The law of nought-or-one in the theory of probability

by
C. VISSER (Dordrecht).

1. Introduction. In the calculus of probability a number of
cases have been found in which it can be asserted a priori that
a certain probability has either the value nought or the value
one, or, to speak in terms of the theory of measure, that the
measure of a certain set is either nought or one?). The occur-
rence of this ,law of nought-or-one“ when one is dealing with
prohabilities concerning real numbers in the interval 0 < x <1
was explained by K. Knorp?). The reason of it may be seen in
the fact that the sets under consideration are homogeneous sets,
i. e. sets which are equally distributed over the sub-intervals of
0 «lx <1, and these homogeneous sets are, if they are measu-
rable, necessarily sets of measure 0 or 1.

In more general cases in which a probability can only
assume the extreme values O and 1, this probability is the mea-
sure of a set in an infinite product-space. In what follows I shall
show that also here we can account for the occurrence of the
wnought-or-one law* by means of the notion of a homogeneous set.

2. The measure in infinite product-spaces. Let .S}, .S,,... be
an infinite sequence of spaces in each of which is defined a mea-
sure. This means that in every S, is given a complete field of
sets (vollstindiger Mengenkdrper), the sets of which are referred

1) See: A, Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrech-
nung (Ergebnisse der Mathematik und ihrer Grenzgebiete, Zweiter Band, 3 Heft,
Berlin 1933) p. 60—61,

%) K. Knopp, Mengentheoretische Behandlung einiger Probleme der
diophantischen Approximationen und der transfiniten Wahrscheinlichkeiten, Math.
Annalen 95 (1925) p. 409-—-426.



144 - C. Vigser.

to as the measurable sets in .S,, and that on this field is defined
a non-negative completely additive set function «,. We assume
that ¢,(S;) =1 for any i=1,2,....

The product-space P of the spaces S;, S,,... is the space
whose points are the infinite sequences (x;, x,,...) of points
x,€S,. If the E,CS,(i=1,2,...) are sets in the space .5;, then
we shall denote by

(1) (Ep ng")

the set in P formed by all sequences (x, x,,...) with x;eZ
(i=1,2,...). We shall call (1) an elementary set if the E, are
measurable and if only a finite number of them are proper parts
of the corresponding S,.

It was shown by Z. Lowmnicki and S. Uram ®) that it is pos-
sible to define a measure « in P with the property that any ele-
mentary set € = (£, £,,...) is measurable and

2) 1 (€) = u, (ED uy (E)...

This measure may be obtained in the following manner. We
define u(€) for an elementary set € by (2). It can be proved
that, if G, €,,... are elementary sets and

CE=C+C+...
while the €, are mutually disjoint, we have
p (€)= w () + () +...
On putting for an arbitrary set ACY

£ (A) = greatest lower bound 3 (€,
=1

for all possible coverings €+ €,+...0U with elementary sets,
it is found that z is an exterior measure in the sense of Ca-
RATHEODORY 4). Now Carathéodory’s measurability theory ensures
the existence of a complete field of sets on which & is comple-
tely additive and it can be proved that any elementary set belongs

» Z. Lomnicki et S. Ulam, Sur la théorie de la mesure dans les
espaces combinatoires et son application au calcul des probabilités 1. Variables
indépendantes, Fund. Math, 23 (1934) p. 237—278.

) C. Carathéodory, Vorlesungen iiber reelle Funktionen, 2 Auf-
lage (Leipzig und Berlin 1927), Kapitel V.
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to it. If A belongs to this field we shall call U measurable and

we shall write 4 () instead of @() and call « () the measure
of A.

3. A lemma. Let us take a fixed n and consider the pro=
duct space Q of the spaces Spi1rSuggr-ees In Q we define
a measure ¥ and a corresponding exterior measure 7 in the way it
was done above for P. Let B be some set in Q, let ELE, ..., E

be measurable sets in S, .S,,..., S, respectively, and let U be
the set of all sequences (x,, x,,...) with

xeE (i=1,...,n), (e, 1ys Xy pgse--)€B.
"Then we have

1 (@A) =y (E) 1y (Ey) .. 10, (E) 7 (B).

A proof of this relation can be given by means of a rea-
soning similar to one used by Lomwicki and Urawm 3),

4. Homogeneous Sets. We shall say that a measurable set
A in P is homogeneous, if for every elementary set € with u(€) > 0
the quotient
#@AE)
#(©)

has the same value. As is found on setting €= this value
then necessarily is g ().

Theorem. The measure of a homogeneous set is either
0 or 1.

Proof. Let ¢ be a positive number. We can find a covering
C+C+...0U
with elementary sets such that

pE@)Fu@)+...<u@+e.

We have then
A=AC+AC,+...

and hence

Q) = 2 B = w(@) I (€) < (@ eu Q).
J== =]

% L.ct), 8§ 3 and 4.
Stadia Mathematica. T. VII. . 10
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This holds for any > 0. Therefore
(W) < ()
Hence, since 0 < u(A) <1, either (W) ==0 or u(A) ==1.

5. We shall now consider an important class of homoge-
neous sets. Suppose that U is measurable and such that the
relation

(x5 %y, .. )€U

depends only on the asymptotic behaviour of the sequence
Xpy Xyy.... By this is meant that a relation (x;, x,,...) €U remains
true when a finite number of the x, are replaced by others. Then
the set U is homogeneous and has consequently either the mea-
sure O or the measure 1.
To prove this we consider two elementary sets,
C= (£, E,..) and §F=(F,, F,,...),

both having positive measure. There is an index n such that
both £, and F; for i>n are identical with S,. Let B denote
the set in the product-space Q (see § 3) formed by all sequences
(X115 X,4q,---) taken from sequences (x,, x,,...)eA. Then AE
is the set of all sequences (x, x,,...) with x,eZ&, (i=1,..., n)
and (x, ., X, ,,--)€B and UAF is the set of all sequences
(%1 X5,...) with x,eF; (i==1,...,n) and (tpgas X, g0 ) €D
Here we have used the assumption made about . It follows
from § 3 that

HAG)=TUC) =y (E)... 1, (E)T(B) = p1(®)7 ()
and
u@AUF) =u(UAF) =, (F) ... 1, F)7(B) = 1 (F) 7 (B).

Hence
P@E) 1 @F)
u(€) ()

and thus the homogeneity of U has been demonstrated.

6. Application to problems concerning probability of conver-
gence. ‘A real function f(x,, x,,...) defined on P is said to be
measurable if for any real number o the set

{f(xls xgi'--)> 0!}
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is measurable. It is not necessary to dwell any longer upon this

definition, as everything is analogous to ‘what may be said in
the case of the Lebesgue measure.

Let be given a sequence
[y xy500) (n=1,2,..))

of measurable functions on §. We shall denote by € its conver-
gence set, i. e. the set of all points (x, x,,...)eP for which
lim £ (x;, x,,...) exists and is a finite number. It is clear that

n—ow
we can write

o0 0

= 1

€= Z] 2 ﬂ{!fk+l—_f.l.| <‘7}~
i=1 k=1 I=1 L

Hence € is a measurable set. Its measure is #he probability of

convergence of the given sequence.

After what has been found in § 5 the following theorem |
is evidently true. '

Theorem. If the convergence of the given sequence de-
pends only on the asymptotic behaviour of the sequence (x,, x,,...),
then its probability of convergence is either 0 or 1.

A particular case is obtained on assuming that

fules x5 ) =0 (0) + 9, (e) + 1+ @, (x)

where the ¢, are measurable functions on the S;. In terms of the
theory of probability, this means that we have a series of mu-
tually independent chance variables and thus we find that such
a series converges either with probability 0 or with probability 1.
This result was obtained by Kunrcume and KormoGororr 9).

7. We consider again the sequence /, and make the assump-
tion that for any index p and arbitrary sequences

(xpyeeey Xpr Xyp1s Xpyo,...) and (ay,..., Qs X, 14y X, 1 gyeen)

nli_)rr;]fn(xl,..., X, xp+l,xp+2,...)'——fn(al,...,ap, X, X, 19,-) | = 0.

Y A. Khintchine und A. Kolmogoroff, Uber Konvergenz von
Reihen, deren Glieder durch den Zufall bestimmt werden, Recueil Math. de
Moscou 32 (1925) p. 668—677. See also: P. Lévy, Sur les séries dont les
termes sont des variables éventuelles indépendantes, Studia Math, 3 (1931)
p. 119—-155.

10*
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Let A, be the set in P on which
lim sup f.(x;, x,,...) > 4.

n - o

Since

G=2X IT 3>+ 1),
i=1 k=l l=k
A, is measurable. Clearly the relation (%1, xp,...) €U, implies
(a,...,qa, Xpi1r Xpigyeeo) €U, for any ay,..., a,. Hence the set
2, is homogeneous. Consequently w(UA)=—=0 or 1. It is ‘plain,
further, that Q[h D "1[12 for 4, <4,. Suppose that at least for one

4(U) =1 and let ¢ denote the least upper bound of those va-
lues. We put lk-—~ —-—-i—, l;::p”%—»}c— (k==1,2,...) and

A=Wy, ..., B=Uy+Upt....
Then -
n(A)=1, w(B)=0.

A sequence (xy, x,,...) for which lim sup f,=8, belongs to U,

n-—>ew

a sequence (x, x,,...) for which lim sup f, > 6, to B. Hence on

n-ro

A —B we have lim sup £, =F. Thus we find that the sequence

/, has for almost all points in ® the same limes superior. A si-
milar statement is true for the limes inferior and we obtain the
following

Theorem. Let f, be a sequence of measurable Junctions
on P, such that

nli_{r:olfn(xl,...., Xps Xy qts Xy ig9ens) — fo(ay,.. ., @y Xy gy Xy ygse-) | =0

for any a;,..., a,. Then there are two numbers o and g (the

values — © and + o being admitted) such that for almost all
sequences

lim inf £, (x;y %, ) =, lim sup £,(x,, x,,...) = g.
n—>w n-—w

We conclude with the following application of this theorem. Let
W] (xl)’ (/)2 (xz>: LR

be a sequence of measurable functions on Syy Syy-ee respectively,
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or, to use the terminology of the theory of probability, a se-
quence of mutually independent chance variables. We put

_ P (x) + .+ (x)

s (%, x,,...) - .

The sequence of the functions s satisfies the hypotheses of the
above theorem. Hence there exist two numbers @ and g, a P,
such that with probability 1

im inf s,=a, lim sup s, =g.

n—>on n—»ow

So that, if the law of great numbers (¢ = §) fails to hold, this
failure is in a certain sense the same for almost all sequences.

(Regu par la Rédaction le 7. 71. 1937).





