

ON A PROBLEM OF BANACH

BY

V. L. KLEE (SEATTLE, WASHINGTON)

Banach [1] has asked for a characterization of those metric spaces which can be mapped in a continuous biunique fashion onto some compact metric space, and in particular has inquired whether the Banach space (e_0) can be mapped in this way.

Relevant results were obtained by Sikorski [7] and Katetov [3], but the case of (e_0) was not settled.

We remark here that for (c_0) the answer is affirmative, reasoning as follows: by a recent result of Kadec [2], (c_0) is homeomorphic with (l^1) ; by Mazur's theorem [6], (l^1) is homeomorphic with (l^2) ; by a theorem of the author [4], (l^2) is homeomorphic with its unit cell $C_n = \{x: ||x|| \le 1\}$ (in the norm topology). Now the natural map of C_n onto C_w , the unit cell in the weak topology, is continuous, and C_w is known [5] to be homeomorphic with the Hilbert parallelotope P. Thus (c_0) admits a continuous biunique map onto P, which is a compact metric space, and the proof is complete.

REFERENCES

- S. Banach, Livre Écossais, Probl. 1, 17. VII. 1935; Coll. Math. 1 (1947),
 P 26, p. 150.
- [2] М.И.Кадец, О гомеоморфияме некоторых пространств Банаха, Доклады Акад. Наук СССР 92 (1953), р. 465-468.
- [3] M. Katětov, On mappings of countable spaces, Coll. Math. 2 (1949), p. 30-33.
- [4] V. L. Klee, Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), p. 10-43.
 - [5] Some topological properties of convex sets, ibidem 78 (1955), p. 30-45.
- [6] S. Mazur, Une remarque sur l'homeomorphie des champs fonctionnels, Studia Math. 1 (1929), p. 83-85.
- [7] R. Sikorski, Remarks on a problem of Banach, Coll. Math. 1 (1948), p. 285-288.

Regu par la Rédaction le 1. 7. 1956

ON THE NOTION OF UNIFORM CONVERGENCE WITH RESPECT TO A FUNDAMENTAL SET OF FUNCTIONALS, AND ITS APPLICATION

BY

W. KLONECKI (POZNAŃ)

When formulating the mean-value theorem for vector-valued functions we need the notion of a convex. However, the application of the mean-value theorem thus formulated is often inconvenient. In this paper I give a method which makes it sometimes possible to avoid applying the mean-value theorem. This may be obtained by introducing the uniform convergence with respect to a fundamental set of linear functionals. I was led to the idea of this notion through the study of the proof given by Alexiewicz and Orlicz in [3]. I wrote this paper under the direction of Professor W. Orlicz, whom I wish to thank for his help and valuable remarks.

Let X be a linear, normed and complete Banach space. Further let ||x|| be the norm of the element $x \in X$, \mathcal{Z} the space of linear functionals over X and ξ an element of \mathcal{Z} . x(t), x(s,t) indicate here vector-valued functions defined in the intervals $\langle a,b \rangle$ and $\langle a,b;c,d \rangle$ respectively, with values in the Banach space X.

We call the set Γ of linear functionals a fundamental set if there exist positive constants a>0, k>0 such that for every $\xi \in \Gamma$ and $x \in X$ the inequality

$$\sup |\xi x| \geqslant \alpha ||x||, \quad \xi \in \Gamma, \quad ||\xi|| \leqslant K$$

holds. The unit sphere in the space \mathcal{Z} , $\{\xi: \|\xi\| \geqslant 1\}$, is an example of a fundamental set of linear functionals.

The set Γ_0 of functionals will be called strongly fundamental if the condition

$$\sup |\xi x_n| < \infty$$
 for every $\xi \, \epsilon \Gamma_0$

implies

$$\lim ||x_n|| < \infty.$$

It is known that every closed fundamental set of functionals is strongly fundamental. We shall indicate by Γ a fundamental set of functionals and by Γ_0 a strongly fundamental one.