

ÜBER EINE ART VON LAKUNARITÄT

VON

P. E.R.D.Ö.S (BUDAPEST)

(Aus einem Brief an S. Hartman)

... Ich will folgenden Satz beweisen:

Es sei $1 < a_1 < a_2 < \dots$ eine Folge ganzer Zahlen. $A(a_1, a_2, \dots)$ sei die Folge derjenigen ganzen Zahlen, die durch kein einziges a teilbar sind. $A(a_1, a_2, \dots)$ ist dann und nur dann lakunär¹), wenn eine unendliche Teilfolge a_1, a_2, \dots mit $(a_l, a_l) = 1$ existiert.

Falls dies bewiesen ist, so folgt z. B. daß die quadratfreien Zahlen lakunär sind $(a_k = p_k^2)$, und damit sind auch die Primzahlen lakunär²). Die quadratfreien Zahlen haben eine positive Dichte — und so ist dies ein einfaches Beispiel für eine lakunäre Folge mit positiver Dichte³).

Nun zum Beweis! Es sei $b_1 < b_2 < \dots$ eine Teilfolge der a mit (b_i, b_j) = 1. Offenbar genügt es zu zeigen, daß $A(b_1, b_2, \dots)$ lakunär ist (da $A(a_1, a_2, \dots) \subset A(b_1, b_2, \dots)$ ist).

Es sei $l=n_1< n_2<\dots$ die Folge $A(b_1,b_2,\dots)$. Um die Lakunarität von $n_1< n_2<\dots$ zu beweisen, genügt es zu zeigen, daß zu jedem k ein m_k existiert, derart daß für jedes l>0 zwischen l und $l+m_k$ entweder kein n_i oder wenigstens ein n_i mit $n_{i+1}-n_i>k$ bzw. $n_i-n_{i-1}>k$ enthalten ist. Wir zeigen, daß $m_k=b_1b_2\dots b_k$ gewählt werden kann. Aus einfachen Sätzen über Kongruenzen folgt nämlich, daß im Intervall $(l,l+m_k)$ ein x existiert mit $x+i-1\equiv 0 \pmod{b_i},\ 1\leqslant i\leqslant k$ (da doch $(b_i,b_j)=1$ und

$$\prod_{i=1}^k b_i = m_k$$

COMMUNICATIONS

ist). Die größte Zahl der Folge $A(b_1,b_2,\ldots)$, die kleiner als x ist, heiße n_t . Man hat also $n_{t+1}>x+k-1$, daher $n_{t+1}-n_t>k$. Somit ist die erste Hälfte des Satzes bewiesen.

Es sei nun $a_1 < a_2 < \dots$ eine unendliche Folge, die keine unendliche Teilfolge mit $(b_i, b_j) = 1$ enthält. Es sei $b_1 < b_2 < \dots < b_k$ eine maximale Teilfolge mit der Eigenschaft $(b_i, b_j) = 1$. Offenbar muß es eine solche Folge geben.

Es seien nun $p_1, p_2, ..., p_t$ alle Primfaktoren von $b_1, b_2, ..., b_k$. Offenbar ist jedes a_i durch ein p teilbar. Also gilt

$$A(a_1, a_2, ...) \supset A(p_1, p_2, ..., p_l).$$

Es seien nun $1=N_1,N_2,\ldots$ die Zahlen von $A(p_1,p_2,\ldots,p_l)$. Offenbar gilt $N_{i+1}-N_i< p_1p_2\ldots p_l$, da es unter $p_1p_2\ldots p_l$ konsekutiven Zahlen immer mindestens zwei gibt, die zu $p_1p_2\ldots p_l$ relativ prim sind $(\varphi(p_1p_2\ldots p_l)\geqslant 2)$. Damit ist alles bewiesen, da $A(p_1,p_2,\ldots,p_l)$ nicht lakunär ist ...

Recu par la Rédaction le 15. 10. 1956

¹⁾ Lakunär wird hier eine wachsende Folge a_n genannt, wenn es keine Zahl k gibt derart, daß für jedes r ein n mit $a_{n+i+1}-a_{n+i} < k$ $(i=1,\ldots,r)$ zu finden wäre; vgl. S. Hartman, Sur un type de lacunarité, Le Matematiche 10 (1955), S. 57-61 (Anmerkung der Schriftleitung).

²) Das hat W. Sierpiński in seiner Arbeit Sur la lacunarité au sens de S. Hartman de la suite de tous les nombres premiers, Le Matematiche 10 (1955), S. 67-70, bewiesen (Anm. d. S.).

³⁾ Ein anderes Beispiel einer derartigen Folge wurde von S. Hartman in der unter 1) zitierten Arbeit angegeben (Anm. d. S.).