Non-local problems in the calculus of variations (II)
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§ 1. Sturm’s theorem. The results obtained in the first part of
this paper make it possible to extend Sturm’s known theorem on diffe-
rential linear homogeneous equations of the second order to analogous
integro-differential equations.

This theorem, belonging to the theory of integro-differential equa-
tions, is to be applied to the investigation of the second variation in
non-local problems.

THEOREM 1. If 4 is not the chamctemstw number (1) of the integro-diffe-
rential equation
(1.1) a3(1) @ (8) + 0 (1) ¢ () + ao(t) g (£) = 2 f b(t, ¥)g () a’
and if ay(t) % 0 over the closed interval {a,p), we find that between the
neighbouring two zeroes of any solution of this equation there is exactly one
zero of any other solution independent of the given solution. We assume that
functions ayt), b(t,t") are of class C,.

We can even weaken this assumption.

Proot. From the first part of our paper [2] we find that considering
the assumption above we can apply the theorem of existence of solutions
and exactly one solution at every point, i.e. that we can carry exac-
tly ome solution of the equation through every point of any direction
—o00 < ¢ < oo of the stripe a <t < f, —oco < q < oo. Tt follows immedia-

(*) To the set of the characteristic numbers A belong the characteristic values
of the kernel

b(t, v)dv

N, ¢) f‘ll ) €,(t) —Ta(x) g, (t)
Wir)
)

where y(t) and F,(t) are two linearly independent solutions of the equation
6yq"" 40,4 +0,q = 0,

W (z) denotes Wrotiski’s determinant of 7. 41> 45> and possibly any two numbers more.

(See [2], p. 88-90.)
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tely from the form of the equation (1.1) that if the functions ¢,(f) and
gs(t) are its solutions, function e;¢;+ ¢xg. i8 its solution too.

It is obvious that Wroriski’s determinant of any two solutions of the
equation (1.1) is either identically zero or does not vanish at any point.
If qug3— oy =0 for t =1,, though one of the derivatives g; and ¢, varies
from zero, then for =1, we have the following relation between ¢
and ¢,:

(1.2) . ¢1(te) =

9( ) 4 ot

t or (1.2 (to) = = qu{ts).
(i) 2:(to) Qally ) 1(to
Let us examine the first case, the second is analogous. From the condition
that only one curve of the family of which ¢; and g, are members goes
in a given direction through every point and con’sideripg the identity

. (o)
o) = 11
(1.3) ¢i{to) lla) “—3(t)
we get from (1.2)
ity )
1
6(t) = gq(t ) (1) -
Thus Wrofiski’s determinant vanishes identically. If
(1.4) gilte) = galte) = 0,
then evidently it is possible to fmd guch a constant ¢ # 0 that
(1.5) Qa(te) = cga(ty) or  (1.57) 45(t0)°= cg1(to)
and from (1.4)
(1.6) qi(to) = cqa(ts) or  (1.6") a(fe) = edy(to).

From equations (1.5) and (1.6) follows an identity from which we immedia-
tely get the required property of Wroiiski’s determinant. From the above
property of the examined family of functions it follows that there are
two such functions ¢, and ¢, that their Wronski’s determinant does not
vanish at any point. For in the contrary case all the functions of this
family would be linearly dependent and therefore we could not carry
exactly one solution of the equation (1.1) through every point of any
direction.

We can get any other solution of the equation (1.1) from a linear
combination of these solutions. Honce, the equation (1.1) is identical
with the differential equation

Glt) g.t) ¢()
wny . Gl @) ¢ | =0,
¢ (1) g2'(8) ¢ ()
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i. 6. every solution of the equation (1.2) is the solution of the equation
(1.7) and vice-versa. The equation (1.7) satisfies the assumptions of
Sturm’s classical theorem, and because of the identity of the equations
(1.1) and (1.7), the theorem applies also to the solutions of the equation
(1.1). :
§ 2. Second Variation. We are going to study the question of the
preservation of the sign by the second variation in non-local variational
problems. We want to find some conditions for the occurence of the
extremum of the functional ‘

2.1) I= ffL(t ¥y q(t), g(t'), (1), (¢
We can obviously assume that the function L(t, ¢, ¢(t), ¢(¢'), ¢ (2), g()
is a symmetrical function of variables ¢ and ¢, <. e.

qt), ¢ ), ¢ (1) = L', ¢, 4", ¢(¥), g (¢'), " (2)).

We are able to express the second variation of functional (2.1) in the
form

n)dsd’.
L{t, ¢, q(t),

23 #7=[ f {P(1, ) [0g(P+Q ¢, ¥') 89(2) Sg(¢)+R(t, ) [6q° (1)) Aot

where the coefficients P, @, R are expressed by the function L and its
derivatives after the substitution of the extremal function for ¢. P, @, R
are symmetrical functions of ¢ and ¢.

Similarly to conventional local variational problems, we can show
the proper selection of variations d¢(t), so that the sign of the expression

g
(2.2) may be identical with the sign of the function [R(f,#)dt’ at any

point & Thus the necessary condition of the preservation of the sign.
by the second variation is the stability of the sign of the function

f R(t,1")@' over the interval (a, ).

‘We get the following theorem

THROREM 2. The sufficient condition of the emistence of an ewtremum (®)
for the functional (2.1) is that there be an integral of the equation
8

J P, rsat0-+01 0)00) - ;’t[Ra ¥)oq )i = o0

(2.3)
(*) We can easily show, as in the local case, that the invariability of the sign
of the second variation is a necessary and sufficient condition of the appearence of

-the weak extremum of the functional I. Henceforth we put “extremum” for weak
extremum.
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different - from zero over _the inmterval (a B> and that the funatzon Qt, t")
have a sign contrary to the sign of f R, v)dt'.

Proof. The equation (2.3) is Lagrange’s equation of the functional
(2.2). Tt is to be noticed that it is an integro-differential equation of the
function dg(t) of descriptive class in the first paragraph. Let us assume
that there is an integral z(¢) of this equation which has no zero over the
interval (a, 8>. Then every function d¢{) is to be expressed by the form
8¢ = zw. Let us notice that the left side of the equation (2.3) multiplied
by the function é¢(f) and integrated from a to # with respect to the va-
riable ¢ is transformed into the second variation (2.2) in the form

w1=3 [fx0

_&-[R(t,t (=) w (t)+w( t)z(t))]}dtdt’—l—

(2.4) wi){P(t, )20 (1) +Q, 1)x(t)w () —

B N ‘
+ [ [2@)w )P, e () w)+Q, D2t w(h) —

a ’ l
_EE[RU 1) (>(¢) w0 (") w0 (t')2

)]} azar

Now we add and subtra.ct

*ffz

from the first part of the above form. Then we extract w(t), w(t') from
brackets in the first part and in the second part. An easy calculation
taking into account the symmetry of the functions P, @, B of variables ¢
and ', makes it possible to give the expression (2.4) the form

w(t)Q ', H)z(t)w(t')dtdt’

(2.5) o = ff{R (t, 1) [w (B~ Q 1, t')2(t) 2(t') [w(t) —w (') 12} dtdt’.

‘It was stated above that the nece§sary condition of the preservation

of the positive mgn by the second variation iy that j R t,t)dt"' = 0. If,

besides, the funcmon @(t,¢) is mnon-positive, the second variation is
non-negative. Thus our theorem is proved.

In the case of Q(t,¢') is zero an integration with respect to the va-
riable ¢’ of the expression (2.3) becomes meaningless and then the expres-
gion (2.2) is the second variation of a pure local functional.

Annales Polonici Mathematici IV,
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Let us give some valuation of the second variation of non-local
functional.

TaroREM 3. The sufficient condition for the functional (2.1) to have
a minimum is that there be an integral of the pure differentinl equation

B
e,

a

which does not equal zero over the interval {a,p)> and that

0
(2.6) —418g(t)— 5 [R(, ¢) g (t) " = 0

[
[ R, ¢)a >0

for every o <t < p. The expression

was denoted by A in the equation (2.6).

THEOREM 4. The sufficient condition that the functional (2.1) have no
minimum is that there be an imtegral of the equation

(2.7 f {[P(t ) +A76q(t) -——a—[R(t ) 6q-(1)] }dt’ =0

which equals zero at least at two points of the interval {a, f>.
We have an analogous theorem in the case of the mammum of the
functional. In this case wo must repla.ce the assumption f R(t,t')at’ >

by the dssumption fR ' < ,

Proof of the theorem 3. From the assumption of the theorem we

find that the square local functional ,
f (PO)Lg()F +EL6g ()]}t
=ff{[P(t,t’)

is positively defined, 4.e. that the fumectional is greater than zero lfor
every q(t). We get the following valuation from Cauchy’s inequality

—A](6g ) +R (2, ) [6g°(5)T") db s’

o 7 ;
|[ Qe ¢)8a() bqw)dsar | < ]/ [T IR, ¥ Paar [ f [sq() [og() ] dedt’

B
=A [ [ [q()raar,
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hence we get the inequality
f f (t, ) [8g(1)1*+Q (¢, 1) 8¢ () 8 (¢') +R (¢, ¥') [6q"(1) 2} dt

B
> [[{P(t, t)—A[8g()) 12+ R (8, ') [6q°(2)12) dtat’,

which proves our theorem.
The proof of the theorem 4 is analogous.

§ 3. Some remarks about sufficient conditions. It is difficult to
find useful sufficient conditions for the existence of an extremum. We
are able to get an analogous function to Weierstrass’ ¢ function. It has
the form

61 I@-— fj {L{e, v, 300,70, 70), T W) —
—Lt, ¢, g0), ¢), p (£, A1), 4 (@) +
+lam—s(, q(t))lI-q-m(t, t,q(), p(t, §(0), ¢ ()} atay

where g(t) is a varied function and ¢(f) an extremal function and p(t, g)
is a slope function of the field of extremal functions (see also [1]). The
definiteness of the expression (3.1) is a necessary and sufficient condition
for the existence of an extremum. The usefulness of the expression (3.1)
for the investigation of extrema is practically very small. It is caused
by the appearance of the extremal function ¢(t) on the right side of the
formula (3.1).

We can get an analogous condition to Erdman-Weierstrass’ corner
conditions.

n

2 fL[LT(f)(‘%(Vp% wgt))

(3.2) — L 0plys), @it} d =0,
=1 %1
n Vi
3.3) ' [ {Z(oprs), oxlt") — @p(r0) Lyp{enlra), ot}
i=1 7j—1 .
=T E(@pear)s 06l)) = 51107 Lo [@nialr), alt))} 8,
i=1 751

L(wk(?’p)y wi(t’)) = I’(?’m t, wk(')’p): oy(t'), wk(yp)7w% (t'))'

We leave out the tiresome proof of formula (3.2). Classical methods of
applying Erdman-Wejerstrass’ condition in order to get criteria for the
existence of the extremum of the functional (2.1) bring no result. That
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is so because the solution of the integro-differential equation (1.1) is not
necessarily a solution of the equation
a8
o) 0 (8)+ ay(1) 4°(1)F ao()g () = A [ b(2, ¢ a ()
S e
if (a— )2+ (B— 8)* # 0, while the solution of a pure differential -equation
over an interval is a solution of this equation in any sub-interval.

§ 4. First integrals of the generalized Lagrange-equations. In
the conventional local variational problems in the case of the Lagrange-
-function being independent of ¢ it is always posgible to construct first
integrals of the Lagrange-equations, i.e. functions of ¢, ¢(t), ¢'(¢) which
are constant on the extremals. The existence of first integrals may be
connected with the invariance properties of the given functionals with
respect to finite continuous transformations of ¢ and ¢(t) (ef. E. Noether,
[3]). In the case of non-local variational problems the situation is essen-
tialy different, From the invariance of the functional there follows merely
the equalibty of certain functions at the boundary points a and p. We are
going now to study this problem in some defail.

Consider the following transformation of the variables ¢(t), ¢ depen-
ding on the parameter ¢

(4.1) ‘ t‘=T.(t747q'7°')7 Q’=Q(t,q,2‘,ﬂ)~

The functions @ and T are continuous functions of their arguments,
possessing continuous second order derivatives with respect to all argu-
ments a <t <P, —c0< g, ¢ < +oo, ,—4A o< 4, Ais a positive
constant. We assume further that for ¢ = 0 this transformation reduces
to identity ¢* =g, t* =t To investigate transformation properties
of the functional (2.1) it is sufficient to consider only infinitesimal trans-
formation. In this case the transformation (4.1) may be written in the
form

(4.2) " =t,48t, &t =T, t)do, ¢ =qo+0¢, g =2Q,t)dc

where do is constant, T'(t) and Q,(t) are derivatives of ' and ¢ with respect

t =1y, 0o =0,.
The variation of I due to the infinitesimal variations (4.1) is
a(Lét
(4.3) oI = f{ Boq + uao + J—(ﬁ@}dt

where
: 6oq = 6¢—qdt.
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Integrating by parts we get

B
oL d 0L
4.4 8 =
(4.4) af{aq p7 aq}é.,gdt-{—&aﬁ‘(
where
oL oL
4.5 doF(t) = — = =
(4.5) oI (1) Lﬁt(t)-i—aq,éoq Hot+ 3 oq,
. oL
4.6 H=L——q.
(4.6) e
Introducing (4.2) into (4.5) we get
0L
(4.7) F(t) = HIT,(t)-+ a7 Q.(t).

TuEOREM 5. If the functional (2.1) is invariant with respect to the
group of tramsformations (4.1) and if q(t) is an arbitrary extremal of this
functional, then

(4.8) Fla) =F(B).

The proof follows immediately from (4.4) if we observe that éI = 0
(in the case of invariance), that the integral in (4.4) vanishes on the ex-
tremals, and that o is an arbitrary constant.

It may be noted that, in contradiction to the local case, the constancy
of F(t) inside {a, #> does not follow from (4.7). Indeed, in the local case
we may vary the points a and g arbitrarily without affecting the Lagrange
equations, which are pure differential equations.and do not depend on «
and f. The constant F(?) is in this case the first integral of the Lagrange
equation. In the non-local case the Lagrange equation is an integro-
differential equation and contains the parameters ¢ and # as integration
limits. The variation of these parameters would affect the structure of
this equation and therefore also its solution. Thus from (4.7) we may no$
derive the constancy of F(t) inside {a, ). In fact, as we shall see immedia-
tely, in general F(f) vary in this domain.

The question arises whether there exists a function-functional of
t,q and ¢ remaining constant on the extremals throughout the interval
{a, B>. The answer to this question is given by the following theorem:

TeEoREM 6. The quantity

i
. 0L d (oL
=7~ [ e+ om0

is constant on the extremals throughout the interval {a, ).

(4.9) F@t)
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The proof is obtained immediately by differentiation with respect
to t, the use of the Lagrange equation and of the equation

(4.10) H' = 0L/ot,

which holds also in the non-local case.

Tt may be noted that the quantity (4.9) contains only first-order
derivatives of ¢ and a double integral over the’ domain {ay BYXLa,td.
The problem of finding the solution of the original Lagrange equation
(which is a second order integro-differential equation containing a single
integral over the interval {a, #)) is thus reduced to the problem of finding
the solution of the first order integro-differential equation (4.9) containing
a double integral and an arbitrary constant. Thus (4.9) may be viewed
as the first integral of the Lagrange equation.

It may be noticed further that the quantity F(t) is constant on the
extremals whether the functional I is invariant with respect to the group
(4.1) or not. In the case when it is invariant, the quantity F(t) goes over
into F(t) on the boundaries o and § of the considered interval. Indeed,
it is seen immediately from (4.9) that F(a) = F(a). It may be shown
that, owing to the invariance of the functional I,

B
f{HT;+ %It—;l’,—l— f-l-(aL Q,,)}dt =o.

(4.11) 7i\oz

a

Bquation (4.11) follows from equation (4.3) if we express do¢, Jug" and &t
in this equation by means of (4.2) and if we put 6I = 0. Thus in the case
of invariance we also have

F(p) = F(B).

The first integral (4.10) provide us with the generalization of the
notion of the integral also in the local case. In this case the quantities H
and L do not contain any integrals and according to the conventional
formulation the first integral exists if dL/d¢ = 0. According to our for-
mulation we may construct the first integral also in the case if 9.L/[0t # 0.
Indeed, integrating equation (4.10) over the interval {a,?), we get

i
(4.12) H(t)— f 9L 4 — const.
J ot

Expression (4.12) could also be obtained from the general formula (4.9)
by taking T, (t) =1, Q,(t) = 0. It represents a first integral of the
Lagrange equation, since it contains an arbitrary constant and is a first-
order integro-differential equation possessing, according to the general
theorem of Part I [2], a one-parametric family of solutiohs.
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The proof of the above theorems has been carried out in such a way
that it may immediately be generalized to the case of an arbitrary
number of unknown functions g;(f), ..., gu(t). Generalizations to problems
containing independent variables ¢y, ..., i, are also straightforward. The
application of the general procedure to physical problems (determination
of constants of motion) may be found in the paper of one of us [4].

The consideration of infinite groups of transformations yield nothing
new as compared with the paper of E. Noether. In the particular case
of one unknown function considered here we get the corresponding pa-
rametric variational problem containing two unknown functions of one
parameter. The demand of invariance with respect to a change of para-
metrization (infinite group) results in a relation between the two La-
grange equations for the two unknown functions, exactly as in the local
cage.
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