(0) (that is the
ffcmotl,(m, derived from f. by means of the formula (3.5)). Then

l 2

(4.4) ‘/:'(Z‘]Z'F)z a0 @P,/ (\‘|f l ) 12) (rr>1)
b !

1wy Paley and Zygmund [6].
1) ¢f, Littlewood and Paley [5], for the case p==2,4,6,..

Fundnmenta Mathomaticae, To XXX, 12
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2 1 2 !
ws) [ (IR d0<@/ (3 168) g (X 11F) 0+ @,
1 1

(0<p<<1).

(/(>’|f|) d@)

These inequalities can be deduced respectively from the well
known inequalities %)

(4.6) / ()3 I7.%)

0

2 2{1

(&.7) [17"ao <P [ |fl"ao (r>1),
0 0

(4.8) /Ifl a6 <@ / fllog* |f| 40+ @Q*,

(4.9) ‘/' a6 < B ( /' il cw') (0<u<1),
[§] 1] ’

and it is plain that the latter inequalities are contained in the
former omnes.

For further applications, it is important to observe that the
functions f are not supposed to be real. If f(0)=wu(0)+1v(0), where
% and v are real, then by f(0) we mean the function #%(0)--%(0).
(The inequalities (4.7)-(4.9) are usually stated in the case when the
funetion f is real, but it is not difficult to see that they hold for f
complex).

We restrict ourselves to proving only one of the inequalities
(4.4)-(4.6), e.g. to proving (4.6), the argument in the remaining
cases being essentially the same.

Let

N
(410) >—H 1,(0) @, (0), =2 7.(0) 9,

The function §:(8), where ¢ is a parameter, js conjugate to
g,(0). Hence, in view of (4.9), :
2 “"

([laoas).

0

Yt

[l o) an< Ry
0

By Cf. T. 8., pp. 147, 150.
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Integrating both sides of this inequality with respect to ¢ over
the interval 0<CEKT, and making use of Holder’s inequality, we
obtain

1 2t I
[ a / g0 do<ry( [ a [ lg,(0)as) .
() 0 0
If we now invert the order of integration with respect to 0
and ¢, and take account of Lemma 1, we obtain (4.6), with
Ru=R} Ay [Ay=R} | A,
This completes the proof. The lemma holds, of course, also
in the case N==oo.

5. Lemma 3. Let f,fy..0fy, be the functions of Lemma 2,
and Tt sup denotes the v-th partial sum of the Fourier series of fu.
Lot k==, be an arbitrary function of n. Then,

‘ 1

27 LY 2 r
1) [ >1|s,,,,|\ <4l ( Zj\m_r a0 0>1),
. oo 0 = !
2 1 2 | 1
N e wroy
52) | (,}j1 suil’) 40 < B | (gjlv,,\) Jog | Z]f,,l>d6+B
0 s 0 = II—
1 1
'2,:'1 N 2'1” 2 u
5.3) | (x S ,f|) a0 < 0}1( [ (Zlf,.) do) (0< u<c1).
h JIEn| \

The inequalitics hold if we replace sn» by Fu», that is by the
v-th partial sum of the series conjugate to the Fourier series of fn.

It iy again sufficient to restrict ourselves to one of the ine-
qualities, e. g. to (5.3). The argument uses a familiar device. We write
(5.4) fucosk0=g.(0), fusin 0= h,(0).

Using (3.5), the formula for s, may be written

(5.5) S = (I (0) SILT60 — hr, (0) cON 0+ an (0),
where
, 27
(5.6) a,,(o.);:%; / 1(0) o8 kin(t—0) dt.
0
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Let I denote the left-hand side of (5.3). In virtue of (5.5), we

may write
i 27 1 "

1<8" [ (Sl + S+ Sleaf) a8
(5.7) o 1" L ”
<5 [l +( %5} (\‘ja,,l 1 as.
0 n

From (5.6) we obtain

27r

./‘(}_'_,'Ia,,]). A< (2 1”‘/ Zla,,| (w

0 n
2 1 u[/(

Hence, by Minkowskis inequality,

1 1,
21 gt

(/ Ifult !dt>)dl);l 21{%(; |f4l d’)} .

n ki

2 L - 20 ‘

: S
(5.8) (18] do<2alf (SI0F) (lO
0o n 0 n

On the other hand, from (5.4) and (4.6) we deduce
1

2:"1 su 2t
[(Slgp) a0 <zl [ (1) Faf
0 on

b

T

(5.9) .

2
W v, a2
/ \VL,, ) A< Ry, {/ (%’ |f‘,,|l) an\

0

1\,
e t—

From (5.7}, (5.8), and (5.9) we obtain

Do 1

...1 27

I<(2R) +27) 3 {/ \‘If,,l) ao)',
which gives (5.3).

6. If (1.3) is the Fourier series of a function j, we write

$r(0,0)=75 “0'1"2 (@m cosmO- b, sinmb)p™,
(61) nm: Di

1
flo,0)= 5 % +2‘ (G cOSMO - by sinm0)p™.

m==1
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Lemima . Let fy,fa...,fn be « set of functions integrable L and
of period 2m, and let s,,,(g,0) denote the sum analogous to (6.1) but
derived from the Fowrier series of the function f,. Let k=5k, and 0=0n
(where O <L) be two arbitrary functions of n. Then

1 !,
.21 N : o F 2,, 57
6.2 N e e ot ‘ z
6.2) [ (X lsnrlen0)) a0<K:| S0) (r>1)
o et b ‘n -1
1 1
N 3 21 3

063) [ (S ouslen0l| a0 < [ Shato) g+ Siincor) ao1

0 ne 0 n=

. In the Z(*m/umd :s“z,des we may replace s, 3. by 8, 1., where 5, g
iy the polynomial conjugate to sy g,

1o —

1
201 3 z

2 N s
64 [ | X lsnal e 0) ) A< M / (
I

0} (0<u<1).

It iy sufficient to prove (6.4). We shall write s,.(0) instead
of $,4(1,0). Abel’s transformation and Schwarz’s inequality give
k=1
I8, (0uy 0= ( ]"“Qn Zém( 0)on-+sni(B)en| <

<2 {(1—e) ,;0 (5,0 (O n + 8,1 (O €n')-

Lot I denote the left-hand side of (6.4). We may write

1
g 7 e
f\<\22 / <2/1 2-’0(]"911 Ién, I Qn“l‘Zr]Sn. 11 ]) ao.
0 2] g P)

In view of the inequality (5.3) of Lemma 3, the last ex- -
pression does not exceed

H
# 0} 7(LN Sl et .00 a1 <
1
2at
<a"oy / (gl 14 ) adf,

and the inequality (6.4) is established.
Tf we take lky==ky=..=lky=o00, we obtain inequalities for
harmonic functions f,(e,8); 7,(0,0);..»fy(€,0)
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Lemma 5. Let 0<oa<1 for n=1,2,...,N, and let Ay denobe
an arbitrary interval situated in (en,1) as well as the length of
this interval. Then, under the hypotheses of Lemma 4,

27

65 > s,.,k(en,m\‘z)l a0 <K / (2 / e OIdQ) 0 (>,

{ n=1 ==l
1
A z (/
/(2|511 k Qn, IA) d)\\\
). 6 n=1
(66) 27t N 1 N ]
<z (X / il 00Pac) tog (3 1 [ifales0lde) a0+,
0 n=1 =1 a,

27 N

/ (Z ls" k(@ny 0 2)24 a0 <

‘ 1 f|fn 2,0) d@) dO\

where the coefficients K, L, M, are the same as in Lemma 4. The
sums 8,1(0) may be replaced by 3ur(0).

<M,,{ (0<p<1),

‘We restriet ourselves to proving (6.7). We may suppose without
loss of generality that no interval 4, contains the point g=1. If g,
is any number between g, and 1, the inequality (6.4) gives

2m 241

U (ais,,k en,a») <y / (,:'f 01y \)ECM}-H.

Now let m be a positive integer, and ¢, where i=1,2,...,m,
the left-hand ends of m equal intervals into which we divide 4.
We replace every term |s, , (g, 0)[2 on the left of (6.8) by m terms, each

equal t0 m|s,x(0n 0)f. Similarly we replace the term. |f.(o 0)
m
on the right by the sum ‘}:1 m|f, (e, 0 )F. Ifin this now inequality

n?

we make m tend to oo, and note that f.(e,0) is continuous for p
of 4, and arbitrary 0, we obtain (6.7).
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7. Lemma 6. Let F(2) be o function of the class H, where 2>0,
and et 1
1

(7.1) 9(0) = (1) 7" (e fle)

0
Then .

[y

2{1 7 2{( bl
(1.2) ([ 970y a0) < aa [ \Pe) o).
0 0 !

This result is due to Littlewood and Paley ). They state it for
A>1, but the proof holds, without any change, for any A>0. We shall
require the lemama in the case A>1 only. The limiting case A=1
is-the only one which is required for the proof ‘of Theorems 1-4.

Littlewood and Paley state the inequality (7.2) in a slightly
differenti, form, odz. they replace the right hand side of (7.2) by

s or )

wheve f(0)=RI¢"). In this form the inequality cannot be extended
to the values 0<A<C1.

In gtating their inequality (7.2), Paley and Littlewood assume,
for gimplicity, that F(0)=0. This hypothesis is not necessary. It is
easy to see that if A>1, and if (7.2) is valid for the functions F(z)
vanishing at the or 1g111 then that inequality is also valid for any func-
tion of the class H*. The same result holds in the case 0<<A<C1, as the

usual argument, based on F. Riesz's decomposition theorem, shows.
8. The following is the main lemma of the paper.

Lemma 7. Let 8,(2) and v.(2) denote vespectively the partial
sums and the first arithmetic means of the series (1.1), representing
a funetion () of the dass H. Thm

27¢

(8.1) / (2/ (’l(‘ »—«Tn (" )1) dO <PIJII-, (’IHI d@ (7">1),

2‘71 o0 f 9
/ (2 |8u (e "):M) a0 <9 /|1?’ ¢l log+ | F(e'®)| d9+Q,

St~

3

% V19 (plt
(8.3) J (2 S (e!?) =

9 }2‘ ¢ 2t
(.ZU)\

) )d0<(1{ [ |7( '”‘|d0) (0<p<1).
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Similarly, if {ng) denotes amy sequence of positive integers salis-
fying the condition (1.7), then

N Lo
(8.4) /( 3180, (e) k(a"”)|)d0 13,«6/ ()" @ (r>1),
2 o E 2t
(8.5) 6/' (kgl [, (¢4) 1 (¢ ) W< Qe O/' P(e)[log™ ()] 49+ Qo
1 2 "
(8.6) / ( 318,09 - 7 @) d0<1a;; ) ( )

The most important for our purposes are the inequalities (8.3)
and (8.6), and we shall confine our attention to these inequalities
only (the proofs in the remaining cases are similar).

We first observe that

S’ ei(l)

(8.7) 86! —7,(6!") = —i=nd

Here, and everywhere in the proof of Liemma 7, a dash denotes
differentiation with respect to 0. For 0<{p-<1, Abel’s transformation
gives et

Si(e)=0 " Si(06")—(1—0) 0= 183 (ge®).
)

Hence ‘
(8.8 ISs(e )P <2 oIS (oo )" + (1— 9)2( DURR ALY

<ol S+ 252 3 g gttt .
)
1
We write g=¢ =1— P Let 4,=(¢,0,,). From (8.7),
(

(8.8), and Lemma 5 we obtain that the left-hand side I of (8.3)
satisfies the inequality

9; - I‘S" 0,€") o l— —0, “ , \ ‘l"’“
I a f 2 9’1/3@“" 2 ,ni n 29 _1|S"(Q,,ew)|) dao
= nw=1 On o
1u n— 11
<22 3'”M l/ (2%3A /[F’ Qel'f‘ dQ 1_2/ 2‘ J/vi_z-ﬂ Qel() | de) do}
nd »

2
\<\(2 6M,,)‘l’,|[ / (2 (’l’l«‘l‘ 11@(?’1:]:-‘.))“/‘(1__@)

0 n=t Py

| B (getv)| (ZQ) d()}ﬂ,

n '

icm
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Thenee we deduce that

2.t 1t
(8.9) | zg(l.OeM,,)-“( [g0)a0)
0 :
: 4 ol <] & The | ; ,
gince (o)< |5 1(2) . The inequality (8.3) is a con-
a0 de el

sequence of (8.9) and of Lemma 6.

The proof of (8.6) iy analogous to that of (8.3). From the
condition (1.7) it follows that there is a number o'=d'(2)>1, such
that (g 1+1)/(Rw+1)>a for m=1,2,... Let

‘ 1
~Am= (Qm’ 1— Em) ’

50 that no two 4,, have points in common. Let I' denote the left-hand
side of (8.6). If wo replace n by »,, and ¢ by g, in (8.8), we may write

- “"""""3

R
Ou= A1

nt

1
1 2% "m 5t

T w1y
UL —2 o ioy 12\ 12
I'<c(2¢7) / { \1(”9)1, S, (eme Wt D = IS (ome )| )} as
m J

0 p==d

n;l J/ | (06" dg d@}
2t 1 u
¢ n”'+1 ’ [H — l
< (2, :f( 12 < A/IF o2 (1—0)de) 4] -

ne=

1
H
2,2
<(2¢H Mjii

m:=1

Hencee

(8.10) Ig((‘fﬂfﬁ%y ( f ;(0) d@)y.
0

The inequality (8.4) follows from (8.10) and (7.2).

9. It is now a simple matter to prove Theorems 1-4.

Paxt (i ) of Theorem 1 is immediate. If F(2) belongs to H, then,
in view of (8.6), 2 |8, ~7n, [<oo, and so Sy, —7,, —0, for almost

every 0. Since 1,,, (e’”)——»]’(a“’) for almost every 0, the result follows.
In erder Lo prove part (ii) of Theorem 1, we note that
ISMl»ﬁ"UnJ + Wn,;” T, l Hence

,\_,,A

(9.1) T(0) (.; 8, — 7, ")
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The inequality (i) follows from (9.1), (8.6), and from the well
known inequality

1 20

(/r o*(0 )”d@) <0u/l1” (e do ).

0

(9.2)

Part (i) of Theorem 2 is established similarly. Tnstead of (8.6)
and (9.2) we apply respectively (8.5) and the inequality

27 27

/a d0<A/ |P(et®)| log| F(c/?)|d0 A4 ).

Theorem 3 is a consequence of the inequality (8.3).
Theorem 4 follows, as has alveady been observed, from the
convergence of the series (3.2).

§ 3.

10. In this paragraph we shall prove some minor results.

Theorem 5. Let the sequence {my) satisfy (1.7), and let the
functions t*(0) and $*(0) be defined by (L.8). If |f(0)|<1, then there
ewist two positive absolute constants A and p such that
27
/explt*(@) a<p,

0

27
(10.1) [exp 23+ (0) A0 < .
0

If f is continuous, the integrals inm (10.1) are finite for every
positive A.

We restriet ourselves to the firgt inequality (10.1).

Lemma 8. If the sequence {ng) satisfies the condition (1.7),
and if f belongs to the class L, where =2, then

2 oo 27t

@02) [{Zlen,O1—0n, O B< 4G 170N 80 2.

The constant A depends on q and o only. If o is fized, then

(103) Aq, (2=A((<Aq-

15) See Hardy and Littlewood [2] or 1. 8., p. 248.
18) This inequality is not new. It was communicated to me a few years

ago by Prof. Littlewood. The proof given here seems to he slightly sirapler thau
the original proof.
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We may write

|3"(0 had 71 0)\""‘ :

+1|8” Q’ | .
Henee if n>>0,

n—1 q

q——l

(104) s, 00, O < (1| Do, 0)e=+ 2 5,0 o
‘,(1-~1 =1 " n— ot
< o St S e
{ ’ n—1
é";,,;;“e"'"’ 1—0) 2 572, +W9"’”{Sln (0,0)] -

By M. Riesz’s thm)mm,

27r

(10.5) /I {0,0) ”dO(RZ/If (0,0)]" o,

where a dash denotes differentiation with respect to 6. The con-
stant R, satisfies an inequality
(10.6) R, <Kyq.

If wo write Q::@":%”l—l/n in (10.4), an application of (10.5)

and (10.6) gives
[ e, 0)'d0.

2
20

['311( '"-Cl‘,, Ifld0<
0
We now observe that the integral / 7' (0,0)]"d0 is an increasing

function of p. Hence, if gnkml—l/nk, nkz-—( —1/ng, 1—1fan),

we have
2 o0 1 1
S (Zionor-onor|m<ors 33 w [ o) te<
Jel ” W'l:()

0"‘1’“’2'/(10/!7' 0,0)"(1—0)""de <0"q «“ /d()/\f 2,0 (1—0)"" de.

k10 A"/(

It is now sutficient to apply the following known result due to
lel,],uwo()(l and Paley V%): '

17y loe. oiti
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Lemma 9. 1f {(0) belongs to the class LYy where 22, then

9

2 1 t

' 4 ( 41 [, :

Jao] (171,00 (1) ag)<B" [ f(0)[" do.

0 0 0

This completes the proof of Lemma 7.

The proof of Theorem 5 is now easy. Let ¢o(u)==¢'—u—1==

=221+ 2/3!+... From (10.2), (10.3), and from the fact that [f|<1,
H H

we obtain
2T o o0
1 ' ] . Y Al q
(0.1 2 ot —anpan< X -
0 k==t =2

Using Stirling’s formula we see that the sum y, of the series
on the right is finite provided that AAe< 1. Let us fix any positive A
satystying this mequa,]ity; Since |*“’n,,|~<~|"n.k| ‘*‘!“n,{""ndgl ‘—-l~-\s%k~«ank|,
we have (") <p(A)+Y p(2 l.s’nk——a,nk{), and so

27
17 ‘
0

In view of the inequality w<{e(u)+2 (©=0), this gives

2T 2,'7 201

f A" (0= j (%) + M+ 1) A< | (20(M*) + 3) dI<dme? -+ davy, + G,
0 0 (')

and the proof of the first inequality (10.1) is complete.

To establish the second part of the theorem, concerning con-
jcinuous functions, we make the decomposition f=f, --f,, where f
is a trigonometrical polynomial and the upper bound of |f,| iy as
small as we please.

11. Let f(6) be a function of the class L'z, and let p,<<p,<py<<...
be any sequence of positive integers satistying the condition

<

, N\ L
y '@-—;“—‘-0(1).

(which is certainly satisfied if p /v is an inereasing sequence). Then

2 Sy 0100

P

almost everywhere. In particular, the sequence {sp (0)} is summable
.

(C,1) for almost every 0 18),
A similar result holds for the functions of the clags H.

18) See Zalewasser [7].
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Theorem 6. Let P(z) belong to H, and let {p,} be any increasing
sequence of positive integers such that
(11.1) P, n=0(p,, —D,)
( This condition is satisfied if p,..,—D, is am increasing sequence ). Then
L n
Al 2
— 10y — (el — ()
= [ () — P(e")
-1
Jor almost every 0.

It iy sufficient to establish the convergence almost everywhere
of the sories L‘]Sp,,w'v,p,,]&/w, which is o consequence of the inequality

{
A o0 2 2/'
/ ( > lff_:ip_‘,) (mglﬁii(
. v

i} mol

2(1 I
[ do).
by

We shall not give here the proof of this inequality, for this
would be a repetition of the proof of the inequality (8.3). We on-ly
observe that in defining Ap,, we distingunish two cages, and we write

le,"zz (1 "*-],/p”, 1 *1/1)11%—1)7 if pn—klézpn;
/]l’n:‘:"(l "—1/7}", 1.__1/229") if pn+]>2pn'
Tt is not excluded that the hypothesis (11.1) may be relaxed.
We have not investigated this probleni.

12. Lot $.(0) denote the n-th partial sum of the Fourier series
of w funetion f. It has been shown by Littlewood and Pajle.s.r (loc.
sit) that, if § belongs to L7, where 1<p<2, then the function

m(0)=Max {sa(0)|/Tog!? (n+2)]

belongs to L ). This theorem is false for p=1. For example, the

geries
(==}
2 COSNE
loglogn
n==38

is w TFourier geries?20), but the sequence |sn(0)/log(n+2)| can not
in this case be majorised by any integrable function.

) Littlowood and Paley [6]

wy (¢4, e g T. 8. p 110
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Theorem 7. Let F(2) be a function of the class H, and let

JW(O);'—“ Max {lS”((jw)Vlog(’)’b ,.1__2)}'

Then M(0) is also integrable and

2t

0

2

It is sufficient to consider the
for |z|<1. Then F=@", where G belongs to H*. Let

(12.1)

n

(43
Afi:(“”‘“) ~— 8(e)=S(e, € )= >A;:_.. de'y 7i(2)=8"(2)/ AL

I(at1)’

In other words, Sy and 7, denote respectively the a-th Cesiro
sums and the a-th Cesiro means of the

Lemma 10. If ((z) belongs to H”,

= ()

lfn (1 —'Tn ei )
(12.2) fz ,n+1 g (o3}

n=A

‘We firgt observe that

so that

2

[
[0 302 9%

Gase

()= ) dne"

n

Y 1 .
R 2 v Ay d:u’«"';
=)

[M(0)a9<0 [ |F(e)| 0.
! 0

when F does not

series

then

(12.1).

an = ]LJ|G (e[ a0,

1 7T
72;/!7, e ‘)—1: (61| d@-—_—-z A,,_,, .

0

Writing, for brevity, l,=1/log(n+2), we see therefore that

the left-hand side of (12.2) does not exceed

2 Z" 2[‘” 2 (n—v-4-1)

n=0 pre=()

21

l
K, ) [d¢| P2 3 o
: =0 = (n+1) (n—r+4-1)

(==} [=4] l
e N\ig 2 Y ”
..]Ll“/:/ || 92 > !

"

+ Ky > | 92 > —

{(n-t

P ()

0

(1)t (n—wv-}-1) N

e

n zn'll

vanish
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say, where

@ gy

1 Y 2
Pty DNl 1) Y <y Dl

el = =1
(=]
o<, Slafr > hx S,
Pz ] n==2v-4-1 p=1

ginee I,<<1 for a>1. This completes the proof of (12.2).
The proof of Theorem 7 iy based on the formula

n

S, ()10 [n) Z*Tjr (¢ 20 (]) (6’” G'-)

=0)

which is @ consequence of the cquation F=G" By Schwarz’s
inequality,

n n
(12.3) |8l 1)) < "-\J:)lb'; "-'(em,a)-m >‘|z,, (i, @) 4, *?
(A ez
\ | n--1 I 1
- 1:,. —_— . v rq.
«;.:142 T D T =Ua0)+Val0),
grel) r=0

say. Let p(0)=Max 3¢, ¢)|. Then
n

2

(12.4) Vu(0)< Kgy2(0)log(n+2), where /qr d6<IL6/[(1 ) ao.

Let, p¥(0) denote the integrand on the left-hand side of (12.2).
From (12.3) we see that
271 27
(12.5) U, (0) =<K 40%0)log(n+2), where /rpz(O)dG:{](,/ |G(a“’)|zdt9.
; 0 0
Theorem 7 i & consequence of the inequalities (12.3), (12.4),
(12.5), and of the equation =6

Remark. From 'l‘h(-‘omm 7 we may deduce that, if F(~)=Vcnz” belongs

et ’:1
;
/Nf) )b IL/ | Fie ™| do,
0 0
Tn order to prove this, we apply Abel’s transformation four imes o the
n
Bum __(\,_I'vua”’”/log‘(w'l--z), 80 as to introduce the third arithmetic means of the
po0
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o0
geries S cve™’. Tt is then sufficient to observe that the expression
r={)

n()=M ax]r (e, 1)

is integrable and that
27 2ur

/ ‘,,(0) 60 / '514'(@1 O dn.
6 0 .
The latter inequality follows from the fact that, if F=@2 then

80
8¢

ST (6,6 8K, )< STk, = \’(»H lrate!®, )
*0 =0 ()
and that, if »(#)=Max ¢} (¢", )], then
"271 27¢ 27
/:w(())da /lG %) 2 dp=4 /|F el an.
0 0 0
138. One of the most interesting results of the Littlewood-
Paley 2) paper is the following

Theorem D. Let ny=0<n<ny<...
satisfying the condition

(13.1) 1<a<mprs/ma<f (k=1,2,...).
If F(z)=Ye¢.2" belongs to H', whm‘(* r>1, and if
gy
Ay=co, =D ce? (h=1,2,...),
“:nk—-1+1

then

! 1
-t

(13.2) ,,,,ﬁ(/(Z\Ak\) ) (/|P o) as) (JL,,(e,;;(/(Z,IA\)dO)

It is not difficult to see that the first of these inequalities
may be obtained exactly by the same argument by means of which
we have obtained the inequalities (8.1) and (8.4). The argument
gives even slightly more, viz. the following

Theorem 8. If F(z) bclngs to H, then K

21

1
( / ( VM |> d@) S_:—Ar,«,(l./ |Iﬂ(()i(l)[d0
0

0
If the integral (3.1) is bounded, then

(0< = 1),

1
)“d0<A,M; / |1ﬂ o) TogrH B{el?)| 40 -+ A .

21y loe. eit.

be any sequence of inlegers

icm
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The second inequality (13.2) may be obtained by an. analogous
argument, but instead of Lemma 6 we must then apply Lemma 12
(we give this argument below). It must, however, be observed that
the original proof of the second inequality (13.2) is more elementary.

14. In this section we shall show that the ineqﬁalities opposite
to (8.1) and (8.4) are also true. Although the new inequalities seem
to have no interesting applications, we shall prove them because
they are not difficult consequences of known results.

Theorem 9. Let the function F(2) belong to H', where F(0)=0,
r>1, and let the sequence \nif satisfy the last inequality (13.1). Then

1
(14.1) / | (e 40 << B, / ( \'ML@L) an =)

v
e

20 A7r ! r

(14.2) / | P (et d0< B, ' (\‘IS (1), () a6) 40
0 I3

Let ¢(0) be defined by (7.1). We may write

\’ S’ r—1
”1

=(1—0)| 3

)
|F,(Q 61‘())] __:1 E’“GI'QV—]. (,11:6)
=1

where Sn=8,(¢"), and where the dash in 8 (but not in F') denotes
differentiation with respect to 0. If g =1—1/n, then

oo @
#0=D [(1—0)lF(eeie< 2 ((1 o0 S8 :;:1)
nil o" —
<92 ( ; "—1)+22‘—15-( 2‘ ; M)=P+Q,
n==1 ‘ll‘ﬁl " r=r11--1
say. Now
p<a Y = (Z |S,,|2) (2 Q"«-n)<22‘ 1 2 Kis <A2 |8
=l p=] p=1
Q%;E ,_;Eg_( 2 lSu )( 2,‘14 )(,.._1))<B2 2 2 |ki;’ .
n=1 el Ve il n==1 ve=ne-l HES

‘”) ’I‘ho 1nequuhty (14.1) seems to have heen known fto Paley, but no
proof of it has ever been published.

Fundamoenta Mathematione, T, XXX, 13
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Observing that |8i/(»+1)==|8y—=l, we may state the resul
in the form of

Lemma 11. For every 002,

;i(/ il
<A2lS ¢ (e )| .

In order to prove (14.1), it is sufficient to combine this lemma
with the following known result:
Lemma 122), If F(z) belongs to H', where r>1, and 1(0)=0, then
1 1

2 = 2n
('/.|Zf’(e”’)|"d9) <
i J

&[40 d())ﬂ
0

The inequality (14.2) ean be deduced from (14.1). For, in view

of Lemma 3,

1 ny ——1 1
, 2 y 5 8"
(14.3) / (2 "|8) )d@ 1(2 PAL |)
0 =1 Y] fe=1 e "I —1
nkvl ,,. |S | 1
bt . |Sn
S—A«;/ (2|Ln|2 )d0~ 1[}/ (2 ,nll )d@
0 k=1 ny g 0 Y/ S

which completes the proof.
We shall now show that the second inequality (13.2) may be
deduced from (14.2). Let U'(6) denote the integrand on the right

’
nj—

hand-side of (14.3). Since

n
2 (S;:""Sq,v)\, we may write
r==()

;) 1 Ty
20 Y !
o= 3% (>zsﬂ, s)< 2 s,
k=1 p=0) PR —
oo ’IZI-
1y el N NN .2
<2 ;);‘Snk‘ +A\/ g ;:/ —>/ |Sﬂ’[e“S"| ?
=1 k=1 [ ]

gince ny=0. If we note that Lemma 3 applies not only to partial sums
of Fourier series, but to any connected bloek of terms of Fourier
series (for such blocks are differences of two partial sums), we obtain

28) See Littlewood and Paley [5].
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(14.4) /
p 2n o % 2 o k "‘ }1_
o2 : 1oy 2’
/(2/ |Sn )d@—}—‘? A/ (Zmé AIS,,L lll)de
0 k=1 0 k=1 =1 v=n;_3-+1
: vl - z
/ ( —psnl )(zo+ ¥l j ( ) - )de
] 0 kil ==
Now !bnl n_1|<!4|+|4],~+1|+ o +]4,]. Hence, writing
1
A =4 n‘ 'n - and applying Schwarz’s inequality, we obtain
o 1 k
‘-2/ oy 4.>../ iniIS“k—S'“i—lfg
R g {==1
© 1 k k 1 ca 1
] v Y 9 2 A
<L 2( 2 laft ) Sy
h=1 {=1 j=i J=i
\ 1 LS 1 k 1 J 1
3 2 5 \ 23 N3
4,27 2/ 2 il mj= A, 2 o= > 14 ng D
k=1 = R ¢ J=1 =1
co k =]
1
/Aa‘)nzm]; nj=A 2141]1,?‘_/ <4 «, ]A|.
J=1 =] =1

A similar inequality may be obtained for the integrand of
the remaining integral on the right of (14.4) (the lower limit of
summation being now 0). Hence

27 27 0 %r
[T ao<a.f 2;4j12)‘ a8
0 0 =0

This, in econnection, with (14.3) and (1
inequality.

A gimilar argument permits to obtain a limiting case of the
second, inequality (13.2), when r=1. We shall return to this on
another oceasion,

4.2) gives the required

13%*
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Eine &aquivalente Formulierung des Auswahlaxioms.

Von
Alfred Tarski (Warszawa).

s sind heute mehrere Sitze bekannt, die auf Grund des
Zermelo-Fraenkelschen Axiomensystems dem Auswahlaxiom
dquivalent sind, so z. B. der Wohlordnungssatz, der Vergleich-
barkeitssatz (.1, der Satz der Trichotomie) sowie verschiedene
Theoreme von speziellerem Charakter aus des Theorie der Gleich-
michtigkeit und der Arithmetik der Kardinalzahlen!). Im vor-
liegenden Aufsatz mochte ich einen neuen Satz dieser Art formu-
lieren, der seinem Inhalt nach sowohl dem Auswahlaxiom selbst
als auch allen oben erwihnten Sitzen ziemlich ferne liegt ?).

Dieser Satz lautet folgendermaBen

Satz 8. Zu jeder Menge N gibt es eine Menge M, die folgender
Bedingung gendigt:

X ist dann und nur dann etn Element von M, wenn X cine Teil-
menge von M ist wnd wenn dabei N wmit keiner Teilmenge Y von X
gleichmiéiehtig ist.

By soll nun gezeigt werden, daf der Satz § dem Auswahl-
axiom tatsiichlich Aquivalent ist 3).

1y Vgl. hiezu F. Hartogs, Uber das Problem der Wohlordnung, Math. Ann.
76 (1915), 8. 438 £f., ferner meinen Aufsatz Sur quelques théorémes qui équivalent
& Paxiome dw choiz, Fund. Math. 5 (1924), 3. 147 £f., sowie die gemeinsame Mit-
teilung von A. Lindenbaum und Verfasser, Communication sur les recherches
de la théorie ‘des ensembles, C. R. Soc. Se. Vars. 19 (1926), S. 3111,

2) UUber das in diese Artikel vorgebrachte Frgebnis hat der Verfasser am
12, XI. 1937 in der Warschauer Sektion der Polnischen Mathematischen Gesell-
sehaft berichtet.

%) Satz & hilngt mit einem Satz zusammen, der in meiner Arbeit Uber
unerreichbare Zahlen, dieser Band, 8. 84, formuliert und dort als Axiom der
unerreichharen Mengen bezeichnet wurde. Mit Ricksicht hierauf sind die
beiden Teile des hier gehrachten Beweises mit gewissen dortigen Uberlegungen
eng verkniiptt, und zwar der I. Teil mit dem Beweis des Hilfssatzes 18 (8. 77 £f.)
and der LI Toil mit der Ableitung des Auswahlaxioms aus dem Axiom der un-
erreichbarven Mengen (8. 85 ff.).
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