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Elle est holomorphe dans le domaine D, le point 2 = co y ecompris,
continue dans D+ et son module sur le continu F, est égal & ¢4 car

@, Doy 1,00 = €%  |o(2, Do, 1,0)| =1  si

D’aprés ce qui préecéde, lorsque z parcourt une fois un contour C)C.D,

entourant le continu Fy et n’enfourant aucun des continus Fy, i ;ékw
Pargument de ¢(2, Dy, 1, g) croit de.2may(g) et celui de ¢(2, D, 1, 0;
augmente de 2may(0). Par suite, lorsque z parcout Oy, 'argument de F(2)

ZEFk.

1° augmente de 2z si &k =1,

2° diminue de 2x sik =2,

3° ne change pas si k= 3,4,...,p.
Il s’ensuit que la fonction w = F'(z) est uniforme et univalente dans le
domaine D, (E) et représente ce domaine sur une couronne circulaire
r < |w| < B pourvue de p—2 coupures situées sur des circonférences
concentriques (une telle couronne est dite domaine canonique de Koebe).
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Remarks on the stability problem for parabolic equations
by W. Mrax (Krakéw)*

The problem of the stability of solutions of parabolic equations
has been investigated by Bellman [1], Prodi [4] and Narasimhan [3].

In the first part of this paper our considerations are based on the
generalized Westphal-Prodi theorem given in [2]. In the second part
we discuss the stability problem for systems of purely non-linear equa-
tions of parabolic type. We apply a theorem concerning the evaluation
of solutions of parabolic equations given by J. Szarski in [5].

Part I 1. Suppose G is an open and bounded region lying in the
space E™ of points (21, ..., Tm). Denote by B the Cartesian product of
@ and the interval (0, o), B = @x (0, oc). We denote the boundary
of @ by I B denotes the closure of B.

Suppose the sequence of functions g (@, 1)y eeny Un (2, T) 18 & solu-
tion of the parabolic system?)
02 02, 2

(1) ) (s=1,2,...,0).

at

We say that u = (U, ..., Up) i & stable solution of (1) if for every
&> 0 there exists such &> 0 that for every solution v = (vy, .-, Vn)
of (1) such that w;(w,1) = vi(x, 1) for (z,t)el'x{0,00) (i=1,...,7m)
and |ug(z, 0)—o; (2, 0)| < 8 (i = 1,...,m) we have the inequalities
Jug (@, §)—vi(a, O <&, (2, tyeB (i =1,...,7).

Now we investigate systems of the form

=F | x,t,21 cnesfny =
s s vy Ry h e (3] awi axiawk

0%

(2) py = Ly[s]+fal@s by 21y ooy 2n) (s = 1,2, .05 0),
where L, is the elliptic differential operator of the form
L[0] = Zm a5 () A
s o ik 61'46.'1“1‘ ’

f k=1

* T wish to express here my thanks to J. Szarski for reading the manuseript of
this paper and for his valuable remarks.

1) On the definition of the parabolic system see [2] and [5]. Our systems are
normal parabolic systems.
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4. ¢. the form

2

ap(2) &85 20 for xe@

(8%

Bl
]

=1

g

and arbitrary &, ..., &,. The functions aj, are defined for xze@.

Suppose that @ = (@, ..., G,), & = (Uy,...,7,) arve two solutions
of (2) such that #;(x, 1) = u;(x, t) for (@, t)el'x {0, oo). Let the functions
ag(®, by Uy, ..., #,) 2 0 be defined for xe@,1> 0 and w; > 0. We have
the following theorem implied by theorem 1 of [2]:

THEOREM 1. Let the fumctions oz(x,t, Uy, ..., uy,) satisfy the (W)
condition with respect to uy, ..., U, (see [2]). Suppose that
777:,)"’[3(“"7 ta iI: .

(8=1,2,...,m).

Ifs(m7t) T’l: ceny ° 77n)l < 0‘,(;11, t7 ‘7_]1".}’71|1 e Wn"‘ﬁ’:'n‘)

We assume that the functions zs(x,t) are continuous in B and posses con-
tinwous derivatives 6°2,[0x,0my, for (4, 1)e B. Suppose that 2,0 for (x,1)eB.
Let the following inequalities be satisfied :

Ly[2s ]+ os(w, 21, ooy i) < (s=1,2,...,m),

[T (2, 0)—Ty(, 0)] < zg(x, 0) (s == 1,2, ..., m).

Under our assumptions the following inequalities hold :

Iﬁg(m,t)—i—zs(w,t){<2f,,.(m,t) (s=12,...,m), (o,1)eB.

2. Buppose L, is the Laplace operator, 4. ¢. the system (2) has the
form

3)

02

7 = Az s, by 2, .0

y2a)  (s=1,2,...,n).

The stability problem of solutions of such equations hag been con-
sidered by Prodi [4]in the case n = 1. Put g, = A(v;+...+ ¥p), 4 being
& constant. We assume that ni < y; where y; is the smallest, positive
characteristic -value of the equation Ap -+ up =0 considered in G, of the
eigenproblem with homogenous boundary conditions p(®) =0 for zel
Applying the arguments of Prodi one can construct a funetion 2(x) which
satisfies the inequality Az+-(u;—e)2 < 0 in ¢ and 2(w) > 0 for xed.
e is a suitable positive number such that 1 —nd—e> 0. We put
@ = py—ni—e > 0. Then the function

Z2(x, 1) = ¢ %2 (x)
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fulfils the inequality AzZ4miZ < 0z/dt. Let us write z(z, 1) =Z(z,t)/n;
then for 2z, the following inequalities hold:

0z,

Az,+1(z1+z,+...+z,,)<—ﬁ (s=1,2,...,n).
Suppose now that
n
(4) Hality 8 By oy B ~faly 8 T,y B) <A Y 3=

(8=1,2,...,n).
If (%, ..., W), (¥,...,%,) are two solutions of (3) such that
Ty(®, 1) = Uy, t) for (a,t) eI’ x (0, 00), |TWy(,0) —U,(x,0)| < n2(x,0),
then by theorem 1
[ (@, ) —Ths (2, 1) | < 25(2, 1)
Let ¢ > 0. We define

(re@, > 0).

_ infz ()

= Supr(@)

Therefore if |7Z,{z, 0)—%,(x, 0)] < 4, then |T,(x, 1) —u,(z, )| <e. Hence‘
we have the following conclusion: if ni < u; and (4) are salisfied, then
every solution of (3) is stable.

3. In the previous example we have applied the method of Prodi.
Now we shall show how the method of Narasimhan may be applied to the
systems of the form (2). ‘We put o5 = A(vy+...+v), 4 ?eing a positive
constant. In may be assumed that 2,0 for (2y, ..., #,) e @. Let us denote

Xy == maxay.
@

We write A == o4 ePFttXn) where 0 < 8 < 1, D being a positive

constant to be specified. Let us define )

(2, 1) = [d —gPEL AT ol
. .

Hence the inequality Lg{z;]+2 .V 2 << 07,/0t means that

g
L=
m
(8) (A+a)(d— (:D(l1+...+<cy,:)) < LA P@tton) _.?_71 aS ().
Let
n
(6) a = minfinf ' af(e)]

s weGyxTn
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and a > 0. Write

mn

y = max 2 (X — o).

re@ {27

Suppose that for certain o > 0 there exists I > 0 such fhat

~ Dy @
er L
(7) Ty

On the other hand since & < 1 < P@+et) e have

A _el)(w1+...+wm) <A = el)(XH-..A-Xm)_

Therefore

(8) (nA+ a) (A — ePEF ) (] o) gPEIT b0,
But (7) iﬁxplies

(9) (nd+a) EPE et Xm) g P D@Lt )

According to (6) we have
m
(10) @D? Pt} < TR DXtk +K) by @y (r).
=1

The inequalities (8), (9) and (10) imply the inequality (5).

‘We see now that the construetion of z, in the prescribed form de-
pends on the existence of positive solutions on D of the inequality (7),
where ¢ is a positve constant. The discussion-of this inequality may he
conducted by elementary methods.

In the same way as it has been done in section 2, if (7) is satisfied,
the suitable stability condition for system (2) may be formulated, the
form of 2, being used.

Part II. 1. Let us consider the system (1) and the system of ordi-
nary differential equations

(11) "J'Ii=‘7'i(t7:‘/a"-7?/n)’
o; being continuous for ¢ >0, y; > 0 and satisfying the (W)-condition.
Suppose that o; >0 and denote by y(t, &, ..., &,) the right maximal
integral of (11) valid in <0, co) such that w;(0,s,...,&,) = &>0.
‘We formulate a theorem which is an immediate consequence of theorem
2.1 [8].

THEOREM 2. Suppose that (%, ..

oy W)y (Uyy ..oy Uy) are two solu-
tions of (1). Let

(12) ‘Fs(my t?al: coey Uny Qs pik)"']”x('ny t) 1y ey Ty Qg pik)'

< op(b [T —0], ooy [Tn—0l)-
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We assume that
(6 =1,2,...,n), ae@,
g (1=12,...,n),

As our assumptions are satisfied, the inequalities

[ (2, 0) — us(2, O)I <&
<

]ﬁi(%t)—m(ﬂ_%i)[ (@,8)eI'x(0, o0).

[T (2, 0) —us (2, )] < oglt, &1y -y &0) (t=1,...,n)
hold for (x,t)eB.

Suppose now that the right maximal integral w; of (11) such that
w¢(0) = 0 is identically equal to zero, 7. e. w;(t) = 0. In that case we say
that w;(t) = 0 is stable in the sense of Liapunoff — shortly (L)-stable —
if for every & > 0 there is such a 6 > 0 that for every solution w;(t)
(4 =1,...,n) of (11) such that |w;(0)] < 6 we have |w;(t)] < e fort>0.

Let us introduce the following definition: the solution (%, ..., %)
of (1) is stable in the wider sense if for every ¢ > 0 there exists such a 6 > 0
that for every solution (uy,...,u,) of (1) such that

[ (2, 0)—u;(x, 0)] < & (i=1,2,...,n), $€@,
I'Ei(w;t)—'ui(wy t)[ <6 (i =1721~~'7'n)7 (m,t)EI‘X(O, oo)
we have [@;(x,8)—u; (2,8)] <& (i =1,2,...,n), (#,1)eB.
We have the following
THEOREM 3. Suppose that w;(t) = 0 is an (L)-stable solution of (11).

We assume that (12) holds. Then every solution of (1) is stable in the
wider sense.

2. Example. Let (11) be a linear system of the form

n

(13) Y= chk(t)?/k,

k=1
with continuous coefficients ag(¢) for ¢ > 0. Write

ax(t) 20,

@(t) = max |ag/(t)|
ik=1,.,n
and suppose that
f @(t)dt < +oo.

0
It is well known that y; = 0 is an (L)-stable solution of (13). Hence

if
: n
I—Fs(ma t, 771: RS Uny iy pik)_Fs(my ty ﬁ17 M) ﬁn; ‘Zi:pik)l <Z gy (t)Wk - 'I_’—Ic[
n=1

then every solution of (1) is stable in the wider sense.
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Differential inequalities of parabolic type

by W. Mrax (Krakow)*

In connection with the stability problem of solutions of parabolic
equations some theorems concerning certain differential inequalities
have been discussed (see [1] and [2]). :

In this paper we discuss some generalizations of the theorems about
differential inequalities of the form

0z, 82, 6%z )

—-—<F(mt2 ey Py —
ot S\ T G T Oy Oy,

(s =1,2,...,n0).

1. Notation and definitions. We investigate a hypercylinder of
the form GX (0, T> (T > 0) where @ iz an open boundeéd region lying
in the space E™ of points (2, ..., &y). We write B = GX(0, T); I' being
the boundary of G we write ¢ = I'x (0, T>; B denotes the closure of
B,0 =I'x<0,T>.

Suppose that F (2, ..., Lyy Ty Y1y oeey Uny Gay <o) Gny P1ry -+ -3 Ponm) y Wit-
ten shortly as F(z,t,u, g;, Pa), satisfies the following condition: For
every system of numbers 7y (i,k=1,...,m), rg (,k=1,...,m)
such that the quadratic form

m
N o — 1) E: &

R

is non-negative for arbitrary &, ..., ém, the following inequality holds:
Fx,tyu, g, Fa) = F(@, 1, %, Qs 14x)-

Fle,t,u, g, py) is then called the elliptic function with regard to py..
A system of equations
Oug
ot

oy, 0,
U T . A
T By " O Oy,

:Fs(m,t,ul,' ) (s=1,2,...,n)
is called parabolic it every F, is elliptic.

* T want to express my thanks to J. Szarski for valuable remarks concerning
this paper.
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