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Theorem 6. The automorphisms of C which earry a given set
of first eategory (with respect to () into a sct of measure zero (in the
probability measure) form a residual set in the space of automorphisms
of C.

The proof runs parallel to that of Theorem 1 until the proof
that E, is dense. Here we divide C into disjoint segments oy,...,0; of
length less than 6. In each o, select a prefect subset lying outside AF,.
Since any two perfect subsets of (' are homeomorphic, g can be
chosen 50 as to leave each ¢; invariant and yet map s; into a subset
of ¢; having an arbitrarily large fraction of the measure of o, Thus
ghF; can be made to have measure less than 1/k. The proof then
proceeds similarly as before.

Isotopic deformation of ¢ is of course impossible, so that
no analog of Theorem 5 is to be sought.

The possible extension of the results here obtained to locally
compaet groups with Haar measure is a question which the authors
hope to discuss subsequently.

Society of Fellows, Harvard University.
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The characteristic function of a sequence of sets
and some of its applications?). ‘

By

Edward Szpilrajn (Warszawa).

The characteristic function of a sequence of sets, which is
the subject of this paper, is a simple generalization of the well
known notion of characteristic function of a single set due to de la
Vallée-Poussin.

Since the time when the notion of characteristic function of
a sequence of sets has been introduced ?) it was applied in several
publications by Knaster, Kuratowski, Sierpinsgki and the
author of this paper3). In general, it may be stated that, for each
sequence of sets which approximates a space in one sense or another,
the application of its characteristic function leads to certain results.
This happens e.g. in the case of 1° a basis of a separable space [3.8 (i)],
29 a basis consisting of closed-and-open subsets of a 0-dimensional
geparable space [3.8 (ii)], 3° the sequence of all closed-and-open
subsets of a compact metrical space?), 4° a sequence approximating

all the measurable sets from the point of view of the measure °).

1) Presented in part to the 3¢ Polish Mathematical Congress in Warsaw,
on September 30, 1937 (§§ 2 and 3) and to the Polish Mathematical Society,
Warsaw section, on' May 20, 1938 (§ 4).

2) Ruratowski[1], p. 124 defines in a certain proof a function which is
the characteristic function of a basis of a 0-dimensional space. In a general way,
the characterigtic function of a sequence of sets has been defined in the paper:
Szpilrajn [1], which contains several theorems on this notion and with ite
help solves some problems of Ulam.

8) Kuratowski [2], p. 56 and [3], pp. 244 and 245, Sierpinski [2], [3]

and [4], Szpilrajn [1] and the preliminary reports [4a, b, ¢ and d].

4) Kuratowski [8], p. 244.
5) Szpilrajn [4e].
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A special field for applying the characteristic function are
logical relations between certain questions of point sets and questions
belonging to the General Theory of Sets. And so, with the help
of the characteristic function, a series of known problems on sets
of points, which have not as yet been solved, may be formulated
in the language of the General Theory of Sets. Several such equi-
valences have been given by Sierpiriski; in §4 I show these equi-
valences in a somewhat simpler (but not essentially different) way
(4.1, 4.4 and 4.5) and I give some analogous new theorems (4.2,
4.3, and 4.6).

It is worth noticing that equlvalenceb of this type may be proved also

without the aid of the characteristic function; namely, considering a sequence e
of subsets of an abstract space, it is possible to form a topological space by trea-
ting as basis of the space all sets belonging to e (this remark is due to 8. Eilen-
berg). One obtains so the topologization of problems concerning the sequence
e. Nevertheless, it seems that the application of the characteristic function per-
mits to obtain this topologization in a particularly simple way.

Many important properties of a sequence of sets may be for-
mulated shortly with the help of its characteristic function. A part
of this paper is just devoted to the study of the correspondence
between different properties of a single sequence and those of its
characteristic function (§ 3). Certain relations between two sequences
of sets and corresponding relations between their characteristic
functions will be treated in another paper?).

§ 1. Preliminaries.

1.1. Space. By the term space we understand in this paper
& wholly arbitrary abstract set. The letters X, ¥ and Z, when no
additional explications are given, will always denote arbitrary spaces.

A sequence b of open subsets of a metrical space X, such
that each open subset of X is the sum of a certain subsequence
of b, is called a basis of X.

1.2. Classes of sets and their atoms. K being a class
of subsets of a space X, we denote by:

K., K, K., K; K; the class of all complements, finite
sums, enumerable sums, finite products, enumerable products of
sets belonging to K;

') See the preliminary reports: Szpilrajn [4b] and [4a], cf. also Szpil-
rajn [1].
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K,, K, the smallest class Q containing K and such that

Q=0:=Q, or Q=0Q.=Q, respectively;
K, the clags of all sets obtained by the operatwn (4) upon

sets belonging to K;

K; the sma]lest totally additive and complementative class

of sets containing the class K.

The class K is called a ring if K=K, 1),
{Kg denoting the (finite or transfinite) sequence consisting

of all the sets which belong to K (where the indexes & build a set &),
each set of the form:

[l Z: where Z:=H: or Zi=X—RE: for each £¢E

Sem
is called atom of the class K., It is easy to see that

(i) Bach two different atoms of a class of sets are disjoint and
the whole space is the sum of all the atoms

(ii) The class of all the sums of atoms of a class K 8 equal to K;.

(iii) If each ome-element subset of X belongs to K then each
atom of K contains at most a single point.

1.3. Functions. Let f(x) denote a function defined on X;
further let be f(X)==Y. Consider two functions of a set: the operation
of image: f(H) (for ECX) and that of counterimage f—l(T) (for TCY).
Tt is well known that 1° these functions are both totally additive,
20 the function f"’(.T) is complementative and 3° in the general
cage, the function f(F) is not complementative. Nevertheless, the
function f(B) considered for special sets E also becomes comple-
mentative. By applying 1° and 2° we obtain the following proposition:

Zet f(x) be a function such that {(X)=Y and K the class of all
sets (T (for TCY). Then the class K is totally additive and com-
plementative and the functions of a set: f(H) considered only for EeK
and f‘l(T) (for TCY) are totally additive and complementative and
establish a biunivocal correspondence between K and the class of all
subsets of Y. :

We may-say that the functions f(E) and f‘l

phism 2) between the class of all sets of the form YT
sets of Y.

) establish a-total-isomor-
) and the class of all sub-

1) Certain authors call such a class “ring with unit” a.nd understand by
“ring” each additive and substractive class.
2) For the notion of total isomorphism see Szpilrajn [4b].

Fundamenta Mathematicae. T. XXXI. 14
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f and ¢ being two functions which transform a space X into
a space Y and ¢ a function which transforms Y into Z, we denote
by ¢f the function ¢[f(x)] and we write f=¢g when f(x)=g(z) for
each zeX.

1.4. Cantor’s discontinuum. We shall denote by ¢ Cantor's
discontinuum, i.e. the seti of all numbers

(%) t=2-(0,%,%p,%3...)3 Where 4,=0 or di,=1 for n=1,2,.

It is known that Cantor’s discontinuum may be considered
ag identical (from the topological point of view) with the product
DXDX... where D consists of 0 and 1. Namely the sequence
3y gy .. e DX DX ... can be identified with the number (x)1).

For each positive integer ¥ and 4=0 or 1=1 we shall denote
by € the set of all numbers (*) such that iz=1. Evidently we have:

(i) O=Cr40Ch; O0-Ch=0 for n=1,2,..

(i) The sets O n(i=0,1; n=1,2,...) are closed and open in C.

(iii) Let two functwns g and h assume only values belonging to C.
If g7 (On)=h""(Cr) for n=1,2,..., then g=h.

For each finite system i1,%,...
bers 0 and 1, we put

yin consisting only of the num-

Ciiy.i,= CB.0B..... O,
Each set Gili,...in will be called interval of C. It is known that

(iv) A subset of C is both open and closed in C if and only if
i is the sum of a finite number of intervals of C.

(v) The class of all intervals of O is a basis of C.

§ 2. Definition and fundamental properties
of the characteristic function.

2.1. The characteristic function of a single set. For
each set ECX we denote by cz(») the chumctemstw function of E,
i.e. the function defined as follows:

0 for zeX—F

o(@) = 1 for zeE.

1) Kuratowski [1], p. 79.
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2.2. The characteristic function of a sequence of sets.
Given a sequence e=={H,} of subsets of X, we define the character-
istic function of ¢ by the identity: c.()={¢s (2)}. Thus, the values
of this function are sequences consisting of the numbers 0 and 1.
Since all such sequences may be considered as points of Cantor’s
discontinuum (1.4), the characteristic function of a sequence e={E,}
may be written in the form:

0 for xeX—B,
6o(@) =2 (0, 3y5y...),, Where ip| 0 OF %€

_—| 1 for ek,
or, in other terms (Kuratowski),
—_.—2.21[0@“(90)/3"].
fooms

2.3. Atoms and constituents. Denote by e={#,} an arbitr-
ary sequence of gubsets of X and put for any sequence {¢,} con-
sisting only of the numbers 0 and 1:

Eiliz_..zzl-z2-... and E’ilig.--‘ik:ZI'Z2""’Zk:

where Zp=X—H, if i,=0 and Z,=E, if i»=1. The sets E;;  are
called atoms of the sequence e (cf. 1.2) and the sets E; ; . ;, consti-
tuents of the sequence e ).

Obviously we have:

i) ¢! 0)~H (X —EB,)= —ZE o;i(l):;]i E,
and more generally:

(i) ¢ [2:(0, 105 gl =B, ..

Further:

(i) & (CN=X—E. ¢ (0)=En
and more generally:

(iv) ¢ (Ciiy..in)=Tiyiy ...in

It follows directly from (ii) that
(v) The power of the class of all nmon-void atoms of e is equal
to the power of the set c.(X).

1y Of. Kuratowski-Posament [1], p. 283.
14*
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2.4. The correspondence between functions and se-
quences of sets. Associating with each sequence ¢ of subsets of X
the function c. we obtain a biunivocal correspondence between the class
of all sequences of subsets of X and that of all functions defined on X
and assuming values which belong to C1).

' Sinee the characteristic functions of two different sequences
of sets obviously are different, it remains to prove that every func-
tion f defined on X and such that f(X)CC is the characteristic
function of a certain sequence of subsets of X. In fact, putting
B.=f""(C}) and e={E,} and comparing this with 2.3 (iii) and 1.4 (iii),
we obtain f=c..

2.5. Transformation of classes of sets by the charac-
teristic function. Let e={E,} denote a sequence of subsets of
the space X and E — the class of all the sets E,. Furthermore

tet us write T=c.(X), Tr=CsT and finally let us denote by T
the class of all sets T,.. It follows from 2.3 (iii) that B, =c (T,)

and consequently the operation ch(U) establishes a biunivocal
correspondence between the classes 7, and E,. Moreover we conclude
from 1.4 (i) and (iv) that the class 7, is equal to that of the sets HT
where H is both open and closed in C. Hence we obtain:

(i) The operation ¢7*(U) (and also the operation c.(E))
establishes a biunivocal correspondence between the class E, and the
class of all sets H-c.(X), where H 1is both open and closed in C.

Since the class T, is a ba‘sisrof the space c.(X), we derive from
(i) and from the properties of the operation of counterimage (cf.
1.3) the following theorem which is important for applications:

(ii) The operation ¢;(U) tand also the operation c.(B)] establishes
a biunivocal correspondence between the classes

Eéa, -Eod, Eaad, Eodu, P Eb, an

and the classes of all sets: open, closed, s, Fs, ... borelian and ana-
lytical in c(X) 2).

1) Szpilrajn [1], p. 306. )

2) Different particular cases of this theorem have been formulated in the
following papers: Sierpifiski [2], pp. 184-186, [3], p. 3, Szpilrajn [1], p. 307
and in the unpublished address O przeliczalnych rodzinach zbioréw (On enumerable
families of sets) given by Sierpifiski to the 8" Polish Mathematical Congress
in Warsaw, on September 30, 1937.
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Remarks, 1. In connection with (i) notice that: (a) if L DB then for every
get H both open and closed in 4 the set BH is clearly both open and closed in B,
but (b) the converse of this theorem would be false.

2. In many applications we have E=E ; in that case we evidently can
omit the index ,0* in Theorems (i) and (ii).

2.6. Relativization. Subsequences. Biunivocal trans-
formations. We see at once that

(i) I ¥YCXx, 4,CX, B,CX, A,Y=B,Y (for n=1,2,..),
a=={A,}, b=|B.}, then c(®)=cy(x) for xeX.

x=/{k,} denoting a sequence of positive integers, let us put
for each number f=2-(0,4,49,...)3¢ C (where i,=0 or 1)
@u(t)=2- (0,9, 7,...);- The function ¢, is always continuous. If the
sequence {k,} contains all positive integers and each of them only
once, then the function @, is a topological automorphism of O.
It is easy to see that

(i) If a={d,} bz{Akn}y n="kp}, then p=g¢,0q %)
Next, we shall prove the following theorem

(iii) Let be A,CX, B,.CY, a=1{4,}, b=1{B,) and ¢ a biunivo-
cal transformation such that p(X)=Y. Then the relations: ¢(An)=Bn
(n=1,2,...) and c.==cy @ are equivalent?).

Put
(%) g=co .

The identity

@(An)=Bn n=1,2,...

is equivalent successively to the following identities:

oleat (CL)]=cr'(Ch)  for m=1,2,... [according to 2.3 (iii)]
e ()] =6t (Ch)  for m=1,2, ...
g =e'(Ch) for m=1,2,... [according to (+)]
g = Ca [according to 1.4 (iii)]

Cb @ = Cu [according to (*)].

1) Cf. Szpilrajn [1], p. 308.
2y 8zpilrajn [1], p. 308.
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§ 3. Different properties of sequences of sets and the
corresponding properties of their characteristic functions.

3.1. Identity. All seis belonging to a sequence e={E,} are
identical if and only if the function ¢, assumes only the values 0 and 1.
Then we have c.=cg,.

If for each e X either ¢, (x)="0 or c(»)=1, then we have either
zeE, for n=1,2,... or zeX—H, for n=1,2,... and consequently
Bi=E,=...

Conversely, if E,=E,=..., then ¢.{(x)=0,00... for each ve¢ X —F,
and e.(z)=2-(0,11...);=1 for each zeF,. Hence, in our case, c.=cg,.

3.2. Sets without common points. No two sets belonging
0 a sequence of sets have common points if and only if its characteristic
function assumes only the value 0 and values of the form 2/3]’.

In fact, e={H, denoting a sequence of sets, the point z
belongs only to E, if and only if ce(m)=°/3k.

8.8. Monotony. A sequence of sets is ascending (descending)
if and only if its characteristic function assumes only values of the
form 1/3" [or 1—(1/3") respectively].

In fact, we have BE,CE,C... if and only if all the values of ¢,
are of the form 2-(0,00...0111...),=1/3".

8.4. Convergence. It is easily seen that the sequence e={E,}
is convergent (in the sense of the General Theory of Sets) if and
only if for each & either we B, for n>>N, or zeE, for n>>N. In other
words: either c.(@)=2-(0,4;...45111...)5 0T co()=2-(0,%,4,...45000...)5.
Hence we obtain:

A sequence of sets is convergent if and only if its characteristic
function assumes only values of the form kJ3" (i. e. values possessing
finite ternary development ).

3.5. Independence. The sequence e={H,} is called a sequence
of independent sets if no constituent of e (cf. 2.3) is empty ). Simi-
larly it is called a sequence of Ry-independent sets if no atom of e
(cf. 2.3) is empty. By Theorems 2.3 (iv), 1.4 (v) and 2.3 (ii) we obtain:

A sequence ¢ of subsets of the space X is a sequence of (i) in-
dependent, (ii) xy-independent sets if and only if (i') ce(X)=0,
(i) e(X)=20.

!) Cf. Fichtenholz-Kantoroviteh [1], p. 78 and Hausdorff [1], p. 18.
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3.6. Distinguishable points. Two points are said to be
distinguishable by means of & sequence e={E,} (Sierpiniski) if there
exists a positive integer n such that the set E, contains one and
only one of these points. Each two points of the space are
distinguishable by means of ¢ if and only if each atom of e contains
at most a single point. Consequently, in view of 2.3 (ii) we have:

Euvery two points of a space X are distinguishable by means of
a sequence e of subsets of X if and only if the characteristic function
of e assumes each of its values only once.

38.7. Measurability (IK). Let K denote a class of subsets
of a space X. A function f(z), which transforms X into a subset
of a topological space Y, is called measurable (K) whenever f_l((r‘)eK
for any open subset G of Y.

Now, let us denote by e={H#. a sequence of sets contained
in X. From the identities 2.3 (iii) it follows at once that

(i) If the characteristic function of a sequence {Hnj of sets com~
tained in X is measurable (K), then EeK and X —EqeK for n=1,2,...

On the other hand it follows from 2.5 (ii) that:

(ii) E denoting the class of all sets belonging to a sequence e,
the function c. is measurable (Eos).

Combining (i) with (ii) we obtain:

(iii) If K=K,;=K, then, in order that the function c. be measur-
able (K) it is necessary and sufficient that all the seis En and X —Ep
belong to K 1),

The necessity of this condition is stated in (i). The sufficiency
follows from (ii) and from the fact that the relations: E+E.CK
and K=K;=K, imply the relation: E,CK.

It follows from (iii) that (in the case when the space X is
topological or particularly if it is cartesian):

(iv) The function c. is 1° continuous, 2° of the first class,
3% measurable (B), 4° measurable (L) if and only if all the sets
belonging to e are 1° both open and closed, 29 both F, and G,
39 porelian, 4° measurable (L).

1) Szpilrajn [1], p. 308.
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3.8. Basis of a metrical space. With the help of the
characteristic function of a basis of a metrical space we can
easily obtain the following known theorems: (a) each metrical
separable space is a continuous biunivoeal image of a subset of
Cantor’s discontinuum?), (b) each separable and 0-dimensional
gpace can be topologically imbedded in € %). In fact, these
theorems follow directly from the following Theorems (i) and (ii).

(i) Let v={V,} denote a basis of a separable space X. Then the
function ¢, is a generalized homeomorphism of the class (1,0)3).

Put ¢,(X)=T. The sequence v being a basis of X, each two
points of X are distinguishable by means of v and consequently e,
is a biunivocal transformation of X into T (cf. 3.6).

Sinee the sets {V,} are open, the function ¢, is of the first class
by 3.7 (iv, 2%). On the other hand the function ¢! is continuous,
because the sets’¢,(V.) are open in T by 2.5 (ii) and accordingly,
for any set @ open in X, the set ¢,(G) is also open in 7.

(i) Let v={V.} denote a basis of sets both open and closed in

a 0-dimensional, separable space. Then the function ¢, s @ homeo-
morphism.

On account of (i), it suffices to prove that the function ¢, is
continuous. This follows directly from 3.7 (iv, 19).

3.9. A certain transformation of the interval. Now,

by applying the preceding theorems, we shall obtain the following
remark:

(1) There exists a biunivocal tramsformation ¢ of the imterval
I=0,1> into a set TCC, which transforms the class of the Borel sub-
sets of I into a proper subclass of the class of sets borelian in T.

(In other words: the class of all Borel subsets of I is equi-

valent4) to a proper subclass of the class of all sets borelian in
a certain subset of I).

') Cf. e.g. Kuratowski [1], p. 226.

%) Cf. e.g. Kuratowski [1], p. 124. Our proof is briefer (as using
general theorems on the characteristic function) but not essentially different
from that of Kuratowski.

#) For the notion of homeomorphism of class (e,8) see Kuratowski [1].
p. 221.

*) For the equivalence of classes of sets see e.g. Stone [1], p. 91, Szpil-
rajn [1] and [2].
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Let {V,} denote a basis of I and P a non borelian subset of I.
Let w be the sequence of gets: P,V,,V,,... and W the class of all
these sets. According to 3.6, the function ¢, is a biunivocal trans-
formation of I into a set TC(C. By 2.5 (ii) the function ¢! trans-
forms the class of all Borel sets in T into the class W, to which
belong all the Borel sets in I and the set P which is no Borel set.

§ 4. Logical equivalence of certain problems.

4.1. Set of Lusin. A linear set is called Lusin set if each
of its nowhere dense subsets is at most enumerable. The existence
of a non enumerable Lusin set is proved only with the help of the
hypothesis of the continuum ). Next, it is known that the existence
of a Lusin set of the power 1 is equivalent to that of a set  of the
power n possessing the following weaker property (»): each subset
of B nowhere dense in F is at most enumerable 2). Furthermore,
it is easy to show that the property (v) of a set F is equivalent to
the following property (v,): each set closed in E is the sum of a set
open in E and of a set at most enumerable ?).

(i) Let e={E.} be a sequence of subsets of X, E — the class
of all sets B.. If each set belonging to the class Ky is the sum of
a sebt belonging to Eo, and of a set at most enumerable, then the
set 2.(X) possesses the property (v).

We shall prove that c.(X) have the property (v,). Let then F
be a set closed in ¢.(X). Theorem 2.5 (ii) implies: 7\ (F)eE ; and.
consequently ¢;'(F)=H-D where HeE,, and D 'is at most
enumerable. Accordingly, F=c.(H)+ c.(D) where c.(H) is open in
¢o(X) [also by 2.5 (ii)] and e.(D) is at most enumerable. Thus the set
c.(X) has the property (v), q.e.d.

(ii) For the emistence of a separable Lusin set of the power N>R,
it is mecessary and sufficient that there ewist an enumerable ring K
of sets 1° possessing m mon-void atoms and 2° such that each set
belonging to K is the sum of a set belonging to K, and of a set at
most enumerable *).

1) See e.g. Sierpinski [1], Chap. IL.

2) See e.g. Kuratowski-Sierpinski [1], p- 137.

3) 8§zpilrajn [3], Th. L. ’

4) It is a modification of a theorem of Sierpinski. See Sierpinski [2].
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Necessity. Let L denote a separable Lusin set of the power
n and B a basis of L consisting of sets both open and closed in L1).
It is easy to show that the ring K=DB, satisfies the above formul-
ated conditions. In fact 1° each point belonging to L is an atom
of B,, and the power of L is equal to n, 2° since the set L possesses
the property (v), each set belonging to Ks, as closed in L, is the
sum of a set at most enumerable and of a set which is open in L
and therefore belongs to K.

Sufficiency. It is a consequence of (i) and 2.3 (v).

Remarks. Theorem (ii) differs partially from Sierpinski’s theorem
cited above, but passing from one to the other presents no difficulties:

1. It is easy to prove that the condition 19 may be replaced by the follow-
ing stronger condition considered by Sierpinski: there exists n non-void disjoint
sets which belong to the class Ks.

2. The condition 2° may be replaced by the following weaker condition:
for each set H e Ks there exists a set K e Ky such that the set (K—H)+ (H—K)
is at most enumerable. For that purpose it suffices to replace the property (»,)
in the proof by another property (»,) and to apply a certain simple remark for-
mulated in the paper: Szpilrajn [3], Th. 3.

3. In his paper, Sierpifiski understands by ring every class of sets closed
with respect to finite addition and substraction (and not with respect to com-
plementation, as in this paper). Let us remark that (in the case n=c considered
by Sierpifski)if there exists an enumerable ring K in that sense, satisfying
the condition 1°(for n==c) and 29, then there exists an enumerable ring K’ in
the sense of our paper which satisfies these conditions as well. In fact, there
then exists a set Hy,e¢ K which contains ¢ non-void atoms of K. The sets KK,
where Ke K form the required ring K’.

4.2. Besikovitch’s concentrated sets. A metrical space X
is called concentrated in the neighbourhood of a set TCX if for every
open set GDT the set X —@ is at most enumerable (Besikovitch)2).
A set concentrated in the neighbourhood of an enumerable set is
briefly called concentrated. The existence of a non enumerable con-
centrated set is proved only with the help of the hypothesis of the
continuum. Every separable set having the property (v) (cf. 4.1) is
concentrated (from the hypothesis of the continuum it follows that,
on the other hand, the converse of this proposition is untrue). It is
easy to show that a separable set B possesses the property (») if

and only if it is concentrated in the neighbourhood of each enumer-
able set, dense in B.

) Each separable Lusin set is 0O-dimensional. See Kuratowski-Sier-
pinski [1], p. 138.
) Besikoviteh [1], p. 289.
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(i) Let e={En) be a sequence of subsets of X, and E the class
of all sets E, Suppose that there exists an enumerable set DCX
such that for any set H ¢ E,; containing D, the set X—H is at most
enumerable. Then the set ¢.(X) is concentrated [in the neighbourhood
of the set ¢.(D)].

Suppose that a set G is open in ¢.(X) and containg ¢.(D). Thus
¢; (@ eEo [by 2.5 (ii)] and ¢;(G)DD. Accordingly, the seb
=X—c; (@) is at most enumerable by the hypothesis, and con-
sequently so is the set ¢.(Z).
The relation ¢.(Z)>¢,(X)—G implies the enumerability of the
set ¢.(X)—@.

(ii) For the ewistence of a linear concentrated set of the power
n>R, it 98 necessary and sufficient that there ewist: an enumerable
ring of sets B possessing n non-void atoms and an enumerable set D
contained in the sum X of the sets belonging to B such that if HDOD
and He s then the set X—H is at most enwmerable.

Necessity. Let X be a linear set of the power n concentrated
in the neighbourhood of an enumerable set D and B a basis of X
consisting of sets both open and closed in X. The ring R=B, satis-
fies the conditions mentioned above.

Sufficiency. It is a consequence of (i) and 2.3 (v).

4.3. Property (1). We say that a metrical space X has the
property (1) if each of its enumerable subsets is a Gs-set in X
(Kuratowski). Each space having the property (1) is of the first
category on every perfect set; but it follows from the hypothesis
of the continuum that the converse of this theorem would be
false (Liusin). It is known that there exists a.space of the power %
having the property (1), but the problem of the existence of such
a set of the power of the continuum is open?t).

(i) Let e={E,} be a sequence of subsets of a space X and E
the class of all sets B,. Lf each enumerable subset of X belongs to oo,
then the set ¢.(X) has the property ().

Since each one-element subset of X belongs to Hoos, the func-
tion ¢.(X) assumes each of its values only once [by 1.2 (iii) and 3.6].

1) For the property (4) see Kuratowski [1], pp. 269-271 and Sierpin-
ski [1], pp. 94-98.
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Let D denote an enumerable subset of ¢.(X). Thus the set
¢7!(D) is enumerable and consequently ¢;'(D)eX , by the hypo-
thesis. Therefore, by 2.5 (ii), D is a Gsset in ¢, (X).

(ii) For the existence of a linear set which has the property (1)
and the power 1>>Ry, it is necessary and sufficient that there exisis am
enumerable class B of sels having n non-void atoms and such that
each enumerable set contained in the sum of the class I belongs to” Bes.

Necessity. Any basis of a set having the property (1) and
the power m is the required class R.

Sufficiency. It suffices to put E=RE, and to apply
(i) and 2.3 (v).

4.4. Problems of Hausdorff and Sierpinski. It follows
directly from the hypothesis of the continuum that the following
propositions are false:

(H) E being a set of the power §,, there exists an enumerable
class R of sets contained in, F such that each subset of E belongs
to Rgs.

(8) There exists a linear set U of the power ¥, each subset
of which is a Gs-set in U.

The problem of proving the falseness of the proposition (H)?1)
and (S)?) without additional hypotheses is not solved.

(i) Let e={E,} be a sequence of subsets of X and K the class
of all sets Ey,. If each subset of X belongs to F.s, then every subset
of ¢.(X) is a Gsset in ¢.(X).

Let be T'Ce,(X). By the hypothesis, ¢;*(T)eE , , and, by 2.5 (ii),
T is a Gs-set in ¢, (X).
(ii) The propositions (H) and (S) are equivalent?).

(S)—(H). Let ¢ denote a biunivocal transformation of the
set U into an arbirary set E of the power &,. Any basis of U is trans-
formed by ¢ into a class B of subsets of F which obviously satisfies
the conditions of the proposition (H).

1) It is Sierpifiski’s modification of a problem raised by Hausdorff
in Fund. Math. 20 (1933), p. 286 (Probléme 58).

*) Problem of Sierpifiski. See Sierpinski [1], p. 90.

?) The result shown in the paper: Sierpiniski [3].
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(H)—(8). Let E denote an arbitrary set of the power 8, and
r=\R,} the sequence of all sets belonging to the class R. Since each
one-element subset of B belongs to Rg, it follows from 1.2 (iii)
and 3.6 that the function ¢, assumes each of its values only once.
Therefore this function transforms the set X into a linear set U
of the power §;. According to (i), the set U satisfies the condition
contained in the proposition (S).

4.5. Problems of Mazurkiewicz and Kolmogoroff.
TFor each class of sets put By(R)=R, next BiR)=I[B:i(R)]
for each odd £<Q and Bg(R)=[2ﬁn(R)]a for each even £<Q.

If R is a basis of a topological space, then B,(R), By(R), B,(R),...
equal the classes of sets: open, Gs,G,... Tespectively.

Consider the following condition: !
(%) By(K) =% B, (K)=B.2(K).

The problem of existence for each a<<Q of a metrical space X,
the basis of which would satisfy this condition, has been raised
by Mazurkiewicz ). An analogous problem for arbitrary classes K
of sets has been set up by Kolmogoroff?). We shall show the
following relation between these problems (theorem of Sierpinski3)):

(1) or the existence (for an ordinal number 0<<a<<®) of a linear
set N possessing o basis V which satisfies the condition (x) (for K=V
it 18 necessary and sufficient that there ewists an enumerable ring R
satisfying this condition (for K=R).

Necessity. Let N be a linear set, a basis ¥ of which satisfies
the condition (*). The set N contains no interval and consequently
there exists a basis ¥’ being a ring which consists only of sets both
open and closed in N. Since B,(V)=B.(V') for 0 <a<<®, the
condition (*) for K=V is equivalent to that for K=¥".

Sufficiency. Take the sequence k={K,} of all sets belonging
to K and put N=c¢,(K,+Ky-+...). It follows from 2.5 (ii) that N
is the required linear set.

1) See Poprougénko [1], p. 284.
2) Tund. Math. 25 (1935), p. 578, probléme 65.
%) Sierpifnski [4].
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4.6. Problem of Ulam. Recently Ulam has raised the
question whether the following proposition is true: '

(U) There exists an enumerable class D of sets such. that D,
contains the clags of all the analytical subsets of the interval
I= <0’1>~ 1)

We shall prove that

(i) The proposition (U) is equivalent to the following:

(U’) There exists a biunivocal transformation ¢ of the inter-
val I into a linear set transforming each set analytical in I into
a Borel set in ¢(I). '

(The proposition (U’) may be formulated also in the following
manner: The class of analytical subsets of I is equivalent 2) to a class
of sets borelian in a certain linear set.)

(U)—=(T"). Denote by d={D,.} the sequence of all the sets
belonging to D and consider the function ¢s. By the hypothesis,
each one-element subset of I belong to D, and hence the function ¢,
assumes each of its values only once [according to 1.2 (iii) and 3.6].
Next, on account of Theorem 2.5 (ii), the function ¢; transforms
each set belonging to D, and in particular each set analyticalin I,
into a set borelian in eq(I).

(U")—(U). Let ¢ satisfy the condition of the proposition (U’),
let ¥={V,} be a basis of the set @(I) and let us put W={p~1(V.)}.
Since by the hypothesis the class ¥, contains as elements all the
sets @(4), where 4 is an analytical set in I, the clags W, containg
as elements all the sets analytical in I, q.e.d.
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