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c O M M UNTIOCATT O N S

ON STATIONARY SEQUENCES OF RANDOM VARIABLES
AND THE DE FINETTPS BQUIVALENCE
Y
CRYLL-NARDZIEWS KI (ILUBLIN)

In this paper we consider some fundamental properties of stationary
sequences of random variables and of sequences of random variables
equivalent in the sense of de Finetti.

All definitions, theorems and proofs are given by means of an uni-
form method, namely in terms of measures in the product-spaces in
which some transformations take place.

In general the theorems proved inm this paper are known: Theo-
rems 4 and 5 present a paraphrase of the theorem on the decomposi-
tion: of a measure-preserving transformation into indecomposable com-
ponents (cf. e. g.[6], p. 242-244) and Theorems 1 and 6 are a paraphrase of
Khinfchin-Dynkin’s theorem on random variables equivalent in - the
sense of de Finetti (see [1])'). Nevertheless, the equivalence of two
definitions of symmetric measures (Theorem 6, (y)) and the explicit usc
of the field of invariant sets (in the same theorem) seem to be new.

1. Let X denote the product of a demumerable sequence of real
axes. We denote a point of X by ® = (@, @,,...), where z; are real.
Let 93 denote the field of Borel subsets of X. We assume that all consi-
dered sets and functions are 9B-measurable.

We shall frequently consider the functions defined in X, depending
on some coordinates only, e. g. functions of the form f(x) = f(=y, 2, ..., 2).
In such cases we shall treat the right side of the formula as a function
defined for xe X.

We denote by M the clags of all probability-meagures in 93,

X5 is known that the investigation of sequences of random variables
is equivalent to that of measures in product-spaces. Namely, by intro-
ducing the random variable &(#) = m, and putting for a certain e

Frllay tay ooy ) == M{w: By <y ey B < th}:
we obtain k-dimensional distribution functions.

1} A new proof of the Klintchin-Dynkin theorem, based npon the moethods
of functional analysis, is due to Hewitt and Savage [8].
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It is well-known that every sequence of distribution functions satis-
fying some compatibility conditions may be obtained in this way
([4], p. 27, Hauptsatz, and [2], § 49, Theorem A).

2. Let us denote by ¢ the shift-transformation:

() = (g, X3, ...) for 2= (r,Ls,...).

Obviously ¢ 'Be3 for Hel.
We distinguigh different subclasses of .
Definition 1. A measure «eM is stationary, in symbols weM,, if

(1) (B = nlo7 By  for Be.
Consequently,

(2) p(B) = ulg™™B) (n=1,2,..)

and

(3) [H@)du = [ fg"x)dp,

for p-integrable functions (where f ...4u always denotes the integral with
respect to u extended over X).
Stationary sequences of random variables correspond to stationary
meagures in X.
Definition 2.
B =9 'B.
Definition 3. A measure xeM is indecomposable, in symbols
peMyq, it w(B) =0 or 1 for all BeW,,. )

Definition 4. A measure weM is symmetrical, in symbols peM
if, for every sequence n; << My << ...
tegrable funection f, we have

(4) ff(wnwzw-')d/"' = [ (@nyy Tnyy -- ) ps-

Tt is possible to define the class M, in another way. For each se-
quence ny < 1y < ... we consider the transformation

A set EeB is dnvarient, in symhbols BeBy,, if

'sym »
of positive integers and every u-in-

() = (“’nlv Ty «eo)
and we require the invarianee of the measure u:
() p(B) = u(p™' B)

with regpect to all ¢ of this form.

Putting n; = k41, we get M, C M.

sy
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We introduce temporarily one more definition:

Definition 4’. By replacing in definition 4 all increasing sequences
of positive integers by all sequences of different positive integers, we
obtain the notion of a measure symmetrical in the strong sense..

(It is easy to see, that in this definition we can consider only the
permutations of the set of all positive integers.)

We ghall prove that the two notions of symmefry are equivalent
{Theorem 6 (v)).

Sequences of random variables equivalent in the sense of de Finetti
correspond to symmetrical measures.

3. Definition 5. u is & product measure, in symbols: ueM . if
it is stationary and

© [ @) Sedn = [ hledde [ jaeda... [ i du
for all £ =1, 2,... and all u-integrable f;.

Obviously, it suffices to consider f; which are the characteristic
functions of sets.
Condition (6) may also be replaced by the following:

(1) 1@, ooy 89 By s @) = [ 1@, oo, @) [ 90, -y @) Ao

for all p-integrable f and g.
The product measures satisty not only (6) and (7), but also

(8) [flayap = [f@)du  for

A product measure is indecomposable (see [4], § 46, (3)). Product
measures correspond to the sequences of independent and equidistri-
buted random variables.

n=1,2,..

LmmyA 1. Bvery stationary product measure is symmetrical in the
strong sense.
Proof. If n; s n; (for 4=%4) and if the function f is of the form

9) Fl®) = g1 (@) ga (). - 93 (@) s
then, with regpect to (6) and (8),

[t@)ap = [ gr@n)dn. .. [ @n) @ = [ (@oys ..o @n) e,

Thus, formula (4), which characterizes the symmetric measures,
ig proved for the funections f of form (9). Since every u-integrable function.
may be approximated in the mean by the linear aggregates of the functions
of that form, formula (4) is proved.
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Lemma 1 permits the construction of a class of symmetrical mea-
gures.

Lemma 2. Let u(E,t) be a function of two variables, HeW, and teT.
Let (T,T, %) be a probability-measure space. We suppose that

1° for any fived Be<B, the function u(B,t) is T-measurable,

2° v-g. e. (almost everywhere in T with respect to v) the set function
w(B,t) 15 a probability measure symmetrical in the strong sense.

Then the set function

(10) p(B)E [p(B, 0ax  for  BeDB
r

18 symmetrical tn the strong sewse.
Proof. If f(@) is p-integrable, then, in view of the generalized Fu-
Dbini theovem ([4], § 36, (3)), f is integrable with respect to u(-,t) r-a. e.

and
[ d,u——fdrfj Yu( -

By 2° the measures w(-,
whence

ff( Y —J(Ir

for every sequence ny, ng, ...
Lemmas 1 and 2 imply
TumoreM 1. If u(E,t) satisfies condition 1° (see lemma 1) and the
set function u(-,3) is a product measure v-a. e., then the measure u defined
by (10) is symmetrical in the strony senmse.
‘We shall prove (Theorem 6) that every symmetrical measure mav
be obtained in that way. Hence it follows that the converse of Theorem 1

is true and that symmetry and symmetry in the strong sense arve equi-
valent.

t) are symmetrical in the strong sense 7-a.e.,

)d/’ ff Logs Tngy -

of different poxitive integers.

Ody

I'nlq Logy - -

4. THROREM 2. Every symmetrical and indecomposable measure is
o product-measure: My - My g C D,

Proof. Let f and ¢ be the characteristic functions of some sets of
the form

@) = flay, g,y oy my)y,  g(e) = .(/(mlv+v17 Teqay ooy Br)e
Bince xeM, ., we have
mn
11 = ") Ay = by 1
an  [r@g@ip = [ @@ = (@ m+144"<"’ @) dy

. forn,m =0,1,2, ...

icm
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Since peM,,-My,, we obtain from the individual ergodic theorem
{gee 6. ¢. [5])

lim~1—— SMTg( ") =comt=f () du -9, @
m—l-lm 4 5 g li - e

M—>00

. whence, in view of (11)

[H@g@an = [f@dp [ g(@)dn.

This is formula (7), characterizing the produet-measures among
the gtationary measures.

5. Let us introduce the conditional measure with respect to the
field 9, of all-invariant sets.

For pueM, for any fixed HeB, and for @ running over 9, the set
funetion u(EQ)is a (non-normed) measure, absolutely continuous with
fespect to u restricted to 98,,. By the Radon-Nikodym theorem

(12) = [ n(Bla)du,
Q

where u(EB|-) is By, - measurable. _

The function w(E|-) is uniquely determined modulo wx. Since B is
the field of all Borel sets, the function x(E|*) may be chosen so that ([2],
§ 48, ()

(12) u(-|x) is a probability measure u-a.e. in X.

The following theorems concern the relations between the properties
of u and of u(-|x):

THEOREM 3. If pneMyy,,, then u(-|@) M n-a. e

TEROREM 4. If pueM, then u(-|a)eMy, u-a. e.

TewOREM 5. If neMy, then u(-|[2)eMy; p-a. e

The proofs of these theorems will be based on the following lemmas.

Lemma 3. Let 9B, be any findtely additive denwmerable subfield of B
with the following properties:

(a) The characteristic function of any set BeB, is of the form yg(a)=

= x5(%1, ..., @) (where k depends on EJ,

(b) B is the smallest o-field containing WBy.
Then, for any ueM

(i) if u(B) = ulp™ B) for all BeB,, then weMy;

(i) 4f w(B) = u(yp™'B) for all EcB, and for all v (occuring in the
definition of M ), then ueM
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Proof iy immediate.

Leuma 4. There is o denumerable class @ C By, such that, for any
we My, we have

(i) if w(B) =0 or L for oll BeC, then ueMy,.

Remark. Lemmas 3 and 4 state that it is possible to replace in the
definition of My, My, and My, the non-denumerable systems of
equalities by some denumerable ones. .

Proof of lemma 4. Class @ will he defined as follows. Let yg(a)
be a eharacteristic function of B, (see lemma 3). It is easy to see that
the sets ‘

m

— 1 Y

Qry — {w: lim 2 (o™ ®) << 'r} (r— rational)
oo M1 n=0 ’

are invariant: QgeePBy,. We put € £ Q- .
‘We shall verify that € fulfills condition (ili). Let us suppose that
weMy and 1(Qg,) = 0 or 1. Consequently, for FeW, we have

— 1
(13) im —

wm

E yelgh®) = const -4 e
Moo M 1 T
by

On the other hand, by the individual ergodic theorem (e M) we

have
"

1
B e Y ypleta) = g o,
m»w‘"1+]ﬁ-"‘(q ) = y(®)  p-ae

and

w(B) = [ (@)in = [ g(@)d.
Hence, formnla (13) admits a sharper form:

m
(14) lim -m}-»-ZxE(mnm) = u(B)  p-we.
Mmoo M- 1 Lt
for all B C9%,.
Let FeBy,. We have to prove p(F) =0, or 1. By the property (b)
of 03,, for each & > 0 there is a set HeWy such that (B~ F) < 4.
Hince yp(%) = yp(p®), we have

and, consequently,

[l =1 S mtera| <7—1+—12m [1s(02)—gm (o) du < .
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Passing to the limit for m — oo, we obtain in view of (14)
[ () —p (B dys < 8.

It follows that yp(x) = const. u-a.e, Hence u(¥) =0, or 1.
Proof of Theorem 3. Let us suppose that peM,. - For fixed
Ee, and Q¢ Wy, we have

Aa (%) =, w21y e ), Aulyp®) = XE('Tul; veey W)y
and for all 1 =10,1,2,...
20 (®) = 10(¢'®) = fo(T1y1, Tog1s o)

Applying this formula twice, we obtain

u(BQ) = f 1w @1y s B 20 Py Taier -+ )t =
= j%E(wmv EERS) ‘I‘m) ZQ(‘vl-t-nka LRI )d/" ==

= [y -+ o) 0 (@1 By )= (yT B Q).
Thug, in view of (12), we have

fu(E\w)d,u = f;z(w_lE{w)d/a.
@ Q

The fanctions under the integral sign are 93, measurable, whence
for each e, and each yp-

(15) p(Bl@) = uly Blx)  p-a.e.

Since 93, is denumerable and satisfies (a), there is "a common seb
X,CX with u(X;)=0 such that for zeX—X, equality (15) holds for
all BeB, and for all y. By Lemma 3 (ii) we obtain Theorem 3.

Proof of Theorem 4 is analogous: it suffices fo replace v by
@ in the preceding proof.

Proot of Theorem 5. Let ueM, and FeBy,. Hence

w(BQ) = [ ym(®)du = [u@m)du  for  QeWpy
Q Q
The functions under the integral signs are equal - 2. e. since they
are P, -measurable. Hence
(16) w(Ble)y=0o0r1l u-ae.

By Theorem 4, p(ole) e Mg, p-a.e. Consequently, there is a set X,
with u(X,) = 0 such that for @eX—X, we have u( -y e M, and at the
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same time formula (16) holds for all EeC (in view of the denumerability
of €). Lemma 4 gives u(-|#)eM,, for xe X—X,.

6. Combining Theorems 1, 2, 3 and B obtain the main result of this
paper:

THEOREM 6 Let p bg a symmetrical measure (u ecmm) and let u(H|x)
denote the conditional measure with respect to the field PBing- Then :

() p(-lo) is a product measure u-a. ¢.,
®) w®) = [ p(B®)du jor BeB,
(Y) u is also symmetrical in the strong sense.

Remark. Comparing Theorems 6 and 1, we see that 7 = X, T = 95,
and v = pu|By,, . Thus, the construction in Theorem 6 is of inner chalra.et:;
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Die Theorie der lokal-kompakten abelschen Gruppen ist dank den
bekannten Resultaten von Pontrjagin und van Kampen zu einem in
Grundziigen fertiggebauten System geworden. Beitrige anderer Ambo-
ren haben weitere einzelne Ergebnisse gebracht, so daB hier scheinbar
kein Forschungsgebiet mehr vorliegt. Dennoch lehrt eine’ Zusammen-
stellung der in der Literatur zerstrenten Resultate, da8 gewisse Ver-
kniipfungen zwischen Sitzen und Begriffen nach allems Anschein auler
acht gelagsen wurden und daf diesbeziiglich neue Probleme auftanchen.
Der Zweck dieser Arbeit ist somibt, bekannte Eigenschaften von lokal-
kompakten abelschen Gruppen auf die gegenseitige Abhingigkeit zu
untersuchen, daraus einige neue Schliisse zu ziehen und mehrere offene
Probleme zu stellen. Bs wird nicht vermieden aunch bekannte Sitze
neu zu beweisen, wo die Darstellung dabei an Einheitlichkeit gewinnen
kann.

EINLEITUNG

Hier werden wir die Grundbegriffe erortern. Als topologische (insb.
lokal- kompakte) Gruppe bezeichnen wir eine Gruppe, deren Elemente
einen topologischen (insb. lokal-kompakten) Raum bilden, in welchem
die Operation ab~' stetig ist. Unter dem topologischen Raum ist hier eine
CGresamtheit gemeint, in der eine Klasse von Untermengen bestimmt ist,
die Umgebungen heifen und folgenden Bedingungen unterworfen sind :
1° jedes Flement ist in einer Umgebung enthalten, 2° wenn ein Element
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