AN EXAMPLE OF THE GAME OF BANACH AND MAZUR

BY

A. ZIEBA (WROCŁAW)

In this note an example of the game of Banach and Mazur is given in which the existence of the winning strategy for the player A depends on the presence of only one point in the set Z^{1} .

Let us denote by S_n the segment

$$\left[\frac{2^{n-1}-1}{2^{n-1}}, \frac{2^n-1}{2^n}\right)$$

closed the left, and let us put

$$S = \bigcup_{n=1}^{\infty} S_{2n}$$
.

We shall prove the following statements:

- I. If we add to the set S the point 1 and take the set $S \cup \{1\}$ thus obtained as the set Z in the game of Banach and Mazur, then the game will be closed to the advantage of the player A;
- II. If we take S as the set Z in the game of Banach and Mazur, then the game will be closed to the advantage of the player B.

As a matter of fact, let us consider the following method of play for the player A:

- (i) let $a_1 = 1/2$;
- (ii) if $p_n = \sum_{i=1}^n (a_i + b_i)$ is in a segment S_{2i} , then take for a_{n+1} , a_{n+2} , ... so small numbers that

$$g = \sum_{i=1}^{\infty} (a_i + b_i)$$

also lies in S_{2i} (this is possible because according to the rules of the game $a_1 > b_1 > a_2 > b_2 > \ldots$);

OMMUNICATIONS

231

(iii) if p_n is in a segment S_{2i-1} , then take for a_{n+1} such a number that $p_n + a_{n+1}$ is the left end-point of the nearest segment S_{2i} lying to the right of p_n (it follows from the definition of S that it is possible and that $a_{n+1} < (1-p_n)/2$ which implies $p_{n+1} < 1$;

(iv) if $p_{n-1}+a_n>1$, then choose any b_n,b_{n+1},\ldots in accordance with the rules of the game.

Now it is immediately seen that if the player A plays according to (i)-(iv), then either for a certain n the situation described in (ii) occurs or all numbers $p_n + a_{n+1}$ will be the left end-points of different segments S_{24} so that we shall have g = 1, which proves I.

The proof of II is analogous.

MATHEMATICAL INSTITUTE OF THE WROCLAW UNIVERSITY

¹⁾ For definitions and notations see the paper of S. Zubrzycki, On the game of Banach and Mazur, this volume, p. 227.