Eine Eigenschaft abstrakter Mengen

von

I. SCHREIER (Drohobycz).

Das Ziel dieser Note ist eine Eigenschaft unendlicher Mengen anzugeben, die von Herrn S. BANACH als Vermutung ausgesprochen wurde.

Es sei E eine beliebige, unendliche Menge. Eine Teilmenge E, von E nennt man Hälfte von E, wenn die Mächtigkeiten der Mengen E, E_1 , $E-E_1$, gleich sind.

Satz. Ist eine Menge E gegeben, so kann man jeder Hälfte A von E eine Untermenge $\varphi(A) \in A$ zuschreiben, so daß $\varphi(A)$ immer Hälfte von A ist und so daß für jede Folge von Mengen E_1, E_2, E_3, \ldots , die die Bedingung $E_{n+1} \subset \varphi(E_n) \subset E$ erfüllt, die Relation

 $E_1 \cdot \varphi(E_1) \cdot E_2 \cdot \varphi(E_2) \dots = 0$

besteht.

Beweis. Die Menge E sei zunächst unabzählbar. Sie sei in der Wohlordnung als transfinite Folge

$$\{e_z\} \qquad (\xi < \alpha) \tag{1}$$

gegeben. Ist A eine beliebige Teilmenge von E, so kann A als Teilfolge von (1)

 $\{e_{v(\xi)}\}$ $(\xi < \beta \leqslant \alpha)$

angesehen werden. Dabei ist $\eta(\xi)$ wachsend (d. h. $\eta(\xi') > \eta(\xi)$ für $\xi' > \xi$) und $\eta(\xi) \gg \xi$ für alle ξ .

Wir erklären die Menge $\varphi(A)$ als die Menge derjenigen $e_{\eta(\xi)}$, für die ξ keine Grenzzahl ist (d. h. die Ordinalzahl $\xi-1$ existiert). Es sei nun, entgegen unserer Behauptung, die Menge

$$E_1 \cdot \varphi(E_1) \cdot E_2 \cdot \varphi(E_2) \dots = H(E_1, E_2 \dots)$$

für eine Folge E_1, E_2, E_3, \ldots , die die Bedingungen des Satzes erfüllt, nicht leer und e_r sei das erste Element dieser Menge: e_r , $non \in H$, wenn v' < v ist und $e_r \in H$. Es sei $E_n = \{e_\eta^{(n)}_{(\xi_n)}\}$. Das Element e_r ist laut Voraussetzung kein Grenzelement in der Menge E_n . Es gibt daher ein ξ_n , so daß das Element $e_\eta^{(n)}_{(\xi_n)}$ dem Element e_r in der Menge E_n unmittelbar vorangeht: $v = \eta^{(n)}(\xi_n)$ dem Element e_v in der Menge E_n unmittelbar vorangeht: $v = \eta^{(n)}(\xi_n)$ dem Element e_v ist, folgt $\mu(n+1) \leqslant \mu(n) < v$. Da eine unendliche monoton abnehmende Folge von Ordinalzahlen nicht möglich ist, so haben wir $\mu(n) = \mu(N)$ für n > N, für ein gewisses N. Da laut Definition $e_{\mu(n)} \in E_n$ ist, erhalten wir $e_{\mu(N)} \in E_n$ für alle n und daher $e_{\mu(n)} \in H$, was wegen $\mu(n) < v$ einen Widerspruch ergibt.

Ist E eine abzählbare Folge $\{e_n\}$ und $A=\{e_{k_n}\}$ eine Teilfolge von E, so setze man $\varphi(A)=\{e_{k_{2n+1}}\}$ $(n=0,1,\ldots)$.

Der Beweis des Satzes ergibt sich dann fast unmittelbar.

(Reçu par la Rédaction le 1. 12. 1937).